
Supplemental Text for: Sky Optimization: Semantically aware image processing
of skies in low-light photography

Orly Liba Longqi Cai Yun-Ta Tsai Elad Eban
Yair Movshovitz-Attias Yael Pritch Huizhong Chen Jonathan T. Barron

Google Research

1. The modified guided filter algorithm

In this section we describe our modified guided-filter-
based mask refinement method. Pseudo code for our modi-
fied guided filter is as follows:

modified guided filter(I, P, C, s, ε`, εc) :

I↓ = weighted ds (I, C, s)

P↓ = weighted ds (P,C, s)

Σ↓ = weighted ds (I ⊗ I, C, s)− I↓ ⊗ I↓
σ↓ = weighted ds (I ◦ P,C, s)− I↓ ◦ P↓

Σ↓ = Σ↓ +

ε2` ε2c
ε2c


A↓ = solve image ldl3(Σ↓, σ↓)

b↓ = P↓ −A↓ · I↓
A = smooth us (A↓, s)

b = smooth us (b↓, s)

Y = A · I + b (1)

Inputs to the filter are: a 3-channel reference image I (as-
sumed to be in YUV), the quantities to be filtered, P (in
our case, the sky mask), a confidence map C, and hyper-
parameters: s, the downsampling factor, and ε`, and εc, the
regularization factors for the luma and chroma, respectively.
The output of the filter is Y , a mask that resembles P where
C is large, and adheres to the edges in I . Regarding nota-
tion, ◦ is the Hadamard product (where 1-channel images
are “broadcasted” to match the dimensions of images with
more channels), and · is a dot product (Hadamard product
that is then summed over channels). The outer product of
two images A = X ⊗ Y is defined as taking two 3-channel
images X and Y and producing a 6-channel image A repre-
senting the upper-triangular portion of the outer product of

each pixel of X and Y :

A1,1 = X1 ◦ Y1, A1,2 = X1 ◦ Y2, A1,3 = X1 ◦ Y3
A2,2 = X2 ◦ Y2, A2,3 = X2 ◦ Y3

A3,3 = X3 ◦ Y3
(2)

Our weighted downsample, weighted ds, is simply a stan-
dard bilinear downsample operator applied using homoge-
neous coordinates:

weighted ds (X,C, s) =
ds(X ◦ C, s)

ds(C, s)
(3)

where division is element-wise, and ds(·, s) is bilin-
ear downsampling according to a spatial bandwidth
s. smooth us (·, s) is the smooth upsampling proce-
dure, described next. solve image ldl3(A, b) is an LDL-
decomposition based linear solver designed to operate on
3-channel images, from [4]. For completeness, this algorithm
is reproduced below.

The traditional guided filter uses a box filter to compute
local expectations of various quantities. Because the box
filter is applied twice, and because the convolution of two
box filters is a triangle-shaped (”tent”) filter, the output of
the traditional guided filter tends to contain triangle-shaped
artifacts. Though there exist fast techniques for applying
smoother blur kernels than box filters [5], these techniques
are still significantly more expensive than box filters, and do
not reduce the number of linear systems to be solved. In our
algorithm, smooth upsampling is achieved by applying the
triangle-shaped convolution kernels consecutively (in our
case, in 3 steps), which effectively changes the shape of the
interpolation kernel to be smoother, and significantly reduces
upsampling artifacts. For example, for a downsampling fac-
tor s = 64, instead of upsampling with a single kernel with a
support of 64× 64, we use triangle kernels with a support of
4 × 4 three times, one after the other. We chose this method
of linear upsampling rather than a more advanced method
owing to its separability and efficient implementation. The
effect of this smooth upsampling can be seen in Figure 1.

1

Note that our modified guided filter formulation degrades
naturally to the traditional formulation of the guided filter
if 1) weighted ds (·, C, s) and smooth us (·, s) are both re-
placed with a box filter, 2) the reference image I is RGB
and ε` = εc, and 3) solve image ldl3(·, ·) is replaced with
matrix inversion and a matrix multiply.

Our approach of accelerating part of the guided filter
through the use of spatial downsampling is superficially sim-
ilar with the “fast guided filter” [2], which also yields an
acceleration from O(n) to O(n/s2) for an intermediate step
of the filter. This is accomplished by simply subsampling
the input mask before computing the affine filter coefficients,
which are then applied to the full resolution mask. Though
fast, this approach ignores the vast majority of the input
mask, and thereby assumes that the input to the filter is
very smooth and regular. This does not hold in our use case:
for example, if we had a single high-confidence pixel sur-
rounded by many low-confidence pixels, we would require a
guarantee that this single pixel’s value would propagate to
all nearby low-confidence pixels in the output, and a subsam-
pling approach will not guarantee this (and worse, will cause
the output of the model to vary significantly depending on
whether or not the single high-confidence pixel happens to
lie at one of the few spatial locations that is subsampled).
In contrast, our approach ignores none of the input mask, is
completely deterministic, and still yields the same asymp-
totic acceleration of the filter’s internal linear solver step.

1.1. LDL-decomposition based linear solver

In the refinement algorithm, solve image ldl3(A, b) is
an LDL-decomposition based linear solver designed to op-
erate on 3-channel images, from [4]. For completeness, we

(a) Input
image

(b) Inferred
mask

e) Pixel values
along line

/cns/od-d/home/gcam/sky_segmentatio
n/various_datasets/curated_pixel4//XX
XX_20190624_235227_831

XXXX_20190730_204315_766

Kernel is 64, reduced to 16

XXXX_20190722_210551_239

Pixel index

Pi
xe

l v
al

ue

(d) GF + smooth
upsampling

(c) GF + tent
upsampling

Tent
Smooth

Figure 1: Using bilinear upsampling within a guided filter
(GF) results in noticeable triangle-shaped artifacts (c, e),
while our three-step upsampling results avoids such artifacts
(d, e).

reproduce that algorithm here:

solve image ldl3(A, b) :

d1 = A1,1

L1,2 = A1,2/d1

d2 = A2,2 − L1,2 ◦A1,2

L1,3 = A1,3/d1

L2,3 = (A2,3 − L1,3 ◦A1,2)/d2

d3 = A3,3 − L1,3 ◦A1,3 − L2,3 ◦ L2,3 ◦ d2
y1 = b1

y2 = b2 − L1,2 ◦ y1
y3 = b3 − L1,3 ◦ y1 − L2,3 ◦ y2
x3 = y3/d3

x2 = y2/d2 − L2,3 ◦ x3
x1 = y1/d1 − L1,2 ◦ x2 − L1,3 ◦ x3 (4)

Where the inputs to this function are a 6-channel image A
and a 3-channel image b, with channels in A corresponding
to the upper triangular part of a 3× 3 matrix. The output of
this function is a 3-channel image x where for each pixel i
in the input linear system, x(i) = A(i)\b(i) using an LDL
decomposition.

2. Density estimation algorithm
The density estimation algorithm is used to inpaint unla-

beled pixels and partially automate the process of annotating
sky masks. The probability that an unlabeled pixel belongs
to the “sky” pixels is described in Equation 5, in which i
indicates an “undetermined” pixel and j indicates a “sky”
pixel:

pi =
1

|{sky}|
∑

j∈{sky}

K (Ii, Ij) (5)

K(Ii, Ij) =
1

(2πσ2)
3/2

exp

(
−
∑

c(I
c
i − Icj)2

2σ2

)
(6)

K(·) is a multivariate Gaussian kernel with a Euclidean dis-
tance between the RGB values of pixels, assuming a diagonal
covariance matrix (c indicates the color channel). We use
σ = 0.01 as the kernel’s standard deviation. In practice, to re-
duce computation time we sample 1024 sky pixels uniformly
at random to compute these probabilities.

3. Model optimization
Table 1 shows a comparison of the size, latency, and IoU

scores of the original model and of the two MorphNet steps.
At the end of model optimization we arrive at a model that
is more accurate and 27% smaller.

Original MorphNet MorphNet
UNet Shrink Expand

Model Size (MB) 5.1 1.7 3.7
IoU0.5 ↑ 0.9186 0.8895 0.9237
Latency (ms) 430 290 443
Size Reduction 66% 27%

Table 1: The model performance before and after
optimization with MorphNet and weight quantization to
float-16. Inference latency is measured on a 256× 256
image on a mobile CPU (Qualcomm Snapdragon 845) with
4 threads. Evaluation is performed on our internal dataset,
and therefore these results cannot be directly compared with
those in Table 1 of the main paper.

4. Sky denoise and comparison to CNN
In this section we show an example of sky-aware noise

reduction in a low-light image and compare it to an end-to-
end convolutional neural network (CNN) [1] that produces a
low-light image from a single raw frame. In Figure 2a-c, our
system is able to reduce the noise in the skies while preserv-
ing the details of the stars and the tree. Figure 2d-e shows a
comparison of our result to the result produced by the CNN
of [1]. In this comparison, we used a raw frame captured
with a similar camera model as was used for training the
network in [1] (Sony α7S II). Because our white balancing
algorithm was not calibrated for the Sony camera, and since
color variation can affect the perception of details, we used
Photoshop’s automatic tool to color-match our results to the
results produced by the CNN (as detailed in [3]). Although
the sky in the image produced by the CNN has less fine-
grained noise compared to our result, our result has less low
frequency noise in the skies and preserves more details of
the foreground.

5. Refining the annotations of the ADE20K
dataset

In the Experimental Results Section, we chose the
ADE20K dataset [6] as our baseline dataset. We selected
all the images that have the “sky” label and added to them
10% random images without the skies. We do this for both
the validations and training parts of the dataset so that in total
we have 9187 images from the training set and 885 images
from the validation set. We then refine this dataset with two
different methods: 1) using the guided filter only (annotated
as ADE20K+GF), and 2) using density estimation and the
guided filter (annotated as ADE20K+DE+GF).

Creating ADE20K+GF is straightforward: we input the
annotated raw masks and the ADE20K images into the
weighted guided filter algorithm (described in Section 3.1)
with a confidence map of ones in each pixel. The parameters

(a) Original (b) Sky-aware processing

(d) Single exposure processed by
end-to-end CNN

(c) Zoomed-in comparison

(e) Zoomed-in comparison

Figure 2: Comparison between a low-light image, with and
without sky-aware processing, and the end-to-end trained
CNN described in [1]. A raw frame was captured with a
Sony α7S II, the same camera that was used to train the
CNN, with an exposure time of 0.1 s. a) The original result.
b) The result in (a) with sky-aware processing. (c) Zoomed-
in regions of the original image (green) and sky-processed
image (magenta). d) The result from the CNN. e) Zoomed-
in regions of our result (cyan) and the result of the CNN
(orange).

of the guided filter are s = 48 and, ε` = εc = 0.01. In
order to create ADE20K+DE+GF we had to create a heuris-
tic for the “undetermined” label, in which we would apply
inpainting using the density estimation algorithm described
in Section 3.2.3. We used the following method: a) Run a
Laplacian edge filter on the raw ADE20K sky masks to find
the sky boundaries; b) Dilate the boundaries with an ellipse
kernel with a radius of 4 pixels to generate the “undeter-
mined” label; c) Add areas labeled as trees in ADE20K to
our “undertermined” region. We do this because often the
sky can be seen through tree branches and we have found
that inpainting the entire tree to be more accurate than us-
ing raw annotations. Then, we inpaint the “undetermined”
region using density estimation. For these experiments, we
used a probability threshold of pc = 0.97. We then create the
confidence map with values: cdet = 0.8 (for the “sky” and
“not sky” original raw labels), cinpaint = 0.6 is for pixels
inpainted as skies and cundet = 0.4 for the remaining pixels.
Finally, we apply the weighted guided filter, with parameters:
s = 16 and, ε` = εc = 0.01, and inputs: the inpainted anno-
tations, the new confidence maps, and the original ADE20K
images. Following the guided filter, in order to drive the
intermediate mask values towards the edges of the range: 0
and 1, we applied sharpening to the mask, using Equation 7.

S(x) =
h(ts(x− 1/2))− h(−ts/2)

h(ts/2)− h(−ts/2)
(7)

In which x is the value of the sky mask, normalized to
a range of [0, 1], h(x) = 1/(1 + exp(−x)) is the sigmoid

Raw GF DE+GF

Raw versus GF 629 (30%) 1471 (70%)
Raw versus DE+GF 365 (17.4%) 1735 (82.6%)
GF versus DE+GF 476 (22.7%) 1624 (77.3%)
Total 994 (15.8%) 1947 (30.9%) 3359 (53.3%)

Table 2: The results of a user study comparing raw ground
truth sky masks and refined sky masks from the ADE20K
dataset.

(a) Original image (b) Annotation (c) GF refinement (d) DE + GF refinement

Figure 3: Example images from the user study. In these im-
ages, the sky was darkened using either the original sky mask
annotation of the ADE20K dataset or refined sky annotations.
The user study evaluated the user’s preference for images
(b), (c), or (d). Sky darkening was applied to emphasize the
shape of the sky mask, and is not an indication of our pro-
posed darkening scheme which is described in Section 3.4
of the main paper
.

function, and ts is the sharpness factor. We found that a
sharpness factor, ts = 15 produces visually accurate masks.

6. User study results

The goal of the user study is to show that raw binary an-
notations, demonstrated here using the ADE20K dataset [6],
are too rough for computational photography applications.
Because refined masks are more suitable for sky editing,
a quantitative evaluation of mask accuracy should be per-
formed using refined annotations as the ground-truth. The
subjects were asked to rate which masks are more accurate:
the raw annotations, the annotations refined only with the
guided filter (GF) and the annotations refined with both den-
sity estimation and guided filter (DE+GF). Example images
are shown in Figure 3. The annotations were evaluated one
pair at a time. The images for the study were 100 randomly
picked images with skies from the ADE20K validation set.
We had 21 participants take the study. The results are in
Table 2. From the results we see that the users preferred
masks refined with both DE and GF over only GF and any
refinement was preferred over the raw annotations.

7. Evaluation metrics
Here we define the segmentation evaluation metrics used

in our experiments. We use two metrics that take as input
the binarized versions (at 0.5) of our ground-truth alpha
mattes and of our predictions: mean intersection-over-union
(mIOU) and misclassification rate (MCR):

mIOU0.5 =
∑ TP

TP + FP + FN

MCR0.5 =
∑ FP + FN

M
(8)

where TP, FP and FN are the true positive, false positive, and
false negative, respectively, and M is the number of pixels.
We also present a series of non-binarized error metrics: root
mean square error (RMSE), mean absolute error (MAE),
boundary loss (BL), and Jensen-Shannon Divergence (JSD):

RMSE(X,Y) =

√
1

M

∑
i

(Xi − Yi)2

MAE(X,Y) =
1

M

∑
i

|Xi − Yi|

BL(X,Y) =

√
1

M

∑
i

(∇Xi −∇Yi)2

JSD(X ‖ Y) =
1

M

∑
i

(
1

2
KL

(
Xi ‖

Xi + Yi
2

)
+

1

2
KL

(
Yi ‖

Xi + Yi
2

))
(9)

Where X and Y are the predicted and true alpha mattes, ∇
indicates the spatial gradient of an image, and KL(·) is the
KL divergence between two Bernoulli distributions (the true
and predicted alpha matte at each pixel).

8. Examples of the sky effects
The effects shown in Figure 4 and Figure 5 demonstrate

the sky-aware processing steps performed by our pipeline.
As shown in these figures, our procedure is able to accurately
segment the sky and automatically improve its appearance
for a variety of scenes. The effects are relatively subtle, as we
have calibrated them to maintain the reliability of the scene
and only alleviate the challenges of low-light imaging, with-
out changing the image too much or potentially introducing
new artifacts.

References
[1] Chen Chen, Qifeng Chen, Jia Xu, and Vladlen Koltun. Learn-

ing to see in the dark. CVPR, 2018. 3
[2] Kaiming He and Jian Sun. Fast guided filter. CoRR,

abs/1505.00996, 2015. 2

(a) No sky effects (b) Sky denoise (c) Adding sky
darkening

(d) Adding sky
white balance

Figure 4: The sky effects we propose, applied in sequence.
Note that these effects are independent and do not rely on
one another. a) The original image. b) Sky-specific noise
reduction. c) Tonemapping applied to darken the sky. d) sky-
inferred auto white balance gains applied according to the
sky mask.

[3] Orly Liba, Kiran Murthy, Yun-Ta Tsai, Tim Brooks, Tianfan
Xue, Nikhil Karnad, Qiurui He, Jonathan T Barron, Dillon
Sharlet, Ryan Geiss, et al. Handheld mobile photography in
very low light. SIGGRAPH Asia, 2019. 3

[4] Julien Valentin, Adarsh Kowdle, Jonathan T. Barron, Neal Wad-
hwa, Max Dzitsiuk, Michael Schoenberg, Vivek Verma, Am-
brus Csaszar, Eric Turner, Ivan Dryanovski, Joao Afonso, Jose
Pascoal, Konstantine Tsotsos, Mira Leung, Mirko Schmidt,
Onur Guleryuz, Sameh Khamis, Vladimir Tankovitch, Sean
Fanello, Shahram Izadi, and Christoph Rhemann. Depth from
motion for smartphone AR. SIGGRAPH Asia, 2018. 1, 2

[5] Ian T. Young and Lucas J. van Vliet. Recursive implementation
of the gaussian filter. Signal Processing, 1995. 1

[6] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Bar-
riuso, and Antonio Torralba. Scene parsing through ade20k
dataset. CVPR, 2017. 3, 4

(c) No sky effects (d) Sky denoise (e) Adding sky
darkening

(f) Adding sky
white balance

(b) Refined mask(a) Inferred sky
mask

0LPC_20181020_200714_859

0LEM_20181101_205707_452

0LPC_20181020_195117_800

0LPC_20180930_193508_777

0L6T_20180926_224544_058

0LPC_20181020_195520_385

0LBZ_20181019_212918_676

Figure 5: The sky affects applied one after the other. a) The inferred sky mask. b) The upsampled and refined mask, using our
modified weighted guided filter. c) The original image, without sky effects. d) Sky-specific noise reduction is applied to the
sky. The readers are encouraged to zoom-in to see the difference in noise characteristics. e) Tonemapping is applied to darken
the sky. f) The sky-inferred auto white balance gains are applied to the sky pixels.

