
1. Architecture and training

1.1 Network architecture
As we mentioned in Section 2.4 of the main manuscript,

our framework contains three main networks, below are the

architectures of those networks, please refer the Figure 1

for our framework:

• CompNet: 7c64, 3c128, 3c256, 3c512, 7c3, tanh;

• FineNet: 7c64, 3c128, 3c256, 3c512, 9 x 3r512, 3u256,

3u128, 3u64, 7c3, tanh

• SMapNet: 3c64, 9 x 3v64, 3c3 – no ReLu

where

• sck: (s x s) convolution layer with k filters and

stride 1, followed by instance normalization and

ReLU.

• srk: residual block with two (s x s) convolution

layers and k filters, followed by instance

normalization

• suk: (s x s) fractional-strided-convolution layer

with k filters and stride ½, followed by instance

normalization and ReLU.

• svk: recursive residual block with two (s x s)

convolution layers and k filters, followed by

ReLU

Figure. 1. Our proposed framework

1.2 Training procedure

As we mentioned in Section 2.2 of the main

manuscript, to obtain a good enough semantic segment

from the up-sampled image, we first need to perform the

training process based on the original semantic segment.

The ADE20K with 150 semantic labels are used for this

stage of training. All the images are rescaled to 256x256 to

have a fixed size of training. We set the down-sample

factor of the CompNet. equal to 8 to get the compact

representation of size 32x32x3. Then we perform the

training process with five kinds of losses according to

DSSLIC setting, which is demonstrated that got better

results on both perceptual and PSNR quality (see Step 1 in

Fig 2).

On the next step, based on the above pre-trained

model, we use the PSP network to perform the semantic

segmentation on the up-sampling images (256x256 from

the ADE20K dataset) and use them as inputs for training

SMapNet. The SMapNet is trained as a non-linear mapping

operator between the extracted segment and its original

version (see Step 2 in Fig 3). For SMapNet, we use a

minibatch size of 32 and Adam optimizer, we start with a

learning rate of 5e-04, for stable training, the final layer

will have a learning rate equal to one tenth of other layers,

then terminate training at 150 epoch.

Figure. 2. The specific training procedure

2. More visual comparison on kodak dataset

Figure. 3. Kodim09 test result. Note that our model can keep more details than others at the lowest bpp.

Figure. 4. Kodim18 test result. Our model could avoid more noise from lossy compression than DSSLIC[4].

Figure. 5. Kodim14 test result. We can see the detail on the aim is kept at the lowest bpp of our model.

Figure. 6. Kodim11 test result. The rope is almost blurred in all other works while seen by our result.

Figure. 7. Kodim16 test result. Only our result can keep the shape of the peak behind.

Figure. 8. Kodim17 test result. We only can see clearly what inside the eye with our result at the lowest bpp.

	1. Architecture and training
	2. More visual comparison on kodak dataset

