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A. Appendix
A.1. Network Details

Algorithm 1 shows the summary of the edge generation
process as inspired by GraphRNN. From edges, the faces
are formed by defining a face on any three vertices that are
connected by edges. Algorithm 2 enumerates the steps to
determine faces from the edge predictions.

Algorithm 1 Edge Generation Process
Initialize RNN-based ftrans and fout
Initialize encoder φ of autoencoder
Input: Probability distribution Pθi parameterized by θi,
start token SOS, end token EOS, empty graph state
Input: point cloud x ∈ X where X is the space of all
input point clouds
Output: ~e ∈ E where E is a sequence of edge predictions
for all vertices in x
Output: sequence of edge predictions E ∈ E for input
point cloud x where E is the space of all edge predictions
for all point clouds X
~e1 = SOS
i = 1
h1 = h′

z = φ(x)
repeat
i = i+ 1
hi = ftrans(hi−1, ~ei−1, z)
θi = fout(hi)
~ei ∼ Pθi

until ~ei is EOS
Return E = (~e1, ~e2, ..., ~ei)

Table 1 shows the network implementation details. The
network is detailed by indicating the shape of the input and
the shape of the output for each layer.

A.2. Meshlab Parameters

Table 2 shows the default parameters for Butterfly and
Midpoint subdivisions. The parameters were used to pro-

Algorithm 2 Face Generation Process
Input: edge predictions E for point cloud x
Input: vertices vi ∈ V for point cloud x
Initialize set adj
Output: set of faces fi ∈ F for meshM with vertices V
for eab ∈ E do

add {b} to adj[a]
add {a} to adj[b]

end for
i = 0
for eab ∈ E do

for c in adj[a] and adj[b] do
i = i+ 1
fi = sorted(a, b, c)

end for
end for
Set f1 as the reference
for fj ∈ (f2, f3, ..., fi) do

Flip order of vertices in fj if in conflict with fj−1
end for
Return F = (f1, f2, ..., fi)

cess the meshes prior to training and testing. Table 3 shows
the parameters used for normal estimation, BPA, and PSR.
These were used to perform surface reconstruction on input
point clouds.

Butterfly subdivision works under the assumption that
mesh surfaces are originally curved. As a point is added to a
surface, the planes adjacent to the new point have varied sur-
face normal directions. The midpoint subdivision does not
change the direction of the plane normals. Midpoint sim-
ply adds points midway between two existing points with-
out altering the plane. Meshlab was used to perform both
butterfly and midpoint subdivisions on the datasets.

A.3. Autoencoder Results

Figure 1 illustrates REIN’s autoencoder performance.
The autoencoder is shown to satisfactorily recreate an in-
put point cloud.
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Figure 1. Sample point cloud autoencoder results of REIN on ShapeNet.

Table 1. Network details and corresponding layer (input, input
shape → output shape) for the autoencoder, State RNN, and Edge
RNN. All Conv1D are followed by ReLU and BN, while all GRU
have 4 layers. The latent vector in the autoencoder is denoted by
z.

AUTOENCODER

x ∈ R3xn, z ∈ R64, n ∈ Z+

p = RandomSample(x, (3, n)→ (1, 3, 500))
p = Conv1D(p, (1, 3, 500)→ (1, 64, 500))
p = Conv1D(p, (1, 64, 500)→ (1, 64, 500))
p = Conv1D(p, (1, 64, 500)→ (1, 64, 500))
p = Conv1D(p, (1, 64, 500)→ (1, 64, 500))
p = MaxPool(p, (1, 64, 500)→ (1, 64, 1))
z = Reshape(p, (1, 64, 1)→ (1, 64))
p = ReLU(FC(z, (1, 64)→ (1, 64)))
p = ReLU(FC(p, (1, 64)→ (1, 64)))
p = FC(p, (1, 64)→ (1, 1500))

p = Reshape(p, (1, 1500)→ (1, 3, 500))
p ∈ R1x3x500

STATE RNN
x ∈ R3xn, z ∈ R64, n ∈ Z+

h = Concat(x, z)
h = FC(h, (1, n, 67)→ (1, n, 64))
h = GRU(h, (n, 64)→ (n, 128))

h = ReLU(FC(h, (1, n, 128)→ (1, n, 64)))
h = FC(h, (1, n, 64)→ (1, n, 16))

h ∈ R1xnx16

EDGE RNN
n ∈ Z+,m ∈ Z+

y = Zeros((n, 500, 1))
y = FC(y, (n, 500, 1)→ (n, 500, 8))
y = GRU(y, (m, 8)→ (m, 16))

y = ReLU(FC(y, (n, n, 16)→ (n, n, 8)))
y = FC(y, (n, n, 8)→ (n, n, 1))

y ∈ Rnxnx1

Table 2. Parameters used for Butterfly and Midpoint Subdivisions
in Meshlab.

BUTTERFLY SUBDIVISION
PARAMETER VALUE
ITERATIONS 1
EDGE THRESHOLD (ABS) 0.0042521
EDGE THRESHOLD (%) 0.425213

MIDPOINT SUBDIVISION
PARAMETER VALUE
ITERATIONS 1
EDGE THRESHOLD (ABS) 0.010095
EDGE THRESHOLD (%) 1.00953

Table 3. Parameters used in Meshlab to apply BPA and PSR.

POINT NORMAL ESTIMATION
PARAMETER VALUE
NUM NEIGHBORS 10
VIEWPOINT POS (0,0,0)

BALL PIVOTING ALGORITHM
PARAMETER VALUE
PIVOTING BALL RADIUS 0 (WOLRD UNIT), 0%
CLUSTERING RADIUS 20%
ANGLE THRESHOLD 90◦

POISSON SURFACE RECONSTRUCTION
PARAMETER VALUE
OCTREE DEPTH 6
SOLVER DIVIDE 6
SAMPLES PER NODE 1
SURFACE OFFSETTING 1

A.4. Additional Results

Figure 2 shows additional results on ShapeNet Hull
dataset. The number of vertices for the mesh outputs vary
from 8 to 300. Figures 3 and 4 show additional results



on the ShapeNet Midpoint dataset. Similar to previous
sample figures, BPA struggles in reconstructing areas with
few vertices. PSR is prone to constructing closed surfaces
around dense points. Reconstructions from PSR form sepa-
rate closed surfaces around clusters. BPA and PSR can form
good reconstructions in cases where the distribution of ver-
tices are uniform. This can be seen in some sample cases in
Figure 3. REIN is shown to perform well compared to BPA
and PSR.

Figure 2. Sample results of REIN on ShapeNet Hull where number
of vertices vary from 8 to 300.

Figures 5, 6, and 7 show qualitative results on the
ShapeNet Patched dataset. Note that the results on
ShapeNet Patched were obtained by using the network
trained on ShapeNet Wrapped.

Figure 3. Sample results of REIN on ShapeNet Midpoint.

Figure 4. Sample results of REIN on ShapeNet Midpoint.



Figure 5. Sample results of REIN on ShapeNet Patched.

Figure 6. Sample results of REIN on ShapeNet Patched.



Figure 7. Sample results of REIN on ShapeNet Patched.


