

Supplementary Materials: Infinitesimal Drift Diffeomorphometry Models for Population Shape Analysis

Brian C. Lee¹, Daniel J. Tward¹, Zhiyi Hu¹, Alain Trouvé², Michael I. Miller¹

¹Johns Hopkins University, Baltimore, MD, USA

²Université Paris-Saclay, ENS Paris-Saclay, CNRS, Centre Borelli, F-94235, Cachan, France

¹{leebc, dtward, zhiyi, mim}@cis.jhu.edu, ²trouve@cmla.ens-cachan.fr

A. Current Matching Norm on Surfaces

A template subcortical gray matter structure is represented by a discrete triangulated surface, a set of n points and a triangulation of n_f faces, the j -th face consists of three ordered points from q_1 with indices denoted $f(j, 1), f(j, 2), f(j, 3)$. An invariant cost function to sampling is based on current matching which is minimized when surfaces and normals are close. We define face centers $c(j) = [q_1(f(j, 1)), q_1(f(j, 2)), q_1(f(j, 3))]/3$ and area weighted normals $A(j) = [q_1(f(j, 2)) - q_1(f(j, 1))] \times [q_1(f(j, 3)) - q_1(f(j, 1))]/2$ for \times the cross product in \mathbb{R}^3 and $j \in \{1, \dots, n_f\}$. The same notation is used for target surfaces, which may have a different number of faces or vertices:

$$\begin{aligned} \|S - S'\|^2 &= \frac{1}{2\sigma^2} \left(\sum_{i,j=1}^{n_f} A^T(i) K(c(i), c(j)) A(j) \right. \\ &\quad - 2 \sum_{i=1}^n \sum_{j=1}^{n_f} A^T(i) K(c(i), c'(j)) A'(j) \\ &\quad \left. + \sum_{i,j=1}^{n_f} A'^T(i) K(c'(i), c'(j)) A'(j) \right) \quad (1) \end{aligned}$$

with K a kernel defined similarly to that above.