Supplementary Materials

1 CBCL Algorithms

The algorithms below describe portions of the complete CBCL algorithm. Algorithm 1 is for Agg-Var
clustering (Section 3.1 in paper), Algorithm 2 is for the weighted voting scheme (Section 3.2 in paper) and
Algorithm 3 is for centroid reduction technique (Section 3.3 in paper).

Algorithm 1 CBCL: Agg-Var Clustering

Input: X = {X*, ..., X'} > feature vector sets of the training images belonging to ¢ classes
require: D > distance threshold
Output: C = {C,...,C"} > collection of class centroid sets for ¢ classes
I forj=1;5<tdo
2: CI {27} > initialize centroids for each class
3: forj=1;5 <tdo
4: fori=2;7 < N;do
5: Amin < My ge(coy dist(c], x]) > distance to closest centroid
6: Imin < AIGMIN;_y .00y dist(c], x]) > index of the closest centroid
7: Set w{m to be the number of images clustered
8: in the 2,,;, th centroid pair of class j
9: ifdy, <Dthen _
; w! xdl yal ,
10: S 4 —tmin, tmin T > update the closest centroid
e wimin +1
11: else )
12: C7 .append(z]) > add a new centroid for class j

Algorithm 2 CBCL: Weighed voting scheme for classification

Input: x > feature vector of the test image
require: n > number of closest centroids for prediction
require: C = {C', ..., C'} > class centroids sets
require: {N1, No, ..., N;} > Number of training images per class
Output: y* > predicted label

1: C* ={ec1,09y 00} > n closest centroids from set C

2: fory = 1;y <tdo
3 Pred(y) = 5 Yo gty Vi = Y]
4 y* = argmax,_; _, Pred(y)




Algorithm 3 CBCL: Centroid Reduction

Input: C = {C!,...,C"} > current class centroids sets
require: K > maximum number of centroids
require: K., > number of centroids for new classes
Output: Cepy = {CL 1, -, Cl o} > reduced class centroids sets

I Ky = K+ Kpew — K

2: fory = 1;y <tdo X«

3: Ny (new) = Nyj(1 - 2=)

4: C}ew = k-means(n_clusters = Ny (new),CY)

2 Comparison of CBCL with FearNet on CIFAR-100 Dataset

In this section we compare CBCL against FearNet [[1]] which is another brain-inspired model for incremental
learning. FearNet uses a ResNet-50 pre-trained on ImageNet for feature extraction and uses brain-inspired
dual-memory model. FearNet stores the feature vectors and covariance matrices for old class images and also
uses a generative model for data augmentation. For this comparison we use the evaluation metrics provided

in [1]]. We test the model’s ability to retain base-knowledge given as g5 = ﬁ ZtT:2 :TTt, where

Qipgse,t 18 the accuracy of the model on the classes learned in the first increment, o, fiine s the accuracy
of a multi-layer perceptron trained offline (69.9% reported in [1]) and 7" is the total number of increments.
The model’s ability to recall new information is evaluated as 2,,¢,, = ﬁ Z;T:Q Qnew,t, Where apeq ¢ 18
the accuracy of the model on the classes learned in increment ¢. Lastly, we evaluate the model on all test
data as Qu = 7= ZtT:2 Sallt where aqy ¢ is the accuracy of the model on all the classes learned up till

Qof fline
increment ¢. For a fair comparison, we use the ResNet-50 pre-trained on ImageNet as a feature extractor.

Evaluation | FearNet | CBCL CBCL 5- | CBCL
Metric Shot 10-Shot
Qbase 0.927 1.025 0.754 0.830
Qnew 0.824 1.020 0.778 0.870
Qan 0.947 1.025 0.778 0.870

Table 1: Comparison with FearNet on CIFAR-100. Q45> Qpew and gy are all normalized by the offline
multi-layer preceptron (MLP) baseline (69.9%) reported in [1]. A value greater than 1 means that the average
incremental accuracy of the model is higher than the offline MLP.

Table T[] compares CBCL with FearNet on CIFAR-100 dataset using the metrics proposed in [1]]. We report
results of CBCL on the most difficult increment setting (2 base classes and then 1 class per increment for
98 classes) for this experiment. CBCL clearly outperforms FearNet on all three metrics (Qpgse, Qnew, Lail)
by a significant margin when using all training examples per class. For 10-shot incremental learning, CBCL
outperforms FearNet (which uses all the training examples per class) on €,,.,, but for Q4. and Q4 it is
slightly inferior. For 5-shot incremental learning setting, the results of CBCL are inferior to FearNet (which
uses all the training examples) but the change in accuracy is not drastic. It should be noted that even for 10-shot
and 5-shot incremental learning settings, the MLP baseline, used during the calculation of Qpqsc, Oy and
Qa11, has been trained on all the training data of each class in a single batch.

We also trained a ResNet-50 for 5-shot and 10-shot learning with all the class training data available in one
batch and the test accuracies for 5-shot and 10-shot learning were 8.49% and 12.21%, respectively. CBCL
outperforms this baseline by a remarkable margin for both 5-shot and 10-shot settings, demonstrating that it is
extremely effective for few-shot incremental learning setting.



3 Analysis of Different Memory Budgets

We perform a set of experiments on CIFAR-100 dataset to analyze the effect of different memory budgets
on the performance of CBCL. We performed these experiments on hybrid5 as well to show the contribution
of our proposed centroid reduction technique towards CBCL’s performance. Figure[T|compares the average
incremental accuracy of CBCL and hybrid5 for different memory budgets. As expected, both CBCL and
hybrid5 achieve higher accuracy for when provided higher memory budgets. Furthermore, CBCL constantly
outperforms hybrid5 for all different memory budgets (except for K=9000 when there is no need for any
reduction) and the performance gap increases for smaller memory budgets. This clearly shows the effectiveness
of our proposed centroid reduction technique over simple removal of centroids. Furthermore, it should be

noted that even for only K = 3000 centroids CBCL’s average incremental accuracy (67.5%) is higher than
that of the state-of-the-art methods ([2l]: 64.84%).
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Figure 1: Average incremental accuracy of CBCL and hybrid5 for different memory budgets (K). The difference between
CBCL and hybrid5 is more prominent for smaller memory budgets.



4 Confusion Matrices

We further provide insight into the behavior of CBCL through the confusion matrix. Figure [2| shows the
confusion matrix of CBCL on CIFAR-100 dataset when learning with 10 classes per increment with a memory
budget of K =7500. The pattern is quite obvious that the confusion matrix of CBCL looks homogenous in
terms of diagonal and off-diagonal entries depicting that CBCL does not get biased towards new or old classes
and it does not suffer from catastrophic forgetting.
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Figure 2: Confusion matrix of CBCL on CIFAR-100 dataset with 10 classes per increment and total centroids limit of
K =7500. The vertical axis depeicts the ground truth and the horizontal axis shows the predicted labels (0-99).



5 Hyperparameters

CBCL only has two hyperparameters: distance threshold (D) and number of centroids used for classification
(n). For all three datasets (CIFAR-100, Catltech-101 and CUBS-200-2011), D was tuned to one of the values
in the set {70, 75, 80, 85,90}, although in most of the increments it was tuned to 70 for both incremental
learning and FSIL experiments. n was tuned to one of the values in the set {1, 2, ...,10} for incremental
learning experiments but for FSIL experiments it was mostly tuned to 1.



6 Results on Caltech-101 Using Bag of Visual Words

To show the effect of feature extractor choice on CBCL’s performance, we report results on Caltech-101 dataset
using bag of visual words (with SURF features [3]]). Bag of visual words (BoVW) features are significantly
inferior to CNN features on image classification tasks. Table 2] compares CBCL using BoVW against LWM
and finetuning (FT) with 10 classes per increment. CBCL’s accuracy is significantly lower than LWM and FT
for the first increment (because of inferior features) and for all the other 9 increments it is either higher or
slightly inferior to LWM. This shows that CBCL yields near state-of-the-art accuracy even when using inferior
features. Furthermore, it should be noted that the decrease in accuracy of CBCL is still only 37.61% after
10 increments while for LWM and FT the decrease in accuracies are 69.52% and and 49.36%. These results

clearly show the effectiveness of CBCL to avoid catastrophic forgetting.

# Classes FT LWM CBCL BoVW
10 (base) 97.78 97.78 85.14 +£1.12
20 59.55 75.34 77.84 + 1.86
30 52.65 71.78 69.65 + 2.21
40 44.51 67.49 63.89 + 1.40
50 35.52 59.79 60.30 £1.73
60 31.18 56.62 57.20 +1.37
70 32.99 54.62 55.25 + 0.99
80 27.45 48.71 51.17 + 0.84
90 28.55 46.21 48.13 + 0.88
100 28.26 48.42 47.53 = 0.69

Table 2: Comparison with FT and LWM [4] on Caltech-101 dataset in terms of classification accuracy (%)
with 10 classes per increment. Average and standard deviation of classification accuracies per increment are

reported
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