
A. Derivation of Equation 1
To avoid overloading notation, write p := µX , q := µY .

In matrix form, we have:

dN (X,Y) =
1

2
min

C∈C (p,q)

(∑
ijkl

|Xik − Yjl|2CklCij
) 1

2

Expanding the term inside the square root yields three terms.
The first is the following:∑

ijkl

X2
ikCklCij =

∑
ik

X2
ikpkpi =

∑
i

pi
∑
k

X2
ikpk

=
∑
i

pi(X.
∧2p)i = 〈p,X.∧2p〉.

Here the first equality followed by marginalization. Another
term is as follows:∑

ijkl

Y 2
jlCklCij =

∑
jl

Y 2
jlqlqj =

∑
l

ql
∑
j

Y 2
jlqj

=
∑
l

ql(Y.
∧2q)l = 〈q, Y.∧2q〉.

The final term is the only one that depends on C:

−2
∑
ijkl

XikYjlCklCij = −2
∑
il

(XC)il(CY)il

= −2〈XC,CY 〉 = −2 tr(CTXTCY).

The final equality holds by the definition of the Frobenius
product, and this concludes the derivation of Equation 1.

We further note that in the special case where X,Y are
symmetric positive definite, we can take a Cholesky decom-
position to write:

X = UUT , Y = V TV.

Then we have:

tr(CTXTCY) = tr(CTUTUCV TV)

= tr(V CTUTUCV T)

= 〈UCV T , UCV T 〉 = ‖UCV T ‖2,

where ‖ · ‖ denotes the Frobenius norm. The function C 7→
‖UCV T ‖2 is now seen to be convex.

B. Proofs
Proof of Proposition 3. Let A = AXY . Writing As =
1
2 (A+A∗) for the symmetrization of A, we observe that

2〈AsC,C〉 = 〈AC +A∗C,C〉 = 〈AC,C〉+ 〈C,AC〉
= 〈AC,C〉+ 〈AC,C〉 = 2〈AC,C〉.

The computation then agrees with the computation in the
symmetric setting of [23] after replacing A with its sym-
metrization.

Lemma 10. Let (Z, ωZ , µZ) be a finite measure network.
Let f ∈ L2(Z2, µ⊗2Z). For t ∈ [0, 1], define ωt : (Z ×
Z)2 → R as

ωt ((z1, z2), (z3, z4)) = (1− t)ωZ(z1, z3)

+ tωZ(z2, z4) + tf(z2, z4).

Also let ∆ denote the diagonal coupling between µZ and
itself, i.e. the pushforward of µZ under the diagonal map
z 7→ (z, z). Then we have:

(Z × Z, ωt,∆) ∼=w (Z, ωZ , µZ).

Proof. Consider the projection map π : Z×Z → Z defined
by (z1, z2) 7→ z1. It suffices to show that π#∆ = µZ
and ‖π∗(ωZ + tf)− ωt‖∞ = 0. For the first assertion, let
A ∈ Borel(Z). Then we have:

π#∆(A) = ∆(A× Z) = µZ(A).

For the second assertion, let ((z1, z2), (z3, z4)) ∈ (Z ×Z)2.
Suppose also z1 = z2, z3 = z4. Then we have:

π∗(ωZ + tf) ((z1, z2), (z3, z4))

= ωZ(z1, z3) + tf(z1, z3)

= ωt((z1, z1), (z3, z3))

= ωt((z1, z2), (z3, z4)).

The conclusion follows because ∆ assigns zero measure to
all pairs (z, z′) where z 6= z′.

Proof of Proposition 5. Let X = (X,ωX , µX) be a finite
measure network and let f ∈ L2(Z2, µ⊗2Z) for some Z ∈
[X]. We wish to derive a condition which guarantees that

γ(t) := [Z, ωZ + f, µZ]

is a geodesic defined on [0, 1]. For any t, (Z, ωZ + tf, µZ)
lies in the same weak isomorphism class as

(Z × Z, (1− t)ωZ + t(ωZ + f),∆) ,

where ∆ denotes the diagonal coupling of Z with itself, as
in Lemma 10. This is the general form of a geodesic given
above (3). Moreover, γ(0) = [X], by the definition of Z. It
therefore suffices to find a condition on f which guarantees
that ∆ is an optimal coupling between Z and the measure
network

Z1 := (Z, ωZ + f, µZ) (6)

Consider an arbitrary coupling µ of Z with Z1. The
squared distortion dis(µ)2 is given by∫

(Z×Z)2
(ωZ(z1, z2) + f(z1, z2)− ωZ(z3, z4))

2
µ⊗ µ,

where µ⊗ µ is short for µ⊗ µ((dz1, dz2), (dz3, dz4)). We
rewrite this as∫

(Z×Z)2

{
(ωZ(z1, z2)− ωZ(z3, z4))

2 (7)

+ 2 (ωZ(z1, z2)− ωZ(z3, z4)) f(z1, z2)
}
µ⊗ µ

+

∫
(Z×Z)2

f(z1, z2)2µ⊗ µ. (8)

By the fact that µ is a coupling of µZ with itself, the term in
line (8) simplifies to∫

Z2

f(z1, z2)2µZ(z1)µZ(z2).

On the other hand, this quantity is equal to the squared
distortion dis(∆)2.

To guarantee that dis(∆) ≤ dis(µ), it suffices that the
bracketed term in (7) can be made non-negative. If each
|ωZ(z1, z2)− ωZ(z3, z4)| is zero, then ωX is constant, in
which case we immediately see that the bracketed term
is nonnegative without restriction on f . Otherwise, let
ε[X] be one half of the infimal strictly positive value of
|ωZ(z1, z2)− ωZ(z3, z4)|, ranging over all quadruples of
points in Z. Since Z is weakly isomorphic to X , the images
of ωX and ωZ are equal, and since X is finite these images
are finite. It follows that the infimum ε[X] is actually a min-
imum and is strictly positive. Under the assumption that
|f(z, z′)| < ε[X] for each z, z′ ∈ Z, it is straightforward to
check that the bracketed term in (7) is nonnegative, and this
completes the proof.

Proof of Proposition 8. For simplicity, suppose that S =
{Y } contains a single finite network and write F = FS . The
general case follows by similar arguments. After alignment,
we can assume that X = (X,ωX , µX), Y = (X,ωY , µX)
and that the diagonal coupling ∆ is optimal.

Let [f] ∈ T[X]. Once again, we assume for simplicity that
f is defined on a finite measure network, which we may as
well take to be X after realigning as necessary. The general
case can be shown by adapting this specialized argument.

The first task is to compute the directional derivative
D[f]F ([X]). For t ≥ 0, let Xt = (X,ωX + tf, µX) and let
µt denote an optimal coupling of Xt with Y such that that
limt→0+ µ

t is the diagonal coupling µX ⊗ µX . Note that
for each t, the quantity

1

t

(
F (exp[X](t[f]))− F ([X])

)
(9)

is upper bounded by

1

t

(
dis(µt)

2 − dis(µX ⊗ µX)2
)
.

It is a straightforward computation to show that this upper
bound can be rewritten as

t
∑
i,j

f(i, j)2µX(i)µX(j) (10)

+ 2
∑
i,j

(ωX(i, j)− ωY (i, j))f(i, j)µX(i)µX(j).

On the other hand, (9) is lower bounded by

1

t

(
dis(µt)

2 − disX,Y (µt)
2
)
,

where disX,Y (µt) is the distortion of µt treated as a coupling
of X and Y . This simplifies to

t
∑
i,j,k,`

f(i, j)2µt(i, k)µt(j, `) (11)

+ 2
∑
i,j,k,`

(ωX(i, j)− ωY (k, `))f(i, j)µt(i, k)µt(j, `).

As t→ 0+, quantities (10) and (11) both limit to

2
∑
i,j

(ωX(i, j)− ωY (i, j))f(i, j)µX(i)µX(j),

and this therefore provides a formula for the directional
derivative D[f]F ([X]).

Finally, we note that

2
∑
i,j

(ωX(i, j)− ωY (i, j))f(i, j)µX(i)µX(j)

= 〈[f],∇F ([X])〉[X]

if we take∇F ([X]) to be represented by the matrix

(∇F (X))ij = 2 (ωX(xi, xj)− ωY (yi, yj)) ,

which is the claimed form for this specific example. The
general formula (for S of larger cardinality) is derived by
linearity.

C. Support sizes for optimal couplings
The benefit of our representation of geodesics between

measure networks is the empirical observation that (approxi-
mations of) optimal couplings tend to be sparse. This allows
a geodesic between measure networks X and Y to be repre-
sented in a much smaller space than the naive requirement
of size |X| · |Y |. We have observed that it is more typical for
the representation to require size which is linear in |X|+ |Y |.
Experimental evidence for this observation is provided in
Figures 9 and 10.

There is also theoretical evidence for the observed small
support size phenomenon. In [7, 6] the authors show that
random quadratic programming problems tend to have sparse

Figure 9. Support sizes for random measure networks. In each
trial, a pair of Gaussian iid random weight matrices of size n is
drawn. The optimal coupling for the uniformly weighted networks
is computed and its support size is plotted against n. In general, the
support size grows linearly.

Figure 10. Support sizes for real networks. In each of 1000 trials, a
random pair of graphs from the IMDB-BINARY graph classifica-
tion benchmark dataset is chosen. The optimal coupling between
their shortest path distance matrices (with uniform weights on the
nodes) is computed. This histogram shows the distribution of sup-
port size divided by the sum of sizes of the graphs being compared.
In general, the support size is a small multiple of the sum of graph
sizes.

solutions with high probability. The setting of these articles
is not exactly the one considered here (they use symmetric
quadratic forms and optimize over the standard simplex) and
it remains an open problem to give theoretical probabilistic
guarantees for sparsity in the GW setting. Moreover, it
would be interesting to get results for cost matrices with
more realistic structures; e.g. binary matrices representing
random directed adjacency matrices.

D. Support sizes for the iterative averaging
scheme

Practical computation of Fréchet means as described in
the main text comes with the standard challenges of noncon-

vex optimization: the gradient descent for finding optimal
couplings may get stuck in bad local minima, and this in
turn may propagate into poor computation of Fréchet means.
Empirically we found that using a schedule for adjusting the
gradient step size, i.e. using full gradient steps at the begin-
ning and then using backtracking line search with Armijo
conditions [21] often worked well. Accelerating the gradient
descent using the momentum method also works well.

One aspect of the convergence problem is the size of the
blowups needed to take discrete steps along the gradient flow
of the Fréchet functional. Towards characterizing the classes
of networks for which this problem is more or less difficult,
we set up the following experiments. First we generated net-
works X1, X2 with random weight matrices generated using
Python’s numpy.random.rand function. We equipped
these networks with uniform probabilities. Next we wrote
Xj = Yj + Dj for j = 1, 2, where Dj consisted of the
diagonal part of Xj , and Yj had zero diagonal. Next we
wrote X(α)

j := Yj + αDj for α ∈ {0, 0.1, 0.2, . . . , 1}. For

each α, we set X (α) := {X(α)
1 , X

(α)
2 } and computed the

Fréchet mean of each X (α) using 100 randomly generated
initial seed networks. We repeated this procedure in the cases
where the Xj were both 10-node networks and where X1

had 8 nodes, and X2 had 10 nodes. Finally, we repeated this
entire procedure after initially symmetrizing the Xj . The
average sizes of the iterates are plotted against α in the left
panel of Figure 11. The shading represents the standard devi-
ation for each curve. First we note that as the diagonal terms
are gradually added in, the sizes of the Fréchet mean iterates
grow rapidly. This suggests that when preprocessing data for
the Fréchet averaging procedure, it is helpful to use a scheme
which enforces zero diagonals. The second observation is
that there is some extra blowup that happens when averaging
over a list of networks with different sizes. This is expected,
as the optimal couplings between such networks cannot be
permutation matrices, and hence some blowup is necessary.

Another interesting observation is that the level of asym-
metry does not seem to affect the sizes of the iterates. How-
ever, asymmetry does affect the final Fréchet loss value at
convergence. To test this effect, we generated matrices Xj

as above and decomposed them into symmetric and antisym-
metric parts: Xj = Sj + Aj . Next we chose α as above
and considered the networks Z(α)

j := Sj + αAj . For each

α, we set Z(α) := {Z(α)
1 , Z

(α)
2 } and computed the Fréchet

mean of each Z(α) using 100 randomly generated initial
seed networks. We repeated this experiment for the cases
where both Xj had 10 nodes, and where X1 had 8 nodes and
X2 had 10 nodes. The values of the final Fréchet loss are
plotted against α in the right panel of Figure 11. We observe
that the final Fréchet loss increases with asymmetry, which
suggests that the Fréchet function becomes more nonconvex
with increasing asymmetry.

Figure 11. Left: The sizes of the iterates for the Fréchet mean procedure depend on the diagonal entries of the network weight matrices.
However, these sizes are not influenced by the level of asymmetry in the matrices. Right: The values of the Fréchet loss function at
convergence rise with increasing asymmetry of the network weight matrices.

These observations point to the following open questions:

• Can one place quantitative bounds on the rate of expan-
sion of the Fréchet mean iterates as a function of the
diagonal values of weight matrices?

• Can one adapt methods such as graduated nonconvexity
to improve convergence for asymmetric networks, in
the sense of “graduated asymmetry”?

To perform averages for networks with nonzero diago-
nal while circumventing the problem of expanding matrices,
we adopted a simple—albeit Procrustean—method for re-
stricting this expansion. This method has its own interesting
application for network compression, and we detail it next.

D.1. Network compression

Let X, Y be finite networks, and let X̂ , Ŷ denote their
alignments. The aligned networks could, a priori, be larger
in size than X and Y . Thus if the alignment is iterated, as
would be the case in computing Fréchet means, we could
have unbounded blowups in the sizes of these matrices.
To prevent this situation, we pose the following question.
Suppose |X| < |Y |. What is the projection of the vec-
tor ωŶ − ωX̂ onto the space of |X| × |X| vectors? Let
v denote this projection. Geometrically, we expect that
(X,ωX + v, µX) is a good |X|-node representative of Y .
Practically, we can take the average of (X,ωX , µX) and
(X,ωX + v, µX) without any expansion and expect this ob-
ject to be an approximate average of X and Y .

We adopt the following simple method to obtain a low-
dimensional representation of the tangent vector ν := ωŶ −
ωX̂ . Following the notation used in Definition 1, write X̂ =
X[u]. Recall that ωX[u]((x, i), (x

′, j)) = ωX(x, x′).Define
the |X| × |X|-dimensional vector v as follows: for any

x, x′ ∈ X ,

v(x, x′) :=

∑ux

i=1

∑ux′
j=1(ωŶ − ωX̂)((x, i), (x′, j))

ux · ux′

=

∑ux

i=1

∑ux′
j=1 ωŶ ((x, i), (x′, j))

ux · ux′
− ωX(x, x′).

Here we overload notation slightly to write
ωŶ ((x, i), (x′, j)), but this is well-defined because Ŷ

is aligned to X̂ and (x, i) is just an index.
To understand this construction, note that the elements

of the tangent vector ν admit the following interpretation:
νpq is just the difference −ωX̂(xp, xq) + ωŶ (yp, yq), i.e.
it measures the change in the network weight from xp to
xq when transferring from ωX̂ to ωŶ . Here xp, xq are just
indices of elements in X̂ . In the metric space setting, this
quantity is exactly the change in distance between xp and xq
that one would observe by following the optimal transport
map µ̂ between X̂ and Ŷ . Intuitively in the metric setting,
points which start nearby and end nearby under the map µ̂
correspond to similar tangent vector entries.

Under this interpretation, the vector v simply averages
out the changes that occur within and between blocks of
X[u] when passing from ωX̂ to ωŶ . Note in particular that
(X,ωX + v, µX) gives us a compressed representation of Y .
This is illustrated in Section 4.4.

Remark 11. The averaging method of [23] proceeds by fix-
ing a size for the requested Fréchet mean and then perform-
ing an alternating optimization. This suggests the following
open question: Is there a variant of the “compressed log
map” approach outlined above that agrees with the method
in [23]?

E. Algorithms
We now present pseudocode for our methods. Algorithm

1 serves as a placeholder; it can be computed using gradi-

ent descent [23] and is implemented in the Python Optimal
Transport Library [12].

Algorithm 1 Compute minimizer of the GW functional
1: function OPTCOUP(A,B, a, b)
2: // A ∈ Rn×n, B ∈ Rm×m. a, b probability vectors

return C . n×m optimal coupling
3: end function

Algorithm 2 Computing the log map
1: function LOGMAP(A,B, a, b)
2: // A ∈ Rn×n, B ∈ Rm×m. a, b probability vectors

3:
// Lift geodesic from A to B to tangent vector
based at A

4:
5: Initialize splitData = [] . store metadata
6: C = OPTCOUP(A,B, a, b)
7: Find rows, columns of C with multiple nonzeroes
8: Store indices in splitData
9: Blow-up A,B, a, b, C according to splitData

10: C = (C! = 0) . convert C to permutation matrix
11: B = C ∗B ∗ CT . align B to A
12: v = −A+B . tangent vector
13: return A, a, v, splitData
14: end function

Algorithm 3 Computing the Fréchet gradient
1: function FRECHETGRAD(AList, aList, A, a)
2: // list of networks and a seed network
3: Initialize tanV ec = [] . list of tangent vectors
4: n = number of networks in AList
5: C = OPTCOUP(A,B, a, b)
6: for j = 0, . . . , n− 1 do
7: A, a, v, sD = LOGMAP(AList[j], aList[j], A, a)
8: // A, a may be blown-up at each step

9:
Use sD to blow-up rows of tanV ec elements
to be compatible with the newly blown-up A

10: Append v to tanV ec
11: end for
12: g = sum(tanV ec)/n . Fréchet gradient
13: return g
14: end function

