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A. Wasserstein distance

Wasserstein distance is a powerful metric in the field of
optimal transport and has recently drawn a lot of atten-
tion [4]. It measures the distance between two distribu-
tions. p-Wasserstein distance (WD) between two random
variables X, Y is given as:

W,= inf E [d(x,y)]7, 1)
P +€T'(Px Py) (x,y)w’y[ ( Y)] (

where T'(Px,Py) denotes a set of all joint distributions
~v(X,Y) whose marginal distributions are Px, Py. Sup-
pose x and y are realizations or samples from random vari-
ables X and Y respectively. Let p > 0, then d(x,y) defines
a metric for x and y. For p = 1, I-WD d(x,y) is named as
Earth-Mover distance (EMD). Intuitively, v(X,Y") shows
how much ”mass” is going to be transported from any re-
alization of X to any realization of Y in order to transport
distribution Py to the distribution Py-. Because the primal
form of the 1-WD is generally intractable and usually the
dual form is used in practice[ 1], a dual form of EMD is for-
mulated through the Kantorovich-Rubinstein (KR) duality
[1] and is given as:

Wi= sup B [g(x)]- E [g(v), 2

llgllp<1 *~Fx y~By

where the supremum is over all 1-Lipschitz functions g(-).

B. Wasserstein Generative adversarial networks

One challenge in applying WD on GAN is that WD
is a much weaker distance compared to the JS distance,
i.e., it induces a weaker topology. This fact makes a se-
quence of probability distributions converge in the distri-
bution space [1], which results in bringing the model dis-
tribution closer to the real distribution. In other words,
both the low dimensional support challenge in high dimen-
sions and the gradient vanishing problem could be solved
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under this assumption. Due to these reasons, the Wasser-
stein GAN (WGAN) model has been developed based on
the dual form of the EMD [I]. WGAN with generator
G and discriminator D is formulated as the first term of
Eq. (3). The main challenge in WGAN is to satisfy the Lip-
schitz continuity constraint. The original WGAN consid-
ered a weighted clipping approach that limits the capacity
of the model and its performance [2]. To alleviate this
problem, WGAN with gradient penalty (WGAN-GP) [2]
has been developed that penalizes the norm of the discrim-
inator’s gradient with respect to a few input samples. The
gradient penalty GP = I% [([|[V&D(%)||2 — 1)?] is added
x~Py

to the original WGAN loss function in Eq. (3). Therefore,
WGAN-GP is formulated as:

B 5 P BP0 6P G

% represents random samples following the distribution
P¢, which is formed by uniformly sampling along the
straight lines between pair of points sampled from P,. and
P,. A is the hyper-parameter to balance between original
WGAN loss function and the gradient penalty regulariza-
tion. Recently WGAN has been further improved by adding
consistency term GAN (CTGAN) [5].

C. Sliced Wasserstein distance (SWD)

WD is generally intractable for multi-dimensional prob-
ability distribution [3]. However, there is a closed-form so-
lution (i.e., WD is tractable) if the distribution is in the low-
dimensional space (in this paper, we use an one dimensional
space). Let F'x and Fy be the cumulative distribution func-
tion (CDF) for probability distributions Px and Py respec-
tively. The WD between these two distributions is uniquely
defined as Fy ' (Fx(x)).The primal p-WD between them
can be re-defined as:

1 P
W, = < / dP(Fx'(2), Fy 1(z>)dz> ©))
0

The change of variable z := F,(x) is used to derive the
equation. For empirical distributions, Eq. (4) is calculated



by sorting two distributions and then calculating the average
distance dP (-, -) between two sorted samples which requires
O(M) at best and O(M log M) at worst, where M is num-
ber of samples for each distribution[3].

Sliced Wasserstein distance (SWD) utilizes this prop-
erty by factorizing high-dimensional probabilities to mul-
tiple marginal distributions [6] with standard Radon trans-
form, denoted by R. Given any distribution P(-), the Radon
transform of P(+) is defined as:

RP(t,0) = /

Rd

P(x)a(t — (0, x))dx, (5)

where J(-) is the one-dimensional Dirac delta function and
(-, -) is the Euclidean inner-product. The hyper-parameters
in Radon transform include a level set parameter ¢ € R and
a normal vector # € S9! (4 is a unit vector, and S?~1
is the unit hyper-sphere in d-dimensional space). Radon
transform R maps a function to the infinite set of its in-
tegrals over hyperplanes (#,x) of R%. For a fixed 6, the
integrals over all hyperplanes define a continuous function
RP(.,0) : R — R which is a slice or projection of P. The
p-WD in Eq. (4) can be rewritten as the sliced p-WD for a
pair of distributions Px and Py:

P

SW, = (/ Wp(RPX(.,a),RPY(.,e))d9> (6)
fesd—1

The dual of Eq. (6) can be derived based on KR duality:

SW, = ( [, sw Bt ;Eé[gm)]de) p

€sd-1||gl|lL <16
(7

where xg and yp are sampled from RPx(.,0) and
R Py (.,0) respectively. SWD is not only a valid distance
which satisfies positive- definiteness, symmetry and the tri-
angle inequality [6], but also equivalent to WD based on
Lemma 0.1.

Lemma 0.1 Following inequality holds for SWD and WD
where a1 and oo are constants and n is the dimension of
sample vectors from X and Y [6]:

SW,(Px, Py )? < an W, (Px, Py )P < apSW, (Px, Py )t

D. Sliced Wasserstein Generative adversarial net-
works (SWGAN)

Recently Sliced Wasserstein Generative adversarial net-
work (SWGAN) [6] has been proposed by utilizing the
dual form of WGAN and approximating SWD in gener-
ative models. The discriminator is composed of an en-
coding network E and M dual SWD blocks {S,,}_,,
that iS, D = {Sm ] E}%zl = [Sl ] E, s ,S]\/[ o E]T

Where The operation S; o E = S;(E(-)) . The encoder
E : RV — RP" maps a batch of data X € R*™ to
the latent space of X4 ¢ RYX" where b is the batch
size, n is the data dimension and r is the latent dimen-
sion. The first part of each dual SWD block will operate
on the orthogonalization operation X" = X°mtd@Q with
O € R"™™" to make sure that the encoded matrix is or-
thogonal. The second part of each dual SWD block will
perform an element-wise non-linear neural network func-
tion T;(x") = wu;LeakyReLU(w;x"™ + b;) to approxi-
mate one-dimensional optimal g function [6] in Eq. (7) for
all © = 1,...,r where u;, w;,and b; are scalar parameters.
Eventually, the model can be approximated by integrating
over S*~! and summing the output mean value of the dual
SWD blocks.

The Lipschitz constraint can be easily applied over one-
dimensional functions followed by the gradient penalty on
each dimension of T;’s. The projection matrices should re-
main orthogonal throughout the training process. Accord-
ingly, a manifold-valued update rule has been developed
based on the Stiefel manifolds [6]. SWGAN’s final objec-

tive function is as follows:
minmgx [ (B (DGO~ E [Dly)|an)+ 8

M_E [IVxD)I3]+ 2 E, [(IV5T() — 1/

where 6 represents trainable parameters embedded in D, 1
is a vector with all entries equal to 1, A\; and A\ are the
hyper-parameters for balancing the gradient penalty terms
and dual SWD.
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