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A. Wasserstein distance

Wasserstein distance is a powerful metric in the field of
optimal transport and has recently drawn a lot of atten-
tion [4]. It measures the distance between two distribu-
tions. p-Wasserstein distance (WD) between two random
variables X, Y is given as:

Wp = inf
γ∈Γ(PX ,PY )

E
(x,y)∼γ

[dp(x,y)]
1
p , (1)

where Γ(PX ,PY ) denotes a set of all joint distributions
γ(X,Y ) whose marginal distributions are PX , PY . Sup-
pose x and y are realizations or samples from random vari-
ablesX and Y respectively. Let p > 0, then d(x,y) defines
a metric for x and y. For p = 1, 1-WD d(x,y) is named as
Earth-Mover distance (EMD). Intuitively, γ(X,Y ) shows
how much ”mass” is going to be transported from any re-
alization of X to any realization of Y in order to transport
distribution PX to the distribution PY . Because the primal
form of the 1-WD is generally intractable and usually the
dual form is used in practice[1], a dual form of EMD is for-
mulated through the Kantorovich-Rubinstein (KR) duality
[1] and is given as:

W1 = sup
||g||L≤1

E
x∼PX

[g(x)]− E
y∼PY

[g(y)], (2)

where the supremum is over all 1-Lipschitz functions g(·).

B. Wasserstein Generative adversarial networks

One challenge in applying WD on GAN is that WD
is a much weaker distance compared to the JS distance,
i.e., it induces a weaker topology. This fact makes a se-
quence of probability distributions converge in the distri-
bution space [1], which results in bringing the model dis-
tribution closer to the real distribution. In other words,
both the low dimensional support challenge in high dimen-
sions and the gradient vanishing problem could be solved
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under this assumption. Due to these reasons, the Wasser-
stein GAN (WGAN) model has been developed based on
the dual form of the EMD [1]. WGAN with generator
G and discriminator D is formulated as the first term of
Eq. (3). The main challenge in WGAN is to satisfy the Lip-
schitz continuity constraint. The original WGAN consid-
ered a weighted clipping approach that limits the capacity
of the model and its performance [2]. To alleviate this
problem, WGAN with gradient penalty (WGAN-GP) [2]
has been developed that penalizes the norm of the discrim-
inator’s gradient with respect to a few input samples. The
gradient penaltyGP = E

x̂∼PX̂
[(||∇x̂D(x̂)||2−1)2] is added

to the original WGAN loss function in Eq. (3). Therefore,
WGAN-GP is formulated as:

min
G

max
||D||L≤1

E
x∼Pr

[D(x)]− E
y∼Pg

[D(y)] + λGP (3)

x̂ represents random samples following the distribution
PX̂ , which is formed by uniformly sampling along the
straight lines between pair of points sampled from Pr and
Pg . λ is the hyper-parameter to balance between original
WGAN loss function and the gradient penalty regulariza-
tion. Recently WGAN has been further improved by adding
consistency term GAN (CTGAN) [5].

C. Sliced Wasserstein distance (SWD)

WD is generally intractable for multi-dimensional prob-
ability distribution [3]. However, there is a closed-form so-
lution (i.e., WD is tractable) if the distribution is in the low-
dimensional space (in this paper, we use an one dimensional
space). Let FX and FY be the cumulative distribution func-
tion (CDF) for probability distributions PX and PY respec-
tively. The WD between these two distributions is uniquely
defined as F−1

Y (FX(x)).The primal p-WD between them
can be re-defined as:

Wp =

(∫ 1

0

dp(F−1
X (z), F−1

Y (z))dz

) 1
p

(4)

The change of variable z := Fx(x) is used to derive the
equation. For empirical distributions, Eq. (4) is calculated
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by sorting two distributions and then calculating the average
distance dp(·, ·) between two sorted samples which requires
O(M) at best and O(M logM) at worst, where M is num-
ber of samples for each distribution[3].

Sliced Wasserstein distance (SWD) utilizes this prop-
erty by factorizing high-dimensional probabilities to mul-
tiple marginal distributions [6] with standard Radon trans-
form, denoted byR. Given any distribution P (·), the Radon
transform of P (·) is defined as:

RP (t, θ) =

∫
Rd

P(x)δ(t− 〈θ,x〉)dx, (5)

where δ(·) is the one-dimensional Dirac delta function and
〈·, ·〉 is the Euclidean inner-product. The hyper-parameters
in Radon transform include a level set parameter t ∈ R and
a normal vector θ ∈ Sd−1 (θ is a unit vector, and Sd−1

is the unit hyper-sphere in d-dimensional space). Radon
transform R maps a function to the infinite set of its in-
tegrals over hyperplanes 〈θ,x〉 of Rd. For a fixed θ, the
integrals over all hyperplanes define a continuous function
RP (., θ) : R → R which is a slice or projection of P . The
p-WD in Eq. (4) can be rewritten as the sliced p-WD for a
pair of distributions PX and PY :

SWp =

(∫
θ∈Sd−1

Wp(RPX(., θ),RPY (., θ))dθ

) 1
p

(6)

The dual of Eq. (6) can be derived based on KR duality:

SWp =

(∫
θ∈Sd−1

sup
||g||L≤1

E
xθ

[g(xθ)]− E
yθ

[g(yθ)]dθ

) 1
p

(7)
where xθ and yθ are sampled from RPX(., θ) and
RPY (., θ) respectively. SWD is not only a valid distance
which satisfies positive- definiteness, symmetry and the tri-
angle inequality [6], but also equivalent to WD based on
Lemma 0.1.

Lemma 0.1 Following inequality holds for SWD and WD
where α1 and α2 are constants and n is the dimension of
sample vectors from X and Y [6]:

SWp(PX ,PY )p ≤ α1Wp(PX ,PY )p ≤ α2SWp(PX ,PY )
1

n+1

D. Sliced Wasserstein Generative adversarial net-
works (SWGAN)

Recently Sliced Wasserstein Generative adversarial net-
work (SWGAN) [6] has been proposed by utilizing the
dual form of WGAN and approximating SWD in gener-
ative models. The discriminator is composed of an en-
coding network E and M dual SWD blocks {Sm}Mm=1,
that is, D := {Sm ◦ E}Mm=1 = [S1 ◦ E, · · · , SM ◦ E]T .

Where The operation Si ◦ E = Si(E(·)) . The encoder
E : Rb×n → Rb×r maps a batch of data X ∈ Rb×n to
the latent space of Xembd ∈ Rb×r where b is the batch
size, n is the data dimension and r is the latent dimen-
sion. The first part of each dual SWD block will operate
on the orthogonalization operation Xorth = XembdΘ with
Θ ∈ Rr×r to make sure that the encoded matrix is or-
thogonal. The second part of each dual SWD block will
perform an element-wise non-linear neural network func-
tion Ti(xorth

i ) = uiLeakyReLU(wix
orth
i + bi) to approxi-

mate one-dimensional optimal g function [6] in Eq. (7) for
all i = 1, ..., r where ui, wi, and bi are scalar parameters.
Eventually, the model can be approximated by integrating
over Sn−1 and summing the output mean value of the dual
SWD blocks.

The Lipschitz constraint can be easily applied over one-
dimensional functions followed by the gradient penalty on
each dimension of Ti’s. The projection matrices should re-
main orthogonal throughout the training process. Accord-
ingly, a manifold-valued update rule has been developed
based on the Stiefel manifolds [6]. SWGAN’s final objec-
tive function is as follows:

min
G

max
D

∫
θ∈Sn−1

( E
x∼Pr

[D(x)]− E
y∼Pg

[D(y)] dθ)+

λ1 E
x̂∼PX̂

[||∇x̂D(x̂)||22] + λ2 E
ŷ∼Pŷ

[(||∇ŷT (ŷ)− 1||22]
(8)

where θ represents trainable parameters embedded in D, 1
is a vector with all entries equal to 1, λ1 and λ2 are the
hyper-parameters for balancing the gradient penalty terms
and dual SWD.
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