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A. Spectral Reconstruction on Real RGB Data
Most of the image-based spectral reconstruction (SR) meth-

ods are trained with simulated RGB data (including, the exper-
iments we present in the main paper), due to the difficulties of
getting registered ground-truth hyperspectral and RGB images.
But, presumably, we wish to use the SR models on real world
data, where RGB images are taken by actual cameras.

In this supplementary material we aim to show some vi-
sual evidence that the physical plausibility of SR is crucial for
maintaining color fidelity in real-world applications. More am-
bitiously, we wish to compare the actual ‘end-of-pipe’ output
of a camera system (i.e. the processed image shown to the end
users) with the prediction given by spectral reconstruction. In
detail, with a model of the processing pipeline in hand (we
shall introduce this model later), we (1) take a camera raw
image, (2) recover the corresponding hyperspectral images by
SR, (3) reintegrate the spectra with the given camera spectral
sensitivities and finally (4) apply the pipeline model to this
reintegrated raw image to generate an approximated end-of-
pipe image.

We get these ‘real RGB images’ from the INTEL-TAU
image database [5], which is by far the largest open-source
database for training and evaluating the algorithms of color
constancy (i.e. illumination estimation). This database is very
useful because it provides with each raw image:

• the spectral sensitivities of the camera used

• the expected end-of-pipe rendered image

• the ground-truth white point color (WP)

• the color correction matrix (CCM) which maps the raw
RGBs to sRGB colors.

We are going to make use of all the above information in our
demonstration. Example images from this database are given
in Figure 1.

A.1. Training

We re-trained two SR models for comparison: the original1

HSCNN-R and the proposed HSCNN-Rpd model (this second
model is guaranteed to recover spectra that are colorimetrically
accurate and also robust to variation in scene exposure). The
purpose of this re-training is that we are to apply these models
on real RGB data where the camera’s spectral sensitivities are
different from the CIE 1964 color matching functions [3] we
used in the main paper.

1The HSCNN-R model [9] ranked the 2nd place in 2018 NTIRE Challenge
on Spectral Reconstruction from RGB Images [2]

Figure 1: Example images in INTEL-TAU database [5]

Following the same training process as in the main paper,
we randomly selected 100 ground-truth hyperspectral images
from the ICVL dataset [1] for training and 50 for validation
(the spatial dimension of these images is around 1300×1392).
The only difference is that now the corresponding raw RGB
images were simulated by the spectral sensitivities of SONY
IMX135 (one of the three cameras used in INTEL-TAU). That
is, the two SR models were trained to map SONY IMX135 raw
RGBs to hyperspectral image output.

A.2. Reconstruction

The two trained SR models were used to reconstruct the
hyperspectral information from 6 selected raw RGB images
from the INTEL-TAU dataset [5], all of which were taken by
SONY IMX135. The spatial dimension of these images is
2448 × 3264.

Then, the reconstructed hyperspectral images were again
reintegrated into raw RGB images with the spectral sensitiv-
ities of SONY IMX135. At this stage, the proposed HSCNN-
Rpd is expected to give the exact same RGBs as the input
raw RGB images, whereas HSCNN-R can generate differ-
ent RGBs. The goal of this supplementary test is to visually
demonstrate how different (how wrong) this recovery can be
from a colorimetric point of view.

A.3. Color Fidelity Test

From page 3 onward of this supplementary document, we
are going to show several visual comparisons and quantitative
error maps between the ground-truth and the SR predicted end-
of-pipe RGB images. In this section we detail the image ren-
dering process and the process of calculating the quantitative
errors.
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A.3.1 Visual comparisons on end-of-pipe images

In the processing pipeline of a camera, the raw image might
undergo, but not limited to, the following processes before be-
ing shown to the end users: black level and saturation correc-
tion, white balancing, color correction and gamma correction.
As we are already given the expected end-of-pipe image with
each raw image in the INTEL-TAU database, we can alterna-
tively build a 3D Look-up-table (LUT) which approximates the
actual image processing pipeline: for each image, the LUT is
built to relate each color in the ground-truth raw RGB image
to the colors in the supplied (expected) end-of-pipe image.

This LUT can be optimized - in a least-squares sense - by
lattice regression [6, 4]. To speed up the optimization pro-
cess, we train the LUT on thumbnail images, where we sim-
ply downsample the images from the original 2448 × 3264 to
108×144, and bin the colors by 24×24×24 in the three color
channels. Then, the full resolution ground-truth raw RGB and
the raw RGB reintegrated from the reconstructed hyperspectral
image are mapped to their respective end-of-pipe renditions by
applying the same 3D LUT.

In Figure 3-8, an example image is shown in the bottom-left
of each figure, in which the 4 regions of interest are marked
with white squares. The ‘Ground Truth’ image (top-left of
each figure) is actually the end-of-pipe image rendered by the
trained 3D LUT mapping. On the other hand, from the ground-
truth raw RGB we carry out spectral reconstruction (i.e. the
two trained SR models) and reintegrate the recovered hyper-
spectral images with the camera sensitivities to get an approx-
imate raw image. By applying the same LUT to this derived
raw image we generate the end-of-pipe images predicted by
the two SR models, as shown in the top-middle and top-right
images in each figure.

We can already see that HSCNN-R, as an physically non-
plausible spectral reconstruction model, introduces color shifts
that are quite visible after color rendering, while our physically
plausible HSCNN-Rpd successfully preserves the original col-
ors in the ground-truth images. To further quantify the color
shifts, we are bound to calculate the color difference between
the ground-truth and the reintegrated RGB images.

A.3.2 Quantifying color differences

We wish to use the CIE 1976 color difference (∆E) [7] to
quantify the colorimetric errors. Since the ∆E is defined in
CIELAB color coordinates (as shown in Equation (19) in the
main paper), we must consider how we transform the camera
raw RGB to their CIELAB counterparts.

The procedure is summarized in Figure 2. Unlike in the
main paper where the CIELAB coordinates can be transformed
directly from the CIEXYZ colors (with the white point color
this mapping is one-to-one [10]), the mapping from the real
camera’s raw RGB to CIELAB is unknown if the raw data is
the only given information. Fortunately, INTEL-TAU also pro-
vides with each raw image the color correction matrix (CCM)
that transforms the image into sRGB colors and the informa-
tion of ground-truth white point (WP) that ensures one-to-one
mapping between sRGB and CIELAB [10]. Finally, the de-
sired ∆E color difference between ground-truth and reinte-
grated RGB images can be calculated from the transformed
CIELAB images.

Figure 2: The process of calculating CIE 1976 color difference
∆E between ground-truth and reintegrated color images.

We show the ∆E error maps in the bottom-middle and
bottom-right of Figure 3-8, which detail the pixel-wise col-
orimetric errors introduced by the two trained SR models in
the 4 selected regions of interest. It is evident that HSCNN-R
recovers spectra that reintegrate into wrong colors with signif-
icant errors (we remark once again that referring to [8] hu-
man observers can sense noticeable color difference above
∆E ≈ 2.3). Remarkably, our proposed HSCNN-Rpd model
- which possesses both physical plausibility and exposure in-
variance - preserves complete color fidelity.
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Figure 3: Visual comparison 1. Top row: the rendered images. Bottom row: the corresponding ∆E error maps.

Figure 4: Visual comparison 2. Top row: the rendered images. Bottom row: the corresponding ∆E error maps.
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Figure 5: Visual comparison 3. Top row: the rendered images. Bottom row: the corresponding ∆E error maps.

Figure 6: Visual comparison 4. Top row: the rendered images. Bottom row: the corresponding ∆E error maps.
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Figure 7: Visual comparison 5. Top row: the rendered images. Bottom row: the corresponding ∆E error maps.

Figure 8: Visual comparison 6. Top row: the rendered images. Bottom row: the corresponding ∆E error maps.
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