Enhancing Face Data Diversity with Style-based Face Aging Supplementary Material

1 Additional qualitative results

We present in Fig. 1 additional samples from the proposed as well as the baseline methods. These results support our conclusion that our method outperforms the baselines, especially for the 0 - 30 and 50 + age classes, which is crucial for diversity-enhancing augmentation methods.

2 Intra-class Aging

We present in Fig. 2 further results on intra-class aging. In particular, given an older-looking target, our method is even able to age faces that belong to the oldest age class, by transferring more crude aging patterns.

Figure 2: Intra-class diversity: Given input images (top row) of the age class 50+, we can synthesize even older looking faces by transfering the aging patterns of an older image from the same class.

3 Detailed Network Architecture

The specifics of our networks, including our choice of layers and activation functions, can be found in Table $\frac{3}{4}$ and Table $\frac{4}{4}$.

(c) FG-NET

Figure 1: Additional baseline comparisons: translating an image from the test set to all ages classes on CACD, MORPH and FG-NET. The red column highlights the input image, positioned in its corresponding age class.

Section	Name	Dimensions (In)	Dimensions (Out)	Layers
Encoder	e1	(b, 128, 128, 3)	(b, 128, 128, 64)	$Conv2d(f=64, k=7, s=1) \rightarrow IN$
	e2	(b, 128, 128, 64)	(b, 64, 64, 128)	$\text{ReLu} \rightarrow \text{Conv2d}(\text{f}=128, \text{k}=4 \text{ s}=2) \rightarrow \text{IN}$
	e3	(b, 64, 64, 128)	(b, 32, 32, 256)	$\text{ReLu} \rightarrow \text{Conv2d}(\text{f}=256, \text{k}=4 \text{ s}=2) \rightarrow \text{IN}$
	e4	(b, 32, 32, 256)	(b, 16, 16, 512)	$\text{ReLu} \rightarrow \text{Conv2d}(\text{f}=512, \text{k}=4 \text{ s}=2) \rightarrow \text{IN}$
	e5	(b, 16, 16, 256)	(b, 8, 8, 512)	$\text{ReLu} \rightarrow \text{Conv2d}(\text{f}=512, \text{k}=4 \text{ s}=2) \rightarrow \text{IN}$
	e6	(b, 8, 8, 512)	(b, 4, 4, 512)	$\text{ReLu} \rightarrow \text{Conv2d}(\text{f}=512, \text{k}=4 \text{ s}=2) \rightarrow \text{IN}$
	e7	(b, 4, 4, 512)	(b, 2, 2, 512)	$\text{ReLu} \rightarrow \text{Conv2d}(\text{f}=512, \text{k}=4 \text{ s}=2) \rightarrow \text{IN}$
Decoder	Z	(b, 2, 2, 512)	(b, 2, 2, 512)	$\text{ReLu} \rightarrow \text{Conv2d}(\text{f}{=}512, \text{k}{=}3 \text{ s}{=}1) \rightarrow \text{AdaIN} \rightarrow +\text{e7} \rightarrow \text{ReLu}$
	d1	(b, 2, 2, 512)	(b, 4, 4, 512)	$ConvT2d(f=512, k=4 s=2) \rightarrow AdaIN \rightarrow + e_6 \rightarrow ReLu$
	d2	(b, 4, 4, 512)	(b, 8, 8, 512)	$ConvT2d(f=512, k=4 s=2) \rightarrow AdaIN \rightarrow + e_5 \rightarrow ReLu$
	d3	(b, 8, 8, 512)	(b, 16, 16, 512)	$ConvT2d(f=512, k=4 s=2) \rightarrow AdaIN \rightarrow + e_4 \rightarrow ReLu$
	d4	(b, 16, 16, 512)	(b, 32, 32, 256)	$ConvT2d(f=256, k=4 s=2) \rightarrow AdaIN \rightarrow + e_3 \rightarrow ReLu$
	d5	(b, 32, 32, 256)	(b, 64, 64, 128)	$ConvT2d(f=128, k=4 s=2) \rightarrow AdaIN \rightarrow + e_2 \rightarrow ReLu$
	d6	(b, 64, 64, 128)	(b, 128, 128, 64)	$ConvT2d(f=64, k=4 s=2) \rightarrow AdaIN \rightarrow + e_1 \rightarrow ReLu$
	d7	(b, 128, 128, 64)	(b, 128, 128, 3)	ConvT2d(f=3, k=7 s=1)

Figure 3: Encoder and Decoder architecture: b denotes the mini-batch size, and 'IN' refers to the Instance Normalization operation. We use '+e_i' to donate a symmetric skip-connection element-wise addition operation from the encoder to the decoder.

Section	Name	Dimensions (In)	Dimensions (Out)	Layers
	d1	(b, 128, 128, 3)	(b, 128, 128, 64)	$Conv2d(f=64, k=7, s=1) \rightarrow LeakyReLu$
	d2	(b, 128, 128, 64)	(b, 64, 64, 128)	$Conv2d(f=128, k=4 s=2) \rightarrow LeakyReLu$
	d3	(b, 64, 64, 128)	(b, 32, 32, 256)	$Conv2d(f=256, k=4 s=2) \rightarrow LeakyReLu$
Discriminator	d4	(b, 32, 32, 256)	(b, 16, 16, 512)	$Conv2d(f=512, k=4 s=2) \rightarrow LeakyReLu$
	d5	(b, 16, 16, 256)	(b, 8, 8, 512)	$Conv2d(f=512, k=4 s=2) \rightarrow LeakyReLu$
	d6	(b, 8, 8, 512)	(b, 4, 4, 512)	$Conv2d(f=512, k=4 s=2) \rightarrow LeakyReLu$
	d7	(b, 4, 4, 512)	(b, 2, 2, 512)	$Conv2d(f=512, k=4 s=2) \rightarrow LeakyReLu$
	logits	(b, 2, 2, 512)	(b,4)	$Flatten \rightarrow FC(4)$

Figure 4: Discriminator architecture: b again denotes the mini-batch size.