
7. Appendix

7.1. Schematics for CNN-based models

Figure 9: Model schematic for the hierarchy-agnostic clas-
sifier. The model is a multi-label classifier and does not
utilize any information about the presence of an explicit hi-
erarchy in the labels.

Figure 10: Model schematic for the per-level classifier (=L
Ni-way classifiers). The model use information about the
label-hierarchy by explicitly predicting a single label per
level for a given image.

Figure 11: Model schematic for the Marginalization
method. Instead of predicting a label per level, the model
outputs a probability distribution over the leaves of the hi-
erarchy. Probability for non-leaf nodes is determined by
marginalizing over the direct descendants. The Marginal-
ization method models how different nodes are connected
among each other in addition to the fact that there are L
levels in the label-hierarchy.

7.2. Performance metrics

True positive rate. True positive rate (TPR) is the frac-

Figure 12: Model schematic for the Masked Per-level clas-
sifier. The model is trained exactly like the L Ni-way classi-
fier. While predicting, one assumes the model performs bet-
ter for upper levels than lower levels. Keeping this in mind,
when predicting a label for a lower level, the model’s pre-
diction for the level above is used to mask all infeasible de-
scendant nodes, assuming the model predicts correctly for
the level above. This results in competition only among the
descendants of the predicted label in the level above.

tion of actual positives predicted correctly by the method.

TPR =
tp

totalPositives
(10)

True negative rate. True negative rate (TNR) is the fraction
of actual negatives predicted correctly by the method.

TNR =
tn

totalNegatives
(11)

Precision. Precision computes what fraction of the labels
predicted true by the model are actually true.

P =
tp

tp+ fp
(12)

Recall. Recall computes what fraction of the true labels
were predicted as true.

R =
tp

tp+ fn
(13)

F1-score.
F1 =

2 ∗ P ∗R
P +R

(14)

Hit@k.

Hit@K =
1

N

N�

i=1

1[labelgt
i ∈ SortedPredictions(i)] (15)

where, SortedPredictions(i) =

{labelpred
0 , labelpred

1 , ..., labelpred
k−1, labelpred

k } is the set of
the top-K predictions for the i-th data sample. Macro-
averaged score. A macro-averaged score for a metric is
calculated by averaging the metric across all labels.

M-metric =
1

N

N�

i=1

metric(labeli) (16)

Micro-averaged score. A micro-averaged score for a
metric is calculated by accumulating contributions (to the
performance metric) across all labels and these accumulated
contributions are used to calculate the micro score.



7.3. ETHEC dataset

The ETHEC dataset [1] contains 47,978 images of the
“order” Lepidoptera with corresponding labels across 4 dif-
ferent levels. According to the way the taxonomy is de-
fined, the specific epithet (species) name associated with a
specimen may not be unique. For instance, two samples
with the following set of labels, (Pieridae, Coliadinae, Col-
ias, staudingeri) and (Lycaenidae, Polyommatinae, Cupido,
staudingeri) have the same specific epithet but differ in all
the other label levels - family, subfamily and genus. How-
ever, the combination of the genus and specific epithet is
unique. To ensure that the hierarchy is a tree structure and
each node has a unique parent, we define a version of the
database where there is a 4-level hierarchy - family (6), sub-
family (21), genus (135) and genus + specific epithet (561)
with a total of 723 labels. We keep the genus level as ac-
cording to experts in the field, information about genera
helps distinguish among samples and result in a better per-
forming model.

7.4. HAB details

Here we discuss the details of having a single thresh-
old for every label or a common threshold for all labels
in a multi-label classification setting. Here we observe the
maximum and minimum labels predicted by the multi-label
model across the whole dataset. We also look at the mean
and standard deviation of the number of labels predicted.

7.4.1 Per-class decision boundary (PCDB) models

The ill-effects of such free rein are reflected in Table 3.
Models with a high average number of predictions, espe-
cially the per-class decision boundary (PCDB) models, have
high recall as they predict a lot more than just 4 labels for
a given image. Predicting the image’s membership in a lot
of classes improves the chances of predicting the correct la-
bel but at the cost of a large number of false positives. The
(min, max), µ ± σ column clearly shows the reckless be-
havior of the model predicting a maximum of 718 labels for
one such sample and 451.14 ± 136.69 on average for the
worst performing multi-label model in our experiments.

7.4.2 One-fits-all decision boundary (OFADB) models

The one-fits-all decision boundary (OFADB) performs bet-
ter than the same model with per-class decision boundaries
(PCDB). We believe that the OFADB prevents over-fitting,
especially in the case when many labels have very few data
samples to learn from, which is the case for the ETHEC
database. Here too, the nature of the multi-label setting al-
lows the model to predict as many labels as it wants how-
ever, there is a marked difference between the (min, max),
µ ± σ statistics when comparing between the OFADB and

PCDB. The best performing OFADB model predicts 3.10 ±
1.16 labels on average. This is close to the correct number
of labels per specimen which is equal to the 4 levels in the
label hierarchy.

7.4.3 Loss reweighing and Data re-sampling

Both data re-sampling and loss re-weighing remedy imbal-
ance across different labels but via different paradigms. In-
stead of modifying what the model sees during training,
reweighing the loss instead penalizes different data points
differently. We choose to use the inverse-frequency of the
label as weights that scale loss corresponding to the data
point belonging to a particular label.

re-sampling involves choosing some samples multiple
times while omitting others by over-sampling and under-
sampling. We wish to prevent the model from being biased
by the population of data belonging to a particular label.
We perform re-sampling based on the inverse-frequency of
a label in the train set. In our experiments re-sampling sig-
nificantly outperforms loss reweighing confirming the ob-
servations made in [28].

cw rs m-P m-R m-F1 (min, max), µ± σ

ResNet-50 - Per-class decision boundary
✗ ✗ 0.0355 0.7232 0.0677 (3, 351), 81.4 ± 69.5
✗ ✓ 0.7159 0.7543 0.3718 (0, 13), 4.2 ± 2.1
✓ ✗ 0.0077 0.8702 0.0153 (84, 718), 451.1 ± 136.7
✓ ✓ 0.0081 0.7519 0.0161 (33, 714), 370.0 ± 120.6

ResNet-50 - One-fits-all decision boundary
✗ ✗ 0.9324 0.7235 0.8147 (0, 7), 3.1 ± 1.2
✗ ✓ 0.9500 0.6564 0.7763 (0, 5), 2.8 ± 0.6
✓ ✗ 0.2488 0.2960 0.2704 (4, 9), 4.8 ± 0.8
✓ ✓ 0.1966 0.3800 0.2591 (4, 10), 7.7 ± 0.6

Table 3: Performance metrics for the HAB on the ETHEC
dataset. The models used in this experiment are pre-trained
on the 1000-class ImageNet data set. All weights are up-
dated with a learning rate of 0.01, a batch-size of 64 and
input spatial dimensions are 224x224 for 100 epochs. P,
R and F1 represent Precision, Recall and F1-score; cw and
rs represent class weight and re-sampling. m are micro-
averaged metrics. The top performing models are in bold-
face. Since, the model can predict any number of labels
(between 0 and Ntotal), the table includes the minimum and
the maximum number of labels predicted (min, max) as well
as the number of labels predicted on average µ ± σ. These
statistics, like the rest, are calculated for samples in the test
set.



(a) Order-embeddings L=4, b=3 (b) Order-embeddings L=3, b=7

(c) Euclidean cones L=4, b=3 (d) Euclidean cones L=3, b=7

Figure 13: We embed 2 different toy graphs. One with 4 levels and a branching factor of 4 and another one with 3 levels
and a branching factor of 7. The model is trained for 1000 epochs with Adam (learning rate of 0.01). The toy graphs are
embedded using both order-embeddings and euclidean cones in R2. We draw an edge between each node that is connected
in the original in order to better visualize the embedding quality. Nodes from different levels are colored differently. The
illustrations show the levels and branching factor, the edges are split into train, val and test and report F1-score, precision,
recall and accuracy; and the threshold to decide if a pair of nodes have a directed edge or equivalently if they are hypernyms.



(a) Aporia crataegi [ENT01 2017 03 27 007897] (b) Parnassius stubbendorfii [ENT01 2018 03 09 132877]

(c) Parnassius delphius [ENT01 2018 03 09 133076] (d) Parnassius delphius [ENT01 2018 03 09 133091]

Figure 14: Both semantic similarity and visual similarity are required to perform tasks relating to image understanding. Here,
we see an example from the ETHEC dataset [1]. At first glance, (a) and (b) look like they belong to the same class and so do
(c) and (d) considering the visual similarities. However, this is not so straight-forward as (a) and (b) belong to two separate
genera and species but have a really low inter-class variance. On the other hand, (b), (c) and (d) all share the same genus
Parnassius but have a larger intra-class variance than (a) and (b). This demonstrates how visual similarity might not imply
semantic similarity and vice-versa.



(a) Hyperbolic Cones 100-D (b) Hyperbolic Cones 1000-D

Figure 15: Projected visualization of labels embedded using hyperbolic cones in 100 and 1000 dimensions. The cyan nodes
represent family, the magenta nodes represent sub-family, the yellow nodes genus and black nodes genus+species. This
resembles a flower-like shape where the more generic concepts are closer to the origin and at the base of this flower-like
shape and most specific concepts at the tip of the petals which forms the periphery are a visible the most (=black nodes).


