
A. Appendix
A.1. Second order term from bilevel optimization

For the second order term for the optimization of aug-
mentation parameters, we follow the formulation in [23],
which we summarize below. We treat the optimization of
augmentation parameters and weights of the neural network
as a bilevel optimization problem, where ↵ are the augmen-
tation parameters and w are the weights of the neural net-
work. Then the goal is to find the optimal augmentation
parameters ↵ such that when weights are optimized on the
training set using data augmentation given by ↵ parameters,
the validation loss is minimized. In other words:

min↵Lval(w
⇤(↵),↵) s.t. w⇤(↵) =

argminw Ltrain(w,↵). (1)

Then, again following [23], we approximate this bilevel op-
timization by a single virtual training step,

r↵Lval(w
⇤(↵),↵) ⇡

r↵Lval(w � ⇠rwLtrain(w,↵),↵), (2)

where ⇠ is the virtual learning rate. Eq. 2 can be expanded
as

r↵Lval(w
⇤(↵),↵) ⇡

r↵Lval(w � ⇠rwLtrain(w,↵),↵)�
⇠r2

↵,wLtrain(w,↵)rw0Lval(w
0,↵), (3)

where w0 = w � ⇠rwLtrain(w,↵). In the case where
the virtual learning rate, ⇠, is zero, the second term disap-
pears and the first term becomes rLval(w,↵), which was
called the first-order approximation [23]. This first-order
approximation was found to be highly significant for archi-
tecture search, where most of the improvement (0.3% out of
0.5%) could be achieved using this approximation in a more
efficient manner (1.5 days as opposed to 4 days). Unfortu-
nately, when ↵ represents augmentation parameters, first-
order approximation is irrelevant since the predictions of a
model on the clean validation images do not depend on the
augmentation parameters ↵. Then we are left with just the
second order approximation, where ⇠ > 0, which we ap-
proximate via finite difference approximation as

r2
↵,wLtrain(w,↵)rw0Lval(w

0,↵) ⇡
r↵Ltrain(w+,↵)�r↵Ltrain(w�,↵)

2✏
, (4)

where w± = w±✏rw0Lval(w0,↵) and ✏ is a small number.

A.1.1 Magnitude methods

A random magnitude uniformly randomly samples the dis-
tortion magnitude between two values. A constant mag-
nitude sets the distortion magnitude to a constant number

Magnitude Method Accuracy
Random Magnitude 97.3
Constant Magnitude 97.2
Linearly Increasing Magnitude 97.2
Random Magnitude with Increasing Upper Bound 97.3

Table 7. Results for different ways of setting the global magni-
tude parameter M . All magnitude methods were run on CIFAR-
10 with Wide-ResNet-28-10 for 200 epochs. The reported accu-
racy is the average of 10 runs on the validation set for the best
hyperparamter setting for that magnitude method. All magnitude
methods searched over had 48 different hyperparameter settings
tried.

Figure 5. Performance when magnitude is changed for one im-
age transformation. This plot uses a shared magnitude for all
image transformations and then changes the magnitude of only
one operation while keeping the others fixed. Two different archi-
tectures were tried (WRN-28-2 and WRN-28-10) and two differ-
ent image transformations were changed (Rotate and TranslateX),
which results in the 4 lines shown. Twenty different magnitudes
were tried for the selected transformation ([0 � 19]). The squares
indicate the optimal magnitude found and the diamonds indicate
the magnitude used for all other transformations (4 for WRN-28-2
and 5 for WRN-28-10).

during the course of training. A linearly increasing mag-
nitude interpolates the distortion magnitude during training
between two values. A random magnitude with increasing
upper bound is similar to a random magnitude, but the upper
bound is increased linearly during training. In preliminary
experiments, we found that all strategies worked equally
well. Thus, we selected a constant magnitude because this
strategy includes only a single hyper-parameter, and we em-
ploy this for the rest of the work. The results from our ex-
periment on trying the different magnitude strategies can be
see in Table 7.



A.1.2 Optimizing individual transformation magni-
tudes

Figure 5 demonstrates that changing the magnitude for one
transformation, when keeping the rest fixed results in a very
minor accuracy change. This suggests that tying all magni-
tudes together into a single value M is not greatly hurting
the model performance. Across all for settings in Figure 5
the difference in accuracy of the tied magnitude vs the opti-
mal one found was 0.19% 0.18% for the rotation operation
experiments and 0.07% 0.05% for the TranslateX experi-
ments. Changing one transformation does not have a huge
impact on performance, which leads us to think that tying
all magnitude parameters together is a sensible approach
that drastically reduces the size of the search-space.

A.2. Experimental Details

A.2.1 CIFAR

The Wide-ResNet models were trained for 200 epochs with
a learning rate of 0.1, batch size of 128, weight decay of 5e-
4, and cosine learning rate decay. Shake-Shake [10] model
was trained for 1800 epochs with a learning rate of 0.01,
batch size of 128, weight decay of 1e-3, and cosine learning
rate decay. ShakeDrop [45] models were trained for 1800
epochs with a learning rate of 0.05, batch size of 64 (as
128 did not fit on a single GPU), weight decay of 5e-5, and
cosine learning rate decay.

On CIFAR-10, we used 3 for the number of operations
applied (N ) and tried 4, 5, 7, 9, and 11 for magnitude. For
Wide-ResNet-2 and Wide-ResNet-10, we find that the op-
timal magnitude is 4 and 5, respectively. For Shake-Shake
(26 2x96d) and PyramidNet + ShakeDrop models, the opti-
mal magnitude was 9 and 7, respectively.

A.2.2 SVHN

For both SVHN datasets, we applied cutout after RandAug-
ment as was done for AutoAugment and related methods.
On core SVHN, for both Wide-ResNet-28-2 and Wide-
ResNet-28-10, we used a learning rate of 5e-3, weight de-
cay of 5e-3, and cosine learning rate decay for 200 epochs.
We set N = 3 and tried 5, 7, 9, and 11 for magnitude. For
both Wide-ResNet-28-2 and Wide-ResNet-28-10, we find
the optimal magnitude to be 9.

On full SVHN, for both Wide-ResNet-28-2 and Wide-
ResNet-28-10, we used a learning rate of 5e-3, weight de-
cay of 1e-3, and cosine learning rate decay for 160 epochs.
We set N = 3 and tried 5, 7, 9, and 11 for magnitude. For
Wide-ResNet-28-2, we find the optimal magnitude to be 5;
whereas for Wide-ResNet-28-10, we find the optimal mag-
nitude to be 7.

A.2.3 ImageNet

The ResNet models were trained for 180 epochs using the
standard ResNet-50 training hyperparameters. The image
size was 224 by 224, the weight decay was 0.0001 and the
momentum optimizer with a momentum parameter of 0.9
was used. The learning rate was 0.1, which gets scaled by
the batch size divided by 256. A global batch size of 4096
was used, split across 32 workers. For ResNet-50 the opti-
mal distortion magnitude was 9 and (N = 2). The distor-
tion magnitudes we tried were 5, 7, 9, 11, 13, 15 and the
values of N that were tried were 1, 2 and 3.

The EfficientNet experiments used the default hyper pa-
rameters and training schedule, which can be found in [41].
We trained for 350 epochs, used a batch size of 4096 split
across 256 replicas. The learning rate was 0.016, which gets
scaled by the batch size divided by 256. We used the RM-
SProp optimizer with a momentum rate of 0.9, epsilon of
0.001 and a decay of 0.9. The weight decay used was 1e-5.
For EfficientNet B5 the image size was 456 by 456 and for
EfficientNet B7 it was 600 by 600. For EfficientNet B5 we
tried N = 2 and N = 3 and found them to perform about
the same. We found the optimal distortion magnitude for
B5 to be 17. The different magnitudes we tried were 8, 11,
14, 17, 21. For EfficientNet B7 we used N = 2 and found
the optimal distortion magnitude to be 28. The magnitudes
tried were 17, 25, 28, 31.

The default augmentation of horizontal flipping and ran-
dom crops were used on ImageNet, applied before Ran-
dAugment. The standard training and validation splits were
employed for training and evaluation.

A.3. COCO
We applied horizontal flipping and scale jitters in addi-

tion to RandAugment. We used the same list of data aug-
mentation transformations as we did in all other classifica-
tion tasks. Geometric operations transformed the bounding
boxes the way it was defined in Ref. [51]. We used a learn-
ing rate of 0.08 and a weight decay of 1e�4. The focal loss
parameters are set to be ↵ = 0.25 and � = 1.5. We set
N = 1 and tried distortion magnitudes between 4 and 9.
We found the optimal distortion magnitude for ResNet-101
and ResNet-200 to be 5 and 6, respectively.


