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Abstract

Randomized smoothing, a method to certify a classifier’s
decision on an input is invariant under adversarial noise,
offers attractive advantages over other certification meth-
ods. It operates in a black-box and so certification is not
constrained by the size of the classifier’s architecture. Here,
we extend the work of Li et al. [26], studying how the choice
of divergence between smoothing measures affects the final
robustness guarantee, and how the choice of smoothing mea-
sure itself can lead to guarantees in differing threat models.
To this end, we develop a method to certify robustness against
any `p (p ∈ N>0) minimized adversarial perturbation. We
then demonstrate a negative result, that randomized smooth-
ing suffers from the curse of dimensionality; as p increases,
the effective radius around an input one can certify vanishes.

1. Introduction
Image classification is vulnerable to adversarial examples.

Given an image classifier f : Rn → Rm such that the
decision function F = arg maxi fi classifies an input, x,
correctly as F (x) = y, an adversarial example is an input,
x+δ, such that F (x+δ) 6= y where x and x+δ are assigned
the same label by an oracle classifier, O, which is usually
taken to be the human vision system. To preserve oracle
classification, it is common to minimize the perturbation,
δ, with respect to an `p norm. Constructing a perturbation
such that ‖δ‖p � ‖x‖p, will result in an input such that
‖x+ δ‖p ≈ ‖x‖p. With high likelihood x and x+ δ will be
visually similar and O will classify both correctly.

The vulnerability to adversarial examples requires a suit-
able defense. Many empirical defenses have been proposed
and subsequently shown to be broken, implying more the-
oretically grounded techniques to measure robustness are
required [1, 6, 7, 16, 34]. Recently, methods from verifica-
tion literature have been used to provide guarantees of an
inputs robustness to adversarial perturbations. These meth-
ods seek the minimum or a lower bound on the amount of
noise required to cause a misclassification. These verifica-
tion methods are most often tailored to a single `p norm

for which the defense guarantees robustness. A number
of defenses certify a neural network is robust to adversar-
ial examples by propagating upper and lower input bounds
throughout the network or by bounding the Lipschitz value
of the network [4, 12, 17, 18, 27, 29, 33, 37].

Recently, randomized smoothing has been proposed
to certify image classifiers to `0, `1, and `2 perturba-
tions [10, 24, 25, 26]. By constructing a classifier that
outputs a label based on a majority vote under repeated
addition of Laplacian or Gaussian noise, Lecuyer et al. [24]
found lower bounds to the amount of noise required for mis-
classification of an input in the `1 or `2 norm, respectively.
Following this, Li et al. [26] and Cohen et al. [10] provided
improved bounds in the `2 norm. As explained by Cohen
et al. [10], randomized smoothing has attractive advantages
over other certification methods: it is scalable to large clas-
sifiers and makes no assumption about the architecture. In
this work, we extend the general framework for randomized
smoothing as proposed by Li et al. [26]. Firstly, we study
how the choice of divergence between inputs smoothed with
noise affects the final certificate, and secondly, we study how
the choice of smoothing measure itself can lead to guarantees
for differing threat models. Concretely, we show how the
choice of smoothing measure allows us to extend random-
ized smoothing to any `p norm (p ∈ N>0), showing we can
certify inputs with non-vacuous bounds over a range of `p
norms with small p values. We then show that randomized
smoothing fails to certify meaningfully large radii around
inputs as p increases.

2. Certified defenses
In this section, we discuss related work on certified de-

fenses to adversarial examples, introduce extensions to ran-
domized smoothing approaches to certified defenses, and
provide a method to compute a certified robust area around
an input under any `p norm attack, where p ∈ N>0.

2.1. Background on certified defenses

The vulnerability of empirical defenses to adversarial ex-
amples has driven the need for formal guarantees of robust-
ness. We define certified robustness as a guarantee that the



decision of a classifier is preserved within an ε-ball around
an input, and we refer to size of this ε-ball as the certified
radius. Formal methods can be separated into complete and
incomplete methods. Complete methods such as Satisfiabil-
ity Modulo Theory (SMT) [8, 15, 20] or Mixed-Integer Pro-
gramming (MIP) [5, 9, 35] provide exact robustness bounds
but are expensive to implement. Incomplete methods solve a
convex relaxation of the verification problem. The bounds
given by incomplete methods can be loose but are quicker to
find than exact bounds [4, 12, 17, 18, 27, 29, 37].

Lecuyer et al. [24] developed the certification technique,
referred to as randomized smoothing, by noticing a connec-
tion between differential privacy [14] and robustness, and
show that robustness can be proven under concentration mea-
sures of classification under noise. This work was expanded
upon by Lee et al. [25], Li et al. [26], and Cohen et al. [10],
who found improved robustness guarantees in the `0, `1, and
`2 norms, respectively. Similarly to this work, Dvijotham
et al. [13] developed a general framework for randomized
smoothing that can handle arbitrary smoothing measures and
so find robustness guarantees in any `p norm. In concurrent
work, Blum et al. [3], Kumar et al. [23], and Yang et al.
[36] also show that randomized smoothing may be unable
to find robustness guarantees in the `∞ norm. Most related
to this work are the findings of Kumar et al. [23], who also
use a generalized Gaussian distribution for smoothing and
show that the certified radius in an `p norm decreases as
O(1/d

1
2
− 1
p ), where d is the dimensionality of the data.

2.2. Certification via randomized smoothing

Here, we expand on how robustness guarantees can be
found through randomized smoothing.
Problem statment. Given an input x ∈ X such that
arg maxi fi(x) = y, find the maximum ε such that ∀x′ ∈ X ,
d(x, x′) < ε =⇒ arg maxi fi(x

′) = y, given a distance
function d : X × X → R+.

This can be cast as an optimization problem, given by

max
x′∈X

d(x, x′)

subject to arg max
i

fi(x
′) = y

(1)

In general, solving the above formulation is difficult, how-
ever randomized smoothing, introduced by Lecuyer et al.
[24], can be used to solve a relaxed version of this problem.
Namely, the aim is to solve

max
x′∈X

d(x+ θ, x′ + θ)

subject to E[arg max
i

fi(x
′ + θ)] = y,

(2)

where θ is a sample from a smoothing measure, µ, and d
is now taken to be a suitable divergence or distance measure

between random variables. For example, Li et al. [26] take
µ to be the centered Gaussian, N (0, σ2). Since Gaussians
belong to the location-scale family of distributions, we can
treat x and x′ as constants and so, x+ θ and x′ + θ can be
treated as random variables from distributionsN (x, σ2) and
N (x′, σ2), respectively. We can use well known properties
of divergences of Gaussians to represent d(x + θ, x′ + θ)
in terms of the `2 norm difference of their means. Specif-
ically, d(x + θ, x′ + θ) can be represented as a function
of ‖x − x′‖2 and σ, for common divergences such as the
Rényi and KL divergences. However, we must still solve
the problem of ensuring E[arg maxi fi(x

′ + θ)] = y. Given
a chosen divergence, Li et al. [26] approach this problem
by finding a lower bound between two multinomial distribu-
tions, P and Q, in terms of the two largest probabilities of
P , when arg maxi Pi 6= arg maxiQi. This shows that any
distribution, Q, for which P and Q agree on the index of the
top probability, the divergence between P and Q must be
smaller than this lower bound. We denote this lower bound
by h(p1, p2), where p1, p2 represent the top two probabili-
ties from P . Given this lower bound Li et al. [26], solve the
following problem

max
x′∈X

d(f(x+ θ), f(x′ + θ))

subject to d(f(x+ θ), f(x′ + θ)) ≤ h(p1, p2)
(3)

This can be efficiently solved by finding an upper bound
to the Lagrangian relaxed problem

max
λ≤0,x′∈X

d(f(x+ θ), f(x′ + θ))

+ λ(h(p1, p2)− d(f(x+ θ), f(x′ + θ)))
(4)

= max
λ≤0,x′∈X

(1− λ)d(f(x+ θ), f(x′ + θ)) + λh(p1, p2)

(5)

= max
λ≥0,x′∈X

(1 + λ)d(f(x+ θ), f(x′ + θ))− λh(p1, p2)

(6)

≤ max
λ≥0,x′∈X

(1 + λ)d(x+ θ, x′ + θ)− λh(p1, p2) (7)

= max
λ≥0,x′∈X

(1 + λ)g(‖x− x′‖2, σ)− λh(p1, p2), (8)

where in eq. (7), we use the data processing inequality
property of divergences, and in eq. (8), we use the fact that
for many common divergences, we can represent the diver-
gence between two Gaussians as a function of the `2 norm
of their means and their standard deviation, which we denote
by g(‖x− x′‖2, σ).

By choosing d : X×X → R+ to be the Rényi divergence,



Table 1: `2 certified radius when using different divergences.

Distance d(Q,P ) ≥
d(N (x, σ2),N (x′, σ2))

Certified radius
(when arg maxi qi 6= arg maxi pi) (for ‖x− x′‖2 < ε)

dKL(Q,P ) =
∑k
i=1 qi log qi

pi
− log(2

√
p1p2 + 1− p1 − p2) 1

σ2 ‖x− x′‖22
√
−σ2 log(2

√
p1p2 + 1− p1 − p2)

dH2(Q,P ) = 1
2

∑k
i=1(
√
qi −

√
pi)

2 1−
√

1− (
√
p1−
√
p2)2

2 1− e−
‖x−x′‖22

8σ2

√
−8σ2 log(

√
1− (

√
p1−
√
p2)2

2 )

dχ2(Q,P ) =
∑k
i=1

(qi−pi)2
pi

(p1−p2)2

(p1+p2)−(p1−p2)2 e
‖x−x′‖22

σ2 − 1
√
σ2 log( p1+p2

(p1+p2)−(p1−p2)2 )

dB(Q,P ) = − log(
∑k
i=1

√
qipi) − log

( (
√
p1+
√
p2)2+2(1−p1−p2)√

2(2
√
p1p2+2−p1−p2)

)
1

8σ2 ‖x− x′‖22
√
−8σ2 log

( (
√
p1+
√
p2)2+2(1−p1−p2)√

2(2
√
p1p2+2−p1−p2)

)
dTV (Q,P ) = 1

2

∑k
i=1 |qi − pi|

|p1−p2|
2 2Φ(‖x−x

′‖2
2σ )− 1 2σΦ−1( |p1−p2|2 + 1

2 )

we recover the results of Li et al. [26] with

g(‖x− x′‖2, σ) =
α‖x− x′‖22

2σ2
(9)

h(p1, p2) = − log
(

1− p1 − p2 + 2
(1

2
(p1−α

1 + p1−α
2 )

) 1
1−α
)

(10)

Thus, for any x′ ∈ X with ‖x− x′‖2 < ε we can guarantee
the classifier, f , will not change it’s decision for any ε smaller
than

max
λ≥0

(
sup
α>1

(
− λ2σ2

(1 + λ)α
log
(

1− p1 − p2+

2
(1

2
(p1−α

1 + p1−α
2 )

) 1
1−α
))) 1

2

(11)

=

(
sup
α>1

(
− 2σ2

α
log
(

1− p1 − p2+

2
(1

2
(p1−α

1 + p1−α
2 )

) 1
1−α
))) 1

2
(12)

Clearly, this framework for certifying inputs is general
and extends to different choices of divergence. In the next
section, we explore divergences beyond Rényi divergence
and show this choice affects the certified radius, given a
Gaussian smoothing measure.

2.3. Certification guarantees against `2 perturba-
tions for common divergences

Li et al. [26] show that, given two distributions, P and Q,
with different indexes for the top probability, a lower bound

of the Rényi divergence (denoted by dα) is given by eq. (10).
We extend this line of reasoning to find lower bounds for the
KL divergence (dKL), Hellinger distance (dH2), (Neyman)
chi-squared distance (dχ2), Bhattacharyya distance (dB),
and total variation distance (dTV ). Proofs of these lower
bounds are given in appendix A. To find a certified radius of
a classifier’s decision around an input, we find the distances
between Gaussian measures with respect to each of these
divergences. These are both represented in table 1 along
with the certification guarantee in the `2 norm. We visualize
the trade-off in certified radius around an input in fig. 1 for
a hypothetical binary classification task as a function of the
classifier’s top output probability, p1. As well as including
the certified radii derived from the aforementioned diver-
gences, we include the certified radii for the `2 norm found
by Lecuyer et al. [24] and Cohen et al. [10] approaches.
Lecuyer et al. [24] find a certified radius against `2 perturba-
tions given by sup0<β≤min(1, 12 log

p1
p2

)
σβ√

2 log
(

1.25(1+exp(β))
p1−exp(2β)p2

) ,

while Cohen et al. [10] give a tight robustness guarantee for
`2 perturbations of the form σ

2

(
Φ−1 (p1)− Φ−1(p2)

)
.

Clearly, all choices of distance metrics dominate the cer-
tificates found using the Lecuyer et al. [24] method, and
for values of p1 close to 1/2, dTV is approximately equal to
the tight Cohen et al. [10] guarantee. However, the certi-
fied radius found using dTV is linear with respect to the top
predicted probability, and so becomes a weaker guarantee
for larger probabilities. Robustness guarantees provided by
Rényi and chi-squared divergences are approximately equal;
a finer-grained visualization of the difference between these
two divergences is given in appendix B.

We formalize the trade-offs between different choices of
divergences with the following proposition.

Proposition 1. Let εdKL , εdχ2 , εdH2 , εdB , εdα , and ε[24], de-
note the certificates found using dKL, dχ2 , dH2 , dB , dα, and
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Figure 1: Comparison of the certified radius against pertur-
bations targeting the `2 norm, for different divergences, as a
function of the top predicted probability, p1, with σ = 1.

the Lecuyer et al. [24] approach, respectively. Then, the
following holds

1. ∀p1 ∈ ( 1
2 , 1), εdα > εdχ2 .

2. ∀p1 ∈ ( 1
2 , 1), εdχ2 > εdKL .

3. ∀p1 ∈ ( 1
2 , 1), εdχ2 > εdH2 .

4. ∀p1 ∈ [ 1
2 , 1], εdB = εdH2 .

5. ∀p1 ∈ ( 1
2 , 0.998), εdH2 > εdKL .

6. ∀p1 ∈ ( 1
2 , 1), εdKL > ε[24].

Proof. See appendix C.

Proposition 1 defines a strict hierarchy, and so informs us
of the best divergence one can use to certify an input against
`2 perturbations using the Li et al. [26] approach.

2.4. Certification guarantees beyond the `2 based
perturbations via different smoothing mea-
sures

The Gaussian distribution is a natural choice for the
smoothing measure because it naturally leads to robustness
guarantees in the `2 norm. However, it is also a convenient
choice of smoothing measure because it is a member of the
location-scale family of distributions. This means that, fixing
x ∈ X , sampling from x +N (0, σ2) is equivalent to sam-
pling from N (x, σ2). Importantly, addition of a constant, x,
does not change the family of the smoothing measure, and
so we can use well known formula for the distances between
two Gaussian distributions to derive robustness guarantees.

Unfortunately, not all distributions belong to the location-
scale family, and so, in our formulation, we are not free
to choose any distribution for smoothing. Another conve-
nient choice of a location-scale distribution is the generalized
Gaussian distribution [30], denoted GN (µ, σ, s), whose den-
sity function is given by

p(x) =
s

2σΓ( 1
s )
e−|

x−µ
σ |

s

(13)

where µ is the mean, σ denotes a scaling factor and s
denotes a shaping factor. The Laplacian distribution is recov-
ered when s = 1, the Gaussian N (µ, σ

2

2 ) when s = 2, and
the uniform distribution on (µ− σ, µ+ σ) as s→∞. We
will show that by using this smoothing measure we can find
robustness guarantees to `p perturbations, where p ∈ N>0.

We show in appendix D that given inputs x and x′

the Kullback–Leibler (KL) divergence of GN (x, σ, s) and
GN (x′, σ, s) is given by

s∑
k=1

(
s

k

)
(1 + (−1)s−k)Γ( s−k+1

s )‖x− x′‖kk
2σkΓ( 1

s )
(14)

We also show in appendix A that the KL divergence of
two multinomial distributions P and Q (that disagree on the
index of the top probability) is lower bounded by

dKL(Q,P ) ≥ − log(2
√
p1p2 + 1− p1 − p2) (15)

Then we use the data processing inequality to prove ro-
bustness up to ‖x− x′‖p < ε if the following holds

dKL(f(x+ GN (0, σ, p)), f(x′ + GN (0, σ, p))) (16)

≤ dKL(x+ GN (0, σ, p), x′ + GN (0, σ, p)) (17)

≤ εp

σp
+

p−1∑
k=1

(
p

k

)
(1 + (−1)p−k)Γ(p−k+1

p )‖x− x′‖kk
2σkΓ( 1

p )

(18)

≤ − log(2
√
p1p2 + 1− p1 − p2) (19)

Table 2 gives examples of the KL-divergence of the gen-
eralized Gaussian distribution for small `p norms. For `p
norms with p = 1 or p = 2, the upper bound to which an
input is certifiably robust is given by

(−σp log(2
√
p1p2 + 1− p1 − p2))

1
p (20)

For `p norms with p > 2, p ∈ N, the upper bound to
which an input is certifiably robust is given by ε satisfying
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(c) CIFAR-10, `2
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Figure 2: Certified accuracy against perturbations targeting the `1 and `2 norms. Given as a function of the certified radius, the
radius around which an input is robust.

Table 2: Examples of the KL divergence between
GN (µ1, σ, s) and GN (µ2, σ, s) for small s.

s `s dKL(p1, p2)

1 `1
1
σ‖µ1 − µ2‖1

2 `2
1
σ2 ‖µ1 − µ2‖22

3 `3
1
σ3 ‖µ1 − µ2‖33 + 3

σΓ( 1
3 )
‖µ1 − µ2‖1

4 `4
1
σ4 ‖µ1 − µ2‖44 +

6Γ( 3
4 )

σ2Γ( 1
4 )
‖µ1 − µ2‖22

εp

σp
+

p−1∑
k=1

(
p

k

)
(1 + (−1)p−k)Γ(p−k+1

p )d1− kp εk

2σkΓ( 1
p )

≤ − log(2
√
p1p2 + 1− p1 − p2)

(21)

The bound given by eq. (21) is found by noting that
‖x−x′‖k ≤ d

1
k−

1
p ‖x− x′‖p, where d is the dimensionality

of the data. We can improve upon this naive bound to prove
robustness for all norms smaller than p in parallel. Without
loss of generality, assume p is even 1, then we can prove
robustness for every 0 < k ≤ p, where k is even, up to
‖x− x′‖k < εk by solving the constrained problem

max ε2, ε4, ..., εp (22)
subject to

p∑
k=1

(
p

k

)
(1 + (−1)p−k)Γ(p−k+1

p )εkk

2σkΓ( 1
p )

≤ − log(2
√
p1p2 + 1− p1 − p2)

(23)

εi+2 ≤ εi ≤ d
1
i−

1
i+2 εi+2 (24)

εi > 0, 2 ≤ i ≤ p− 2, i ≡ 0 (mod 2) (25)

Note that the certified radius of robustness around an input
is probabilistic because we can only estimate p1 and p2, how-

1A similar statement holds when p is not even.

ever, we can bound the probability of error to be arbitrarily
small. In practice we follow the methods in [10, 24, 26] for
estimating p1 and p2. Prediction error is bounded by collect-
ing n samples of f(x+ θ), where θ is sampled from a gener-
alized Gaussian distribution, and using the Clopper-Pearson
Bernoulli confidence interval to obtain a lower bound esti-
mate of p1 and an upper bound estimate of p2, that holds
with probability 1− γ over the n samples, where γ � 1. Al-
ternatively, we can use the Hoeffding inequality which gives
a lower bound of prediction error of 1− ce−2nε2 , where c is
the number of classes |P |, n is the number of samples and ε
is the perturbation size. Clearly the error becomes arbitrarily
small as we increase the number of samples.

3. Discussion & experiments
We experimentally validated the certification procedure

on the CIFAR-10 [22] and ImageNet [11] datasets. The
base classifier is ResNet-50 on ImageNet and ResNet-110
on CIFAR-10 [19]. Given an input x and a classifier f the
certification procedure is as follows:

1. Collect n0 Monte Carlo samples of f(x + θj) to es-
timate the true class y, where θj ∼ GN (0, σ, s) and
j ∈ [1, ..., n0], with confidence > 1− γ0.

2. Use n1 Monte Carlo samples to estimate, p̂1, a lower
bound of the probability of the most-likely class with
confidence > 1 − γ1. We follow Cohen et al. [10]
for estimating p̂2, an upper bound of the probability
of the second most-likely class, who noticed nearly
all probability mass on other classes is placed on the
second most-likely class and so use p̂2 = 1− p̂1.

3. Use p̂1, p̂2 and eq. (20) or eq. (21) to find a certified
radius around x.

For all experiments we use n0 = 100, n1 =
100, 000, γ{0,1} = 0.001, σ = 0.25 and certify 400 test set
examples for both CIFAR-10 and ImageNet datasets 2. The-

2We perform experiments measuring the effect that various σ have on
the certified radius in appendix E.
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Figure 3: Trade-off in adversarial robustness between different norms, as we vary the noise scale, σ. We plot for a data
dimensionality, d, equal to 3×32×32 (the dimension for CIFAR-10 inputs), and mark the region which gives valid certificates,
assuming p̂1 = 0.99 and p̂2 = 1− p̂1.

oretically, this procedure can certify any classifier, however
in practice, image classifiers are not stable under noise and
so we found it necessary to train classifiers with generalized
Gaussian noise (using the same scale and shape parameters
as is used during certification). Note that this has the same
complexity as standard data augmentation during training
and is less expensive than the Madry et al. [28] defense.

3.1. Comparison to related work

For both CIFAR-10 and ImageNet we certify inputs
against perturbations in `1 and `2 norms and compare against
[10, 24, 26]. Figure 2 shows certified accuracy as a function
of the certified radius. In general, the largest certified regions
come against perturbations targeting the `1 norm. In ap-
pendix F, we show qualitative examples of inputs smoothed
with generalized Gaussian noise and the corresponding ro-
bustness guarantees in the `1, `2, and `3 norms.

While the primary boon of our certification procedure
is its ability to certify inputs to adversarial perturbations
beyond `1 and `2 norms, the method is not substantially
weaker than related work in either norm. In fig. 2a and fig. 2b,
we compare with Lecuyer et al. [24] and Li et al. [26] for
`1 norm certificates. Given estimates p̂1 and p̂2, Lecuyer et
al. [24] find a certified radius against `1 perturbations given
by σ

2 log(p̂1/p̂2), while Li et al. [26] find a certified radius
against `1 perturbations given by σ log(1− p̂1 + p̂2). Li et al.
[26] and Teng et al. [31] show that this robustness guarantee
is tight for the `1 norm. Our `1 certificates are slightly
weaker than Lecuyer et al. [24], and both are dominated by

Li et al. [26] who obtain the tightest possible certificates.
In fig. 2c and fig. 2d, we compare with Lecuyer et al. [24],

Li et al. [26], and Cohen et al. [10] for `2 norm certificates.
Our `2 certificates strictly dominate Lecuyer et al. [24], and
are approximately equivalent to Li et al. [26]. This equiv-
alence is to be expected since our certificates are closely
related to Li et al. [26] certificates, which are based on the
Rényi divergence between two Gaussians, while ours are
based on KL divergence. Clearly, we could improve upon
this `2 guarantee if we used the chi-squared distance instead
of KL divergence and a standard Gaussian smoothing mea-
sure, as proved by Proposition 1. However, our aim is to
show the general capacity of the generalized Gaussian as a
smoothing measure for certification.

3.2. Robustness trade-offs between different `p
norms.

As described by eq. (21), to obtain robustness guarantees
in `p>2 norms we must factor in required robustness guaran-
tees in smaller `p norms. For example, to prove robustness
up to ‖x− x′‖3 < ε3 and ‖x− x′‖1 < ε1 we find ε1 and ε3
satisfying

1

σ3
ε33 +

3

σΓ( 1
3 )
ε1 ≤ − log(2

√
p̂1p̂2 + 1− p̂1 − p̂2)

∧

0 < ε3 ≤ ε1 ≤ d
2
3 ε3,

(26)



0.0 0.1 0.2 0.3 0.4 0.5
Certified Radius

0.0

0.2

0.4

0.6

0.8

1.0

Ce
rti

fie
d 

Ac
cu

ra
cy

CIFAR-10
ImageNet

(a) `3

0.0 0.1 0.2 0.3 0.4 0.5
Certified Radius

0.0

0.2

0.4

0.6

0.8

1.0

Ce
rti

fie
d 

Ac
cu

ra
cy

CIFAR-10
ImageNet

(b) `4

0.0 0.1 0.2 0.3 0.4 0.5
Certified Radius

0.0

0.2

0.4

0.6

0.8

1.0

Ce
rti

fie
d 

Ac
cu

ra
cy

CIFAR-10
ImageNet

(c) `5

Figure 4: Certified accuracy on 400 CIFAR-10 test set inputs and 400 ImageNet test set inputs against perturbations targeting
the `3, `4, and `5 norms. Given as a function of the certified radius, the radius around which an input is robust. Inputs were
smoothed under a generalized Gaussian distribution parameterized by GN (0, 0.25, p).

and to prove robustness up to ‖x− x′‖4 < ε4 and ‖x−
x′‖2 < ε2 we find ε2 and ε4 satisfying

1

σ4
ε44 +

6Γ( 3
4 )

σ2Γ( 1
4 )
ε22 ≤ − log(2

√
p̂1p̂2 + 1− p̂1 − p̂2)

∧

0 < ε4 ≤ ε2 ≤ d
1
4 ε4,

(27)

We visualize this trade-off in fig. 3 for `3 and `4 norms.
That is, the trade-off in certified robustness between those
norms and certified robustness in `1 and `2, respectively. We
visualize the trade-off as we vary the noise scale σ, assuming
a robust classifier that classifies inputs correctly with p̂1 =
0.99 and p̂2 = 0.01. We can smoothly exchange robustness
in one norm for robustness in another norm. For example,
given σ = 1 and a CIFAR-10 input, we can reduce the
guaranteed robustness in the `3 norm from an approximate
certified radius of 0.86 to approximately 0, and increase the
guaranteed robustness in the `1 norm from a certified radius
of 0.86 to 1.44. In fig. 4, we show certified accuracy as a
function of certified radius in the `3, `4, and `5 norms on
the CIFAR-10 and ImageNet datasets. To find the maximum
ε3 we solve eq. (26) such that ε3 = ε1. Similarly for ε4
we solve eq. (27) such that ε4 = ε2, and exend this line of
reasoning to find ε5 = ε3 = ε1 for the `5 norm. Clearly, we
can find non-negligible certified radii in norms outside of `1
and `2.

3.3. Robustness guarantees as `p→∞.

An immediate question arises when observing our cer-
tification procedure, can we find non-vacuous robustness

guarantees for arbitrarily large `p norms, where p is even 3 4?
Given eq. (23), note that (pk)(1+(−1)p−k)Γ( p−k+1

p )/2Γ( 1
p ) ≥ 1,

∀1 ≤ k ≤ p, where k is even, and as p → ∞, ∃k such
that (pk)(1+(−1)p−k)Γ( p−k+1

p )/2Γ( 1
p ) → ∞. We must there-

fore solve the problem given in eq. (22)-eq. (25), where
eq. (23) is given by

c2ε
2
2

σ2
+
c4ε

4
4

σ4
+ ...+

cpε
p
p

σp
≤ − log(2

√
p1p2 + 1− p1 − p2)

(28)

where ck ∈ R>1, 1 ≤ k ≤ p, k ≡ 0 (mod 2) (29)

To satisfy eq. (24), we can find ε2, ε4, ..., εp such that
ε2 = ε4 = ... = εp; we refer to this value as ε, and eq. (28)
becomes

c2(
ε

σ
)2 + c4(

ε

σ
)4 + ...+ cp(

ε

σ
)p

≤ − log(2
√
p1p2 + 1− p1 − p2) (30)

where ck ∈ R>1, 1 ≤ k ≤ p, k ≡ 0 (mod 2) (31)

For a fixed p1, p2, σ, since ∀k, ck ≥ 1, and ∃k such that
ck →∞ when p→∞, to satisfy the inequality in eq. (30),
we must have ε → 0. If we do not fix σ then we require
( εσ )k → 0 as ck → ∞, and so to certify a non-negligible
radius, ε, we require σ → ∞. However, as σ → ∞, the
randomized smoothing will cause the input to become too
noisy for any classifier to achieve low prediction error.

Clearly, as p grows the largest possible certified radius
becomes smaller, because our bound requires this robustness

3Equivalent results for this section can be found when p is not even.
4The subject of simultaneous robustness over every `p norm is expanded

upon in appendix G.



guarantee holds for every norm smaller than p. One may
wonder if we can find an `p norm in which we can certify a
non-vacuous radius that approximates the `∞ norm arbitrar-
ily well. The difference in volume between a unit ball in the
`p norm and `∞ norm is given by Γ(1+1/p)d/Γ(1+d/p), where
d is the data dimensionality. Unfortunately, the error in the
approximation is dependent on the data dimensionality. For
example, for an ImageNet input where d = 3×224×224, if
we require the ratio of volumes between an `p unit ball
and `∞ unit ball to be larger than 0.99, we must take
p = 9× 3× 224× 224.

3.4. How tight is the bound?

The difference between the certified area and the size of
an adversarial perturbation gives a tightness estimate. If the
certified radius is close to the size of an adversarial perturba-
tion this implies the bound is close to optimal. To check how
tight our bound is we ran the PGD attack [28] minimizing
perturbations in the `2 norm. Because the certification pro-
cedure requires the addition of generalized Gaussian noise
to the input, the gradient is highly stochastic, leading to ex-
tremely slow convergence of the PGD attack. We circumvent
this stochasticity by optimizing using the Expectation Over
Transformation [2] – we use 1000 Monte Carlo samples to
estimate the gradient of an input during the attack. Figure 5
gives attack results on CIFAR-10 along with the certified
radius of 400 inputs. We find adversarial examples with
norms within 2− 2.5× the certified radius. Unfortunately,
this does not inform us if our bound is loose or if the attack
is sub-optimal. We leave a more rigorous investigation of
assessing the tightness of our bound for future work.

4. Conclusion

Randomized smoothing has offered a promising approach
to scaling robustness guarantees to large architectures. By
extending the framework developed by Li et al. [26], we
showed how different choices of divergences affects the cer-
tified radius of robustness around an input. We verified that
Rényi divergence is superior to other common f-divergences
in this framework, for certifying an input against `2 per-
turbations. We then showed that a generalized Gaussian
smoothing measure leads to robustness guarantees against
any `p (p ∈ N>0) minimized adversarial perturbation, how-
ever, non-negligible certified radii are only available for
small `p norms.
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A. Lower bounds for common divergences between multinomial distributions
Firstly, we present the statement of the Rényi divergence bound given in Li et al. [26], and provide a full proof.

Theorem A.1. Let P = (p1, ..., pk) and Q = (q1, ..., qk) be two multinomial distributions over the same index set {1, ..., k}.
If the indexes of the largest probabilities do not match on P and Q, that is arg maxi pi 6= arg maxj qj , then

dα(Q,P ) ≥ − log
(

1− p1 − p2+

2
(1

2
(p1−α

1 + p1−α
2 )

) 1
1−α
) (32)

where p1 and p2 are the first and second largest probabilities in P .

Proof. We can think of this problem as finding the distribution Q that minimizes dα(Q,P ) such that arg maxi pi 6=
arg maxj qj for a fixed P = (p1, ..., pk). Without loss of generality, assume p1 ≥ p2 ≥ ... ≥ pk.

This is equivalent to solving

min∑
qi,arg max qi 6=1

1

1− α
log
( k∑

1

pi
( qi
pi

)α)
(33)

As the logarithm is a monotonically increasing function, we only focus on the quantity s(Q,P ) =
∑k

1 pi(
qi
pi

)α for a fixed
α.

We first show for the Q that minimizes s(Q,P ), it must have q1 = q2 ≥ q3 ≥ ... ≥ qk. Note here we allow a tie, because
we can always let q1 = q1 − κ and q2 = q2 + κ for some small κ to satisfy arg max qi 6= 1 while not changing the Rényi
divergence too much by the continuity of s(Q,P ).

If qj > qi for some j ≥ i, we can define Q′ by mutating qi and qj , that is Q′ =
(q1, ..., qi−1, qj , qi+1, ..., qj−1, qi, qj+1, ..., qk), then

S(Q,P )− S(Q′, P ) = pi
(qαi − qαj

pαi

)
+ pj

(qαj − qαi
pαj

)
(34)

= (p1−α
i − p1−α

j )(qαi − qαj ) > 0 (35)

which conflicts with the assumption that Q minimizes s(Q,P ). Thus qi ≥ qj for j ≥ i. Since q1 cannot be the largest, we
have q1 = q2 ≥ q3 ≥ ... ≥ qk.

Then we are able to assume Q = (q0, q0, q3, ..., qk), and the problem can be formulated as

min
q0,q3,...,qk

p1(
q0

p1
)α + p2(

q0

p2
)α +

k∑
i=3

pi(
qi
pi

)α (36)

such that 2q0 +

k∑
i=3

qi = 1 (37)

such that qi − q0 ≤ 0 i ≥ 3 (38)
such that − qi ≤ 0 i ≥ 0 (39)

which forms a set of KKT conditions. Let L denote the Lagrangian formulation of the problem

p1(
q0

p1
)α + p2(

q0

p2
)α +

k∑
i=3

pi(
qi
pi

)α + λ(2q0 +

k∑
i=3

qi − 1) +

k∑
i=3

µi(qi − q0)−
k∑
i=3

βiqi (40)



Setting slack variables to zero and differentiating gives

∂L

∂q0
= αqα−1

0 (p1−α
1 + p1−α

2 ) + 2λ = 0 (41)

∂L

∂qi
= α(

qi
pi

)α−1 + λ = 0 i ≥ 3 (42)

Equation (41) and eq. (42) imply

q0 =
( −2λ

α(p1−α
1 + p1−α

2 )

) 1
α−1

(43)

qi =
(
− λ

α

) 1
α−1

pi i ≥ 3 (44)

From the restriction that 2q0 +
∑k
i=3 qi = 1 it follows that

λ =
−α(

2
(

1
2 (p1−α

1 + p1−α
2 )

) 1
1−α + 1− p1 − p2

)α−1 (45)

Let η =
(p1−α1 +p1−α2

2

) 1
1−α . Then it follows that

q0 =
a

2η + 1− p1 − p2
(46)

qi =
pi

2η − 1− p1 − p2
i ≥ 3 (47)

Using eq. (46) and eq. (47), Rényi divergence is minimized at

1

1− α
log
(
p1(

q0

p1
)α + p2(

q0

p2
)α +

k∑
i=3

pi(
qi
pi

)α
)

(48)

=
1

1− α
log
( 2η1−αηα

(2η + 1− p1 − p2)α
+

1− p1 − p2

(2η + 1− p1 − p2)α

)
(49)

= − log(2η + 1− p1 − p2) (50)

To find the certified area of robustness of an input using the KL divergence of the generalized Gaussian norm, we can make
use of the following theorem.

Theorem A.2. Let P = (p1, ..., pk) and Q = (q1, ..., qk) be two multinomial distributions over the same index set 1, ..., k. If
the indexes of the largest probabilities do not match on P and Q, that is arg maxi pi 6= arg maxj qj , then

dKL(Q,P ) ≥ − log(2
√
p1p2 + 1− p1 − p2) (51)

where p1 and p2 are the first and second largest probabilities in P .

Proof. Using the same terminology as Theorem A.1, the problem can be stated as a set of KKT conditions given by



min
q0,q3,...,qk

q0 log(
q0

p1
) + q0 log(

q0

p2
) +

k∑
i=3

qi log(
qi
pi

) (52)

such that 2q0 +

k∑
i=3

qi = 1 (53)

such that qi − q0 ≤ 0 i ≥ 3 (54)
such that − qi ≤ 0 i ≥ 0 (55)

Let L denote

p1 log(
q0

p1
) + p2 log(

q0

p2
) +

k∑
i=3

pi log(
qi
pi

)+ (56)

λ(2q0 +

k∑
i=3

qi − 1) +

k∑
i=3

µi(qi − q0)−
k∑
i=3

βiqi (57)

Setting slack variables to zero and differentiating gives

∂L

∂q0
= log(

q0

p1
) + log(

q0

p2
) + 2λ+ 2 = 0 (58)

∂L

∂qi
= log(

qi
pi

) + λ+ 1 = 0 i ≥ 3 (59)

Combining eq. (58) and eq. (59) with the KKT conditions and solving for λ gives

q0 =

√
p1p2

η
(60)

qi =
pi
η

i ≥ 3 (61)

(62)

where η = 2
√
p1p2 + 1− p1 − p2. The minimized KL divergence is therefore − log η.

Theorem A.3. Let P = (p1, ..., pk) and Q = (q1, ..., qk) be two multinomial distributions over the same index set 1, ..., k. If
the indexes of the largest probabilities do not match on P and Q, that is arg maxi pi 6= arg maxj qj , then

dH2(Q,P ) ≥ 1−
√

2− (
√
p1 −

√
p2)2

2
(63)

where p1 and p2 are the first and second largest probabilities in P .

Proof. Using the same technique and terminology as in Theorem A.1, we find that

q0 =
(
√
p1 +

√
p2)2

2η
(64)

qi =
2pi
η

i ≥ 3, (65)

(66)

where η = 2− (
√
p1 −

√
p2)2. The minimized Hellinger distance is therefore 1−

√
η
2 .



Theorem A.4. Let P = (p1, ..., pk) and Q = (q1, ..., qk) be two multinomial distributions over the same index set 1, ..., k. If
the indexes of the largest probabilities do not match on P and Q, that is arg maxi pi 6= arg maxj qj , then

dχ2(Q,P ) ≥ (p1 − p2)2

(p1 + p2)− (p1 − p2)2
(67)

where p1 and p2 are the first and second largest probabilities in P .

Proof. Using the same technique and terminology as in Theorem A.1, we find that

q0 =
2p1p2

η
(68)

qi =
p1 + p2

η
pi i ≥ 3, (69)

(70)

where η = (p1 + p2)− (p1 − p2)2. The minimized chi-squared distance is therefore (p1−p2)2

η .

Theorem A.5. Let P = (p1, ..., pk) and Q = (q1, ..., qk) be two multinomial distributions over the same index set 1, ..., k. If
the indexes of the largest probabilities do not match on P and Q, that is arg maxi pi 6= arg maxj qj , then

dB(Q,P ) ≥ − log(

√
2
√
p1p2 − p1 − p2 + 2

2
) (71)

where p1 and p2 are the first and second largest probabilities in P .

Proof. Using the same technique and terminology as in Theorem A.1, we find that

q0 =
(
√
p1 +

√
p2)2

2η
(72)

qi =
2pi
η

i ≥ 3, (73)

(74)

where η = 2
√
p1p2 − p1 − p2 + 2. The minimized Bhattacharyya distance is therefore −log(

√
η
2 ).

Theorem A.6. Let P = (p1, ..., pk) and Q = (q1, ..., qk) be two multinomial distributions over the same index set 1, ..., k. If
the indexes of the largest probabilities do not match on P and Q, that is arg maxi pi 6= arg maxj qj , then

dTV (Q,P ) ≥ |p1 − p2|
2

(75)

where p1 and p2 are the first and second largest probabilities in P .

Proof. It is easy to see that dTV (Q,P ) is minimized when q1 = q2 = |p1+p2|
2 and qi = pi for i >= 3. This leads to the stated

lower bound.



Interestingly, dTV appears naturally in the certificates found via randomized smoothing, as a consequences of being a
special case of the hockey-stick divergence. Indeed, consider a binary classification task, with a given probabilistic classifier, f ,
and an input x. Let fc denote the classifier’s output at label c, which is the true label of x. Let µ = µ(x) denote the smoothing
measure on input x, and ν = µ(x′) denote the smoothing measure on input x′, with a defined distance metric d such that
d(µ, ν) < ε. Then we can guarantee f outputs the same prediction on x′ as on x if the following is larger than 1/2

min
fc

EX∼ν [fc(X)] subject to EX∼µ[fc(X)] = p1, 0 ≤ fc(x) ≤ 1 (76)

The dual relaxation of this problem is given by

max
λ

λp1 + min
0≤fc≤1

EX∼ν [fc(X)]− λEX∼µ[fc(X)] (77)

The inner minimization term is commonly referred to as the hockey-stick divergence. Since any λ gives a valid lower bound
bound to the primal problem, setting λ = 1 gives

p1 − max
0≤fc≤1

EX∼µ[fc(X)]− EX∼ν [fc(X)] (78)

≥ p1 − max
0≤fc≤1

|
∫
X
fcd(µ− ν)| (79)

≥ p1 − max
0≤fc≤1

∫
X
|fc|d|µ− ν| (80)

≥ p1 −
∫
X
d|µ− ν| (81)

≥ p1 − dTV (µ, ν) (82)

Thus, the classifier predicts the same label on x′ as on x if p1 − dTV (µ, ν) > 1/2.

B. Visualization of certified radius (for `2 perturbations) found by dα and dχ2

Figure 6 visualizes the trade-off in certified radius around an input for a hypothetical binary classification task as a function
of the classifier’s top output probability, p1. The certified radii are found using the Rényi divergence and chi-squared distance.
The difference between these two certified radii is small; for p1 ≤ 0.99, the largest difference between the two radii is 0.1.

C. Proof of Proposition 1

Proof. We prove this for the binary case where p2 = 1− p1.

1. Let us fix α ∈ (1,∞). Then εdα > εdχ2 when

√
−2σ2

α
log
(

2
(1

2
(p1−α

1 + (1− p1)1−α)
) 1

1−α
)
>

√
σ2 log(

1

4p1(1− p1)
) (83)

⇐⇒ − 2

α
log
(

2
(1

2
(p1−α

1 + (1− p1)1−α)
) 1

1−α
)
> log(

1

4p1(1− p1)
) (84)

⇐⇒ 4
(1

2
(p1−α

1 + (1− p1)1−α)
) 2

1−α < (4p1(1− p1))α (85)

This holds ∀p1 ∈ ( 1
2 , 1) for example when α = 1.1 and so automatically holds for α ∈ (1,∞) that maximizes the

expression.
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Figure 6: Comparison of the certified radius against perturbations targeting the `2 norm, for Rényi divergence (dα) and the
chi-squared distance (dχ2 ), as a function of the top predicted probability, p1, with σ = 1.

2. If εdχ2 > εdKL , then √
σ2 log(

1

4p1(1− p1)
) >

√
−σ2 log(2

√
p1(1− p1)) (86)

⇐⇒ 1

4p1(1− p1)
>

1

2
√
p1(1− p1)

(87)

⇐⇒ (p1 −
1

2
)2 > 0 (88)

=⇒ p1 >
1

2
(89)

3. If εdχ2 > εdH2 , then

√
σ2 log(

1

4p1(1− p1)
) >

√√√√−8σ2 log(

√
2−

√
p1(1− p1)

2
) (90)

⇐⇒ 1

4p1(1− p1)
>

24

(1 + 2
√
p1(1− p1))4

(91)

⇐⇒ (1 + 2
√
p1(1− p1))4 > 26p1(1− p1) (92)

=⇒ p1 >
1

2
(93)

(94)



4. We show the inner logarithmic terms in εdH2 and εdB are equal, which suffices to prove equality in general. The inner
logarithmic term of εdH2 is √

1 + 2
√
p1(1− p1)

2
(95)

=
1 + 2

√
p1(1− p1)√

2(1 + 2
√
p1(1− p1))

(96)

=
(
√
p1 +

√
1− p1)2√

2(1 + 2
√
p1(1− p1))

(97)

The last term is equal to inner logarithmic term in εdB and so we have εdH2 = εdB .

5. If εdH2 > εdKL , then √√√√−8σ2 log(

√
2−

√
p1(1− p1)

2
) >

√
σ2 log(2

√
p1(1− p1)) (98)

⇐⇒ 25
√
p1(1− p1) > (1 + 2

√
p1(1− p1))4 (99)

(100)

This last term has solutions in p1 ∈ ( 1
2 , 0.998).

6. Let us fix β ∈ (0,min(1, 1
2 log( p1

1−p1 ))], then εdKL > ε[24] when√
−σ2 log(2

√
p1(1− p1)) >

σβ√
2 log( 1.25(1+eβ)

p1(1+e2β)−e2β)
)

(101)

⇐⇒ β2 + 2 log(
1.25(1 + eβ)

p1(1 + e2β)− e2β)
) log(2

√
p1(1− p1)) < 0 (102)

(103)

This last term holds for any p ∈ ( 1
2 , 1).

D. KL divergence of the generalized Gaussian distribution
Here, we give a proof of the claim stated in eq. (14).

Theorem D.1. Let p1 and p2 be the pdf’s of two generalized Gaussians with parameters (µ1, σ, s) and (µ2, σ, s), respectively.
Then dKL(p1, p2) is given by

s∑
k=1

(
s

k

)
(1 + (−1)s−k)Γ( s−k+1

s )(µ1 − µ2)k

2σkΓ( 1
s )

(104)

Proof.

dKL(p1, p2) =
∑

p1 log
(p1

p2

)
(105)

=
∑

k1e
−| x−µ1σ |s log

(k1e
−| x−µ1σ |s

k2e−|
x−µ2
σ |s

)
(106)



Where k1 = k2 = s
2σΓ( 1

s )
. Thus eq. (106) is equal to

∑
k1e
−| x−µ1σ |s log

(e−| x−µ1σ |s

e−|
x−µ2
σ |s

)
(107)

= Ep1
[(x− µ2

σ

)s
−
(x− µ1

σ

)s]
(108)

=
1

σs
Ep1
[
(x− µ2)s − (x− µ1)s

]
(109)

Note that (x− µ2)s =
∑s
k=0

(
s
k

)
xs−k(−µ2)k. Thus eq. (109) is equal to

1

σs

[( s∑
k=0

(
s

k

)
µ1
s−k(−µ2)k

s−k∑
i=0

(
s− k
i

)
(
σ

µ1
)i(1 + (−1)i)

Γ( i+1
s )

2Γ( 1
s )

)
−
( s∑
k=0

(
s

k

)
µ1
s−k(−µ1)k

s−k∑
i=0

(
s− k
i

)
(
σ

µ1
)i(1 + (−1)i)

Γ( i+1
s )

2Γ( 1
s )

)] (110)

=
1

σs

[
(

s∑
k=0

(
s

k

)
µ1
s−k(−µ2)k

−
s∑

k=0

(
s

k

)
µ1
s−k(−µ2)k

s−k∑
i=1

(
s− k
i

)
(
σ

µ1
)i(1 + (−1)i)

Γ( i+1
s )

2Γ( 1
s )

−
s∑

k=0

(
s

k

)
µ1
s−k(−µ1)k

−
s∑

k=0

(
s

k

)
µ1
s−k(−µ1)k

s−k∑
i=1

(
s− k
i

)
(
σ

µ1
)i(1 + (−1)i)

Γ( i+1
s )

2Γ( 1
s )

]
(111)

=
1

σs

[
(µ1 − µ2)s

+

s∑
k=0

(
s

k

)
µ1
s−k(−µ2)k

s−k∑
i=1

(
s− k
i

)
(
σ

µ1
)i(1 + (−1)i)

Γ( i+1
s )

2Γ( 1
s )

−
s∑

k=0

(
s

k

)
µ1
s−k(−µ1)k

s−k∑
i=1

(
s− k
i

)
(
σ

µ1
)i(1 + (−1)i)

Γ( i+1
s )

2Γ( 1
s )

] (112)

Note that only even indices contribute to the summand in eq. (112) because of the (1 + (−1)i) term and so can be written as

1

σs
(µ1 − µ2)s +

1

σs

( s∑
k=1

(
s

k

)
(µ1

s−k(−µ2)k − µ1
s−k(−µ1)k)

s−k∑
i>0

(
s− k
i

)
(
σ

µ1
)i(1 + (−1)i)

Γ( i+1
s )

2Γ( 1
s )

)
(113)

Note, k = 0 =⇒ (µ1
s−k(−µ2)k − µ1

s−k(−µ1)k) = 0, and so eq. (113) becomes

s∑
k=1

(
s

k

)
(1 + (−1)s−k)Γ( s−k+1

s )(µ1 − µ2)k

2σkΓ( 1
s )

(114)
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Figure 7: Certified accuracy against perturbations targeting the `2 norm for CIFAR-10. Given as a function of the certified
radius, the radius around which an input is robust.

E. How does σ affect the certification radius?
For 400 CIFAR-10 test set inputs, we certify inputs against `2 perturbations while varying the noise scale parameter σ 5.

Figure 7 shows certified accuracy as a function of the certified area for σ = 0.25, 0.5, 1.0. This is the guaranteed classification
accuracy under any perturbation smaller than the specified bound. Larger σ results in a larger certified area but suffers from
lower standard classification accuracy – this corresponds to accuracy under a certified radius of 0. This mirrors the findings of
Cohen et al. [10] and Tsipras et al. [32] who showed a trade-off between robustness and standard accuracy.

F. Samples smoothed with different forms of generalized Gaussian noise
In fig. 8, we visualize the smoothing of a generalized Gaussian over two random inputs from CIFAR-10 and ImageNet

test sets. Figures 8a and 8e correspond to the non-smoothed versions of these two inputs, figs. 8b and 8f correspond to the
inputs smoothed with generalized Gaussian noise sampled from GN (0, 0.25, 1). Similarly, figs. 8c and 8g correspond to the
inputs smoothed with generalized Gaussian noise sampled from GN (0, 0.25, 2), and figs. 8d and 8h correspond to the inputs
smoothed with generalized Gaussian noise sampled from GN (0, 0.25, 3). For each smoothed input, we state the size of the
certified radius, ε – upto this value the input is robust to adversarial perturbations in the specified `p norm.

G. An example of separability of optimal decision boundaries for different `p norms
Khoury et al. [21] hypothesize that, in general, it is impossible for a classifier to be robust against all `p norm attacks. They

consider a toy example to demonstrate this: consider two n-dimensional spheres, X1 and X2, both centered at the origin with
radii r1 and r2, respectively. They show that the optimal decision boundary between points on the spheres are distinct under
the `2 and `∞ norms. We extend this to arbitrary norms through Conjecture G.1. First, we define what we mean by an optimal
decision boundary, state the conjecture and then give a draft of a proof that decision boundary separability extends to other
norms.

5Note, sampling from a generalized Gaussian distribution with scale σ and shape s = 2, is equivalent to sampling from a Gaussian distribution with scale
σ/

√
2.



(a) Goldfinch (b) ε = 0.98 (`1) (c) ε = 0.44 (`2) (d) ε = 0.29 (`3)

(e) Dog (f) ε = 0.95 (`1) (g) ε = 0.48 (`2) (h) ε = 0.32 (`3)

Figure 8: Two randomly chosen images from ImageNet (Top) and CIFAR-10 (Bottom). We give examples of noise from
a generalized Gaussian distribution with s = 1, 2, and 3, and the maximum perturbation size, ε, for which the classifier is
certified to predict the correct class under `1, `2, and `3 based attacks.

Definition G.1. Let ∆ be a set of points in Rn. We say ∆ separates X1 and X2 if any continuous function f that passes
through X1 and X2 also passes through ∆.

Definition G.2. Let ∆ be any separator of X1 and X2. Choose a point x ∈ ∆ and consider the ball Bε,p(x) :=
{z|ε ≥ ‖z − x‖p}. We call ∆ a maximum separator if ∀x ∈ ∆ the following holds: ∀ε > 0,∃m1,m2 ∈ Bε,p(x), and
points y1, y2 ∈ X1

⋃
X2, such that if y1 is the point that minimizes ‖m1 − y‖p (where y ∈ X1

⋃
X2), then y1 ∈ X1, and

equivalently if y2 is the point that minimizes ‖m2 − y‖p then y2 ∈ X2.

An example of a separator that is not maximal. Let ∆ = X1. Then ∃x ∈ X1 and ε > 0 such that ∀z ∈ Bε(x), the points
y ∈ X1

⋃
X2 that minimize ‖z − y‖p all lie on X1 (i.e. y ∈ X1 and y /∈ X2).

Conjecture G.1. Let two concentric spheres X1,X2 ∈ Rn have radii r1, r2, respectively. Then ∀p, q ≥ 1 with p 6= q,
∆p 6= ∆q , where ∆p denotes the maximal separator in the `p norm.

We give a ‘proof by example’ in two dimensions, showing that ∆1 6= ∆2 6= ∆4 6= ∆∞, and prove that ∆1 6= ∆2 6= ∆∞
in n-dimensions. First, consider concentric circles X1,X2 ∈ R2 with radii 1, 4, respectively.

∆2 defines a circle of radius 5
2 . In particular for p = (x, y), when x = 0, p ∈ ∆2 has y-coordinate 5

2 . For ∆∞, when
x = 0, p has y-coordinate 3+

√
79

5 . To see this, Bε,∞(m) with center m = (0, 1 + κ) touches X2 at q = (κ, 1 + 2κ). At q we
have κ2 + (1 + 2κ)2 = 42, and so κ = −2+

√
79

5 . Hence, at x = 0, q ∈ ∆∞ has y-coordinate 3+
√

79
5 .

To find y-coordinate when x = 0 for a point q ∈ ∆4, we must solve

x2 + y2 = 42 (115)

x4 + (y − (1 + κ))4 = κ4 (116)

Since ∆4 is tangential to X2, we must find the root of the determinant of (42 − y2)2 + (y − (1 + κ))4 − κ4 = 0. This an
order 12 polynomial,



28κ12 + 96κ11 + 176κ9 − 4540κ8 − 19528κ7+

15916κ6 + 403800κ5 + 495735κ4 − 3757020κ3+

3592350κ2 + 16024500κ− 24350625 = 0.

(117)

This has no solution in the radicals and is approximately 1.4755 and so q ∈ ∆4 has y-coordinate 2.4755.
To find ∆p in general we must solve high order polynomials that may not factor. However, we can find ∆1 in n

dimensions. Consider the diamond `1 ball centered at m = ( r12 + κ
2 ,

r1
2 + κ

2 , ...,
r1
2 + κ

2 ), and q ∈ ∆1 has coordinate
( r12 + κ

2 + κ, r12 + κ
2 , ...,

r1
2 + κ

2 ). Then (n− 1)( r12 + κ
2 )2 + ( r12 + κ

2 + κ)2 = r2
2 . Thus,

κ = −n+ 2

n+ 8

√
2r1 +

2

n+ 8

√
(n+ 8)r2

2 − 2(n− 1)r2
1. (118)

Thus, similarly to Khoury et al. [21], for constant r1 and r2, ∆1 scales like O( 1√
n

), and for a classifier trained to learn ∆1,
an adversary can construct an adversarial perturbation in the `2 norm as small as O( 1√

n
).


