
Supplementary Material
This is the supplementary material for Evaluating Scalable Bayesian Deep Learning Methods for Robust Computer

Vision. It consists of Appendix A-D.

Appendix A. Approximating a Mixture of Gaussian Distributions
For the Gaussian model (2), p̂(y?|x?,D) in (4) is a uniformly weighted mixture of Gaussian distributions. We approximate

this mixture with a single Gaussian parameterized by the mixture mean and variance:

p̂(y?|x?,D) = 1

M

M∑
i=1

p(y?|x?, θ(i)), θ(i) ∼ q(θ),

p̂(y?|x?,D) = 1

M

M∑
i=1

N (y?;µθ(i)(x
?), σ2

θ(i)(x
?)), θ(i) ∼ q(θ),

p̂(y?|x?,D) ≈ N (y?; µ̂(x?), σ̂2(x?)),

µ̂(x) =
1

M

M∑
i=1

µθ(i)(x), σ̂2(x) =
1

M

M∑
i=1

((
µθ(i)(x)− µ̂(x)

)2
+ σ2

θ(i)(x)

)
, θ(i) ∼ q(θ).

Appendix B. Illustrative Toy Problems
In this appendix, further details on the illustrative toy problems experiments (Section 4.1) are provided.

B.1. Experimental Setup

Figure 5a (regression) shows DKL(p ‖ pHMC) computed on [−7, 7]. All training data was given in [−3, 3].
Figure 5b (classification) shows DKL(p ‖ pHMC) computed on the region−6 ≤ x1 ≤ 6, −6 ≤ x2 ≤ 6. All training data

was given in the region 0 ≤ x1 ≤ 3, −3 ≤ x2 ≤ 3.
For regression, DKL(p ‖ pHMC) is computed using the formula for KL divergence between two Gaussian distributions

p1(x) = N (x;µ1, σ
2
1), p2(x) = N (x;µ2, σ

2
2):

DKL(p1 ‖ p2) = log
σ2
σ1

+
σ2
1 + (µ1 − µ2)

2

2σ2
2

− 1

2
.

For classification, DKL(p ‖ pHMC) is computed using the formula for KL divergence between two discrete distributions
q1(x), q2(x):

DKL(q1 ‖ q2) =
∑
x∈X

q1(x) log
q1(x)

q2(x)
.

For both regression and classification, HMC with prior p(θ) = N (0, IP) and M = 1000 samples is implemented using
Pyro [3]. Specifically, we use pyro.infer.mcmc.MCMC with pyro.infer.mcmc.NUTS as kernel, num samples = 1000 and
warmup steps = 1000.

B.2. Implementation Details

For regression, we use the Gaussian model (2) with two separate feed-forward neural networks outputting µθ(x) and
log σ2

θ(x). Both neural networks have 2 hidden layers of size 10.
For classification, we use the Categorical model (1) with a feed-forward neural network with 2 hidden layers of size 10.
For the MC-dropout comparison, we place a dropout layer after the first hidden layer of each neural network. For regres-

sion, we use a drop probability p = 0.2. For classification, we use p = 0.1.
For ensembling, we train all ensemble models for 150 epochs with the Adam optimizer, a batch size of 32 and a fixed

learning rate of 0.001.
For MC-dropout, we train models for 300 epochs with the Adam optimizer, a batch size of 32 and a fixed learning rate of

0.001.

For ensembling and MC-dropout, we minimize the MAP objective − log p(Y |X, θ)p(θ). In our case where the model
parameters θ ∈ RP and p(θ) = N (0, IP), this corresponds to the following loss for regression:

L(θ) =
1

N

N∑
i=1

(yi − µ̂(xi))2

σ̂2(xi)
+ log σ̂2(xi) +

1

N
θTθ.

For classification, where yi = [yi,1 . . . yi,C]T (one-hot encoded) and ŝ(xi) = [ŝ(xi)1 . . . ŝ(xi)C]T is the Softmax output, it
corresponds to the following loss:

L(θ) = − 1

N

N∑
i=1

C∑
k=1

yi,k log ŝ(xi)k +
1

2N
θTθ.

For SGLD, we extract samples from the parameter trajectory given by the update equation:

θt+1 = θt − αt∇θŨ(θt) +
√
2αtεt,

where εt ∼ N (0, 1), ∇θŨ(θ) is the stochastic gradient of U(θ) = − log p(Y |X, θ)p(θ) and αt is the stepsize. We run it for
a total number of steps corresponding to 256 · 150 epochs with a batch size of 32. The stepsize αt is decayed according to:

αt = α0(1−
t

T
)0.9, t = 1, 2, . . . , T,

where T is the total number of steps, α0 = 0.01 (the initial stepsize) for regression and α0 = 0.05 for classification.
M ∈ {8, 16, 32, 64, 128, 256} samples are extracted starting at step t = int(0.75T), ending at step t = T and spread out
evenly between.

For SGHMC, we extract samples from the parameter trajectory given by the update equation:

θt+1 = θt + rt,

rt+1 = (1− η)rt − αt∇θŨ(θt) +
√
2ηαtεt,

where εt ∼ N (0, 1), ∇θŨ(θ) is the stochastic gradient of U(θ) = − log p(Y |X, θ)p(θ), αt is the stepsize and η = 0.1.
We run it for a total number of steps corresponding to 256 · 150 epochs with a batch size of 32. The stepsize αt is decayed
according to:

αt = α0(1−
t

T
)0.9, t = 1, 2, . . . , T,

where T is the total number of steps, α0 = 0.001 (the initial stepsize) for regression and α0 = 0.01 for classification.
M ∈ {8, 16, 32, 64, 128, 256} samples are extracted starting at step t = int(0.75T), ending at step t = T and spread out
evenly between.

For all models, we randomly initialize the parameters θ using the default initializer in PyTorch.

B.3. Description of Results

The results in Figure 5a, 5b were obtained in the following way:

• Ensembling: 1024 models were trained using the same training procedure, the mean and standard deviation was com-
puted based on 1024/M unique sets of models for M ∈ {8, 16, 32, 64, 128, 256}.

• MC-dropout: 10 models were trained using the same training procedure, based on which the mean and standard
deviation was computed.

• SGLD: 6 models were trained using the same training procedure, based on which the mean and standard deviation was
computed.

• SGHMC: 6 models were trained using the same training procedure, based on which the mean and standard deviation
was computed.

101 102
0.0

1.0

2.0

3.0

4.0

M

D
K
L
(p
‖
p
H
M

C
)

Ensembling - SGD
MC-dropout - SGD

SGLD
SGHMC

(a) Regression

101 102
0.0

0.2

0.4

0.6

0.8

1.0

M

D
K
L
(p
‖
p
H
M

C
)

Ensembling - SGD
MC-dropout - SGD

SGLD
SGHMC

(b) Classification

Figure 10: Illustrative toy problems, quantitative results. SGD is used for ensembling and MC-dropout instead of Adam.

101 102
0.0

1.0

2.0

3.0

4.0

M

D
K
L
(p
‖
p
H
M

C
)

Ensembling - SGDMOM
MC-dropout - SGDMOM

SGLD
SGHMC

(a) Regression

101 102
0.0

0.2

0.4

0.6

0.8

1.0

M

D
K
L
(p
‖
p
H
M

C
)

Ensembling - SGDMOM
MC-dropout - SGDMOM

SGLD
SGHMC

(b) Classification

Figure 11: Illustrative toy problems, quantitative results. SGD with momentum is used for ensembling and MC-dropout
instead of Adam.

101 102
0.0

2.0

4.0

6.0

8.0

10.0

M

D
K
L
(p
‖
p
H
M

C
)

Ensembling - SGDMOM
MC-dropout - SGDMOM

SGLD-64
SGHMC-64

Figure 12: Illustrative toy regression problem, quantitative results. SGD with momentum is used for ensembling and MC-
dropout instead of Adam. Less training for SGLD and SGHMC.

B.4. Additional Results

Figure 10 and Figure 11 show the same comparison as Figure 5a, 5b, but using SGD and SGD with momentum for
ensembling and MC-dropout, respectively. We observe that ensembling consistently outperforms the compared methods
for classification, but that SGLD and SGHMC has better performance for regression in these cases. SGLD and SGHMC
are however trained for 256 times longer than each ensemble model, complicating the comparison somewhat. If SGLD
and SGHMC instead are trained for just 64 times longer than each ensemble model, we observe in Figure 12 that they are
consistently outperformed by ensembling.

For MC-dropout using Adam, we also varied the drop probability p and chose the best performing variant. These results
are found in Figure 13, in which * marks the chosen variant.

B.5. Qualitative Results

Here, we show visualizations of predictive distributions obtained by the different methods. Figure 14, 18 for ensembling,
Figure 15, 19 for MC-dropout, Figure 16, 20 for SGLD, and Figure 17, 21 for SGHMC.

101 102
0.0

2.0

4.0

6.0

8.0

M

D
K
L
(p
‖
p
H
M

C
)

p = 0.05
p = 0.1

*p = 0.2

(a) Regression

101 102
0.0

0.2

0.4

0.6

0.8

1.0

1.2

M

D
K
L
(p
‖
p
H
M

C
)

p = 0.05
*p = 0.1
p = 0.2
p = 0.5

(b) Classification

Figure 13: Illustrative toy problems, quantitative results. MC-dropout using Adam.

Figure 14: Toy regression problem, ensembling, M = 64. Examples of predictive distributions.

Figure 15: Toy regression problem, MC-dropout, M = 64. Examples of predictive distributions.

Figure 16: Toy regression problem, SGLD, M = 64. Examples of predictive distributions.

Figure 17: Toy regression problem, SGHMC, M = 64. Examples of predictive distributions.

Figure 18: Toy classification problem, ensembling, M = 64. Examples of predictive distributions.

Figure 19: Toy classification problem, MC-dropout, M = 64. Examples of predictive distributions.

Figure 20: Toy classification problem, SGLD, M = 64. Examples of predictive distributions.

Figure 21: Toy classification problem, SGHMC, M = 64. Examples of predictive distributions.

Appendix C. Depth Completion
In this appendix, further details on the depth completion experiments (Section 4.2) are provided.

C.1. Training Details

For both ensembling and MC-dropout, we train all models for 40 000 steps with the Adam optimizer, a batch size of 4,
a fixed learning rate of 10−5 and weight decay of 0.0005. We use a smaller batch size and train for fewer steps than Ma et
al. [32] to enable an extensive evaluation with repeated experiments. For the same reason, we also train on randomly selected
image crops of size 352× 352. The only other data augmentation used is random flipping along the vertical axis. We follow
Ma et al. [32] and randomly initialize all network weights from N (0, 10−3) and all network biases with 0s. Models are
trained on a single NVIDIA TITAN Xp GPU with 12GB of RAM.

C.2. Description of Results

The results in Figure 6 (Section 4.2) were obtained in the following way:

• Ensembling: 33 models were trained using the same training procedure, the mean and standard deviation was computed
based on 32 (M = 1), 16 (M = 2, 4, 8, 16) or 4 (M = 32) sets of randomly drawn models. The same set could not be
drawn more than once.

• MC-dropout: 16 models were trained using the same training procedure, based on which the mean and standard
deviation was computed.

C.3. Additional Results

Here, we show sparsification plots, sparsification error curves and calibration plots. Examples of sparsification plots
are found in Figure 22 for ensembling and Figure 23 for MC-dropout. Condensed sparsification error curves are found in
Figure 24 for ensembling and Figure 25 for MC-dropout. Condensed calibration plots are found in Figure 26 for ensembling
and Figure 27 for MC-dropout.

(a) M = 1. (b) M = 2.

(c) M = 4. (d) M = 8.

(e) M = 16. (f) M = 32.

Figure 22: Results for ensembling on the KITTI depth completion validation dataset. Examples of sparsification plots.

(a) M = 1. (b) M = 2.

(c) M = 4. (d) M = 8.

(e) M = 16. (f) M = 32.

Figure 23: Results for MC-dropout on the KITTI depth completion validation dataset. Examples of sparsification plots.

(a) M = 1. (b) M = 2.

(c) M = 4. (d) M = 8.

(e) M = 16. (f) M = 32.

Figure 24: Results for ensembling on the KITTI depth completion validation dataset. Condensed sparsification error curves.

(a) M = 1. (b) M = 2.

(c) M = 4. (d) M = 8.

(e) M = 16. (f) M = 32.

Figure 25: Results for MC-dropout on the KITTI depth completion validation dataset. Condensed sparsification error curves.

(a) M = 1. (b) M = 2.

(c) M = 4. (d) M = 8.

(e) M = 16. (f) M = 32.

Figure 26: Results for ensembling on the KITTI depth completion validation dataset. Condensed calibration plots.

(a) M = 1. (b) M = 2.

(c) M = 4. (d) M = 8.

(e) M = 16.

Figure 27: Results for MC-dropout on the KITTI depth completion validation dataset. Condensed calibration plots.

Appendix D. Street-Scene Semantic Segmentation
In this appendix, further details on the street-scene semantic segmentation experiments (Section 4.3) are provided.

D.1. Training Details

For ensembling, we train all ensemble models for 40 000 steps with SGD + momentum (0.9), a batch size of 8 and weight
decay of 0.0005. The learning rate αt is decayed according to:

αt = α0(1−
t

T
)0.9, t = 1, 2, . . . , T,

where T = 40 000 and α0 = 0.01 (the initial learning rate). We train on randomly selected image crops of size 512 × 512.
We choose a smaller crop size than Yuan and Wang [51] to enable an extensive evaluation with repeated experiments. The
only other data augmentation used is random flipping along the vertical axis and random scaling in the range [0.5, 1.5]. The
ResNet101 backbone is initialized with weights1 from a model pretrained on the ImageNet dataset, all other model parameters
are randomly initialized using the default initializer in PyTorch. Models are trained on two NVIDIA TITAN Xp GPUs with
12GB of RAM each. For MC-dropout, models are instead trained for 60 000 steps.

D.2. Description of Results

The results in Figure 8 (Section 4.3) were obtained in the following way:

• Ensembling: 26 models were trained using the same training procedure, the mean and standard deviation was computed
based on 8 sets of randomly drawn models for M ∈ {1, 2, 4, 8, 16}. The same set could not be drawn more than once.

• MC-dropout: 8 models were trained using the same training procedure, based on which the mean and standard deviation
was computed.

D.3. Additional Results

Here, we show sparsification plots, sparsification error curves and reliability diagrams. Examples of sparsification plots
are found in Figure 28 for ensembling and Figure 29 for MC-dropout. Condensed sparsification error curves are found
in Figure 30 for ensembling and Figure 31 for MC-dropout. Examples of reliability diagrams with histograms are found
in Figure 32 for ensembling and Figure 33 for MC-dropout. Condensed reliability diagrams are found in Figure 34 for
ensembling and Figure 35 for MC-dropout.

1http://sceneparsing.csail.mit.edu/model/pretrained_resnet/resnet101-imagenet.pth.

http://sceneparsing.csail.mit.edu/model/pretrained_resnet/resnet101-imagenet.pth

(a) M = 1. (b) M = 2.

(c) M = 4. (d) M = 8.

(e) M = 16.

Figure 28: Results for ensembling on the Cityscapes validation dataset. Examples of sparsification plots.

(a) M = 1. (b) M = 2.

(c) M = 4. (d) M = 8.

(e) M = 16.

Figure 29: Results for MC-dropout on the Cityscapes validation dataset. Examples of sparsification plots.

(a) M = 1. (b) M = 2.

(c) M = 4. (d) M = 8.

(e) M = 16.

Figure 30: Results for ensembling on the Cityscapes validation dataset. Condensed sparsification error curves.

(a) M = 1. (b) M = 2.

(c) M = 4. (d) M = 8.

(e) M = 16.

Figure 31: Results for MC-dropout on the Cityscapes validation dataset. Condensed sparsification error curves.

(a) M = 1. (b) M = 2.

(c) M = 4. (d) M = 8.

(e) M = 16.

Figure 32: Results for ensembling on the Cityscapes validation dataset. Examples of reliability diagrams with histograms.

(a) M = 1. (b) M = 2.

(c) M = 4. (d) M = 8.

(e) M = 16.

Figure 33: Results for MC-dropout on the Cityscapes validation dataset. Examples of reliability diagrams with histograms.

(a) M = 1. (b) M = 2.

(c) M = 4. (d) M = 8.

(e) M = 16.

Figure 34: Results for ensembling on the Cityscapes validation dataset. Condensed reliability diagrams.

(a) M = 1. (b) M = 2.

(c) M = 4. (d) M = 8.

(e) M = 16.

Figure 35: Results for MC-dropout on the Cityscapes validation dataset. Condensed reliability diagrams.

