
1. Architecture and training 

 
1.1 Network architecture 
As we mentioned in Section 2.4 of the main manuscript, 

our framework contains three main networks, below are the 

architectures of those networks, please refer the Figure 1 

for our framework: 

• CompNet: 7c64, 3c128, 3c256, 3c512, 7c3, tanh;  

• FineNet: 7c64, 3c128, 3c256, 3c512, 9 x 3r512, 3u256, 

3u128, 3u64, 7c3, tanh 

• SMapNet: 3c64, 9 x 3v64, 3c3 – no ReLu 

where 

• sck: (s x s) convolution layer with k filters and 

stride 1, followed by instance normalization and 

ReLU. 

• srk: residual block with two (s x s) convolution 

layers and k filters, followed by instance 

normalization 

• suk: (s x s) fractional-strided-convolution layer 

with k filters and stride ½, followed by instance 

normalization and ReLU. 

• svk: recursive residual block with two (s x s) 

convolution layers and k filters, followed by 

ReLU 

 

 

 

 

Figure. 1. Our proposed framework 



1.2 Training procedure 

 
As we mentioned in Section 2.2 of the main 

manuscript, to obtain a good enough semantic segment 

from the up-sampled image, we first need to perform the 

training process based on the original semantic segment. 

The ADE20K with 150 semantic labels are used for this 

stage of training. All the images are rescaled to 256x256 to 

have a fixed size of training. We set the down-sample 

factor of the CompNet. equal to 8 to get the compact 

representation of size 32x32x3. Then we perform the 

training process with five kinds of losses according to 

DSSLIC setting, which is demonstrated that got better 

results on both perceptual and PSNR quality (see Step 1 in 

Fig 2).  

On the next step, based on the above pre-trained 

model, we use the PSP network to perform the semantic 

segmentation on the up-sampling images (256x256 from 

the ADE20K dataset) and use them as inputs for training 

SMapNet. The SMapNet is trained as a non-linear mapping 

operator between the extracted segment and its original 

version (see Step 2 in Fig 3). For SMapNet, we use a 

minibatch size of 32 and Adam optimizer, we start with a 

learning rate of 5e-04, for stable training, the final layer 

will have a learning rate equal to one tenth of other layers, 

then terminate training at 150 epoch. 

 

Figure. 2. The specific training procedure 



2. More visual comparison on kodak dataset 

 

Figure. 3. Kodim09 test result. Note that our model can keep more details than others at the lowest bpp. 

 
 

 

 

 

 

Figure. 4. Kodim18 test result. Our model could avoid more noise from lossy compression than DSSLIC[4]. 

 



 

 

 

 

 

Figure. 5. Kodim14 test result. We can see the detail on the aim is kept at the lowest bpp of our model. 

 

 

 

 

 

 

 

 

Figure. 6. Kodim11 test result. The rope is almost blurred in all other works while seen by our result. 

 



 

 

 

 

 

Figure. 7. Kodim16 test result. Only our result can keep the shape of the peak behind. 

 

 

 

 

 

 

 

Figure. 8. Kodim17 test result. We only can see clearly what inside the eye with our result at the lowest bpp. 
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