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1. Creation of ALRF
This dataset was collected in order to evaluate the per-

formance of landmark localization on real low resolution
face dataset. We randomly selected 700 identities from
the TinyFace dataset, out of which one LR image (of spa-
tial size less than 32 × 32 pixels and more than 15 × 15
pixels) per identity was again randomly selected, result-
ing in a total of 700 LR images. Next, three individuals
were asked to manually annotated all the images with 5
landmarks (two eye centers, nose tip and mouth corners)
in MTCNN style, where invisible points were annotated
with −1. The mean of the points obtained from the three
users was taken to be the groundtruth. Note that ALRF
is excluded from TinyFace for the face verification exper-
iments. Downloadable link for ALRF https://sites.
google.com/view/amitumd

Figure 1: Snippet of the annotation tool used to label landmarks
in low resolution images.

2. Architecture of HR-LD
High resolution landmark detector and heatmap genera-

tor use similar architectures based on UNet with difference
being in the input sizes. The encoder of the UNet consists
of 4 layers, each of which consists of two residual blocks.
The feature maps are down-sampled between every layer.
Two dilated convolutions are applied at the end of encoding

stage. The decoder is structured in exactly similar fashion,
where it is divided into 4 layers. Each layer again consists of
two residual blocks. Between each layer, the feature maps
are up-sampled and the skip connections from the encoder
are added.

The input to HR-LD is images of size 128 × 128 × 3,
whereas the output heatmaps are of dimensions 128× 128×
20; 19 channels for each key-point and 1 channel for back-
ground.

It is worth mentioning that many previously existing al-
gorithms like SBR and CPM [2, 5] cannot be trained on
generated images. These methods expect an input of larger
spatial size while regressing key-points at 56×56. The gen-
erated LR images from G1 are of spatial size 32×32, which
will output a feature map of size 8 × 8, rendering training
of SBR or CPM on generated images infeasible.

Distinction with Adversarial PoseNet [1]: The pro-
posed heatmap confidence discriminator is evidently distin-
guishable from the one in Adversarial PoseNet. D3 in the
proposed work expects three inputs corresponding to pre-
dicted and groundtruth heatmaps of generated images and
predicted heatmaps of target images. In contrast to this,
heatmap confidence discriminator in Adversarial PoseNet
takes two inputs and makes decisions based on the visibility
confidence. We choose to use the same name as, in essence
they are responsible for ensuring that the heatmap generator
predicts feasible heatmaps.

3. Explanation of different settings in experi-
ments

In this section, we elaborate different settings in which
experiments were performed.

Setting S: Experiments under this setting were per-
formed to understand the significance of training G2, D2

and D3. The weights of G1 and D1 were frozen after train-
ing, considering AFLW+300W as high resolution images
and small Widerface images as real low resolution images.
After this we systematically proceed towards training G2
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which can be trained either in supervised way or adversarial
manner. Supervised training can also be performed either
with sub-sampled images (Setting S1) or generated images
(Setting S2). G2 and D2 are trained following adversarial
learning in setting S3. We observe that D3 is a three way
discriminator and expects target LR images with predicted
heatmaps as the third input. This is quite unconventional
when training generative adversarial networks. Target low
resolution images can be taken from either Widerface or
TinyFace, giving rise to setting S4. Table 1 in main paper
clearly demonstrates the effect of three way discriminator
in generalizing to TinyFace dataset, even when G1 and D1

were trained with Widerface as target dataset.

Setting L: In these experiments key-points are obtained
on target low resolution images from TinyFace, which are
then used to align images to canonical coordinates. Subse-
quently we train LightCNN from scratch to understand the
impact of each training strategy on face verification. G2

trained under different settings in ’Setting S’ are used to
extract key-points. We do not use setting S1 as it is quite
evident that sub-sampled images are not representative of
real low resolution images. G2 from setting S2 (G2 trained
in supervised manner with generated LR images) gives rise
to setting L1. G2 from setting S3 (G2 and D2 trained in ad-
versarial BEGAN manner) gives the verification numbers
corresponding to setting L2. In setting L3 we train the ver-
ification network after aligning the faces from key-points
obtained from network in setting S4, second row (where the
third input to D3 was real LR images from TinyFace with
predicted heatmaps) in Table 1 in the main paper.

Next question we try to answer is the effect of training
G1 and D1 also, by considering TinyFace as real LR dataset
as opposed to Widerface in networks in ’setting S’. For set-
ting L4 G1 and D1 are trained with AFLW+300W as HR
images and TinyFace as real LR images. Later G2, D2 and
D3 are also trained and key-points are extracted, after which
we train LightCNN from scratch for verification. In setting
L5, LightCNN is initialized with pre-trained weights.

Setting I: In these experiments, neither key-point net-
works nor image generators are trained. The key-points ob-
tained from G2 trained under different settings in ’setting S’
are used to extract key-points and align images. The aligned
images are fed through a pre-trained Inception ResNet from
ArcFace. No training of Inception ResNet is done, as we
observed training Inception ResNet on a small dataset leads
to prompt overfitting.

Setting A: These represent additional experiments per-
formed to gain insight as to the outcome of face verifica-
tion when super-resolved images from famous deep learn-
ing based methods are used for key-point extraction.

Crystal Loss Semi-Supervised
Rank 1 23.65 28.88
Rank 2 26.03 32.42
Rank 3 27.58 33.57
Rank 4 28.14 34.46
Rank 5 28.64 35.05
Rank 7 29.54 36.61

Rank 10 30.42 37.46
Rank 20 32.58 39.95
Rank 30 34.38 42.05
Rank 40 35.79 43.34
Rank 50 36.69 44.61

Table 1: Retrieval rates at different ranks(Higher is better)

FPIR/Method Crystal Loss Semi-Supervised
1e2 0.9450 0.8959
1e3 0.9081 0.8767
1e4 0.8808 0.8485
1e5 0.8114 0.7720

Table 2: False negative rates at different false positive rates.
(Lower is better)

4. Evaluation on the IJB-S dataset
Along with the method to predict landmarks in low res-

olution images, the paper presents a rather counter-intuitive
result that performing landmark detection directly in low
resolution leads to higher face recognition performance. To
understand this further we performed experiments on re-
cently released IJB-S dataset [3]. IJB-S dataset is one of the
most challenging dataset available, and consists of several
videos collected with surveillance cameras. The subjects
in this dataset are extremely challenging to verify because
of the distance from the camera and low resolution. We
randomly selected 10 videos from the dataset which con-
tained at least 5 subjects from the two galleries the dataset
provides. We used surveillance to booking protocol for the
purpose of this experiment. Only 10 videos were chosen at-
tributing to the fact that IJB-S is an extremely large dataset
and experimenting on the entire dataset takes more than a
month on a single GPU machine. Tables 1 and 2 shows
retrieval rates at different ranks and false negative rates vs
false positives. We compare with [4].
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Figure 2: (a) Retrieval rates at different ranks. (b) False negatives
at different false positive rates.
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Figure 3: (a) LR images from IJB-S dataset. (b) Subsampled AFLW images. (c) Generated low resolution images from G1. Bluish tinge
and pixelated effect can easily be observed in the generated image. Change in color scheme is evident.




