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BAMSProd: A Step towards Generalizing the Adaptive Optimization Methods to Deep Binary Model

A Optimization setup
We follow the work [Reddi, Kale, and Kumar 2018] to employ a common definition of the online learning [Bianchi, Conconi,
and Gentile 2002] with a sequence of observations for analyzing the deep learning optimizers. At t-th time step, the algorithm
picks a model with parameter wt ∈ F , and a loss ft(wt) is produced by the function ft(·) in wt. After T rounds, the regret of
the algorithm is given by RT =

∑T
i=1 ft(wt)−minw∈F

∑T
i=1 ft(w

∗), where w∗ is used to denote the global optimal solution.
In the following of the paper, we assume that the F has bounded diameter and ‖∇ft(wt)‖∞ is bounded for all t ∈ [T ] and
w ∈ F . For the main problem, our objective is to devise an algorithm that ensures RT = o(T ), which implies that the model is
converged to the optimal on average with average regret RT /T → 0 as T →∞.

B Auxiliary Lemmas
Lemma 1. For any wt ∈ Rd and convex feasible set F ⊂ Rd, suppose c1 = minw̃t∈F ‖wt − w̃t‖ and w̃t = αtsign(wt) s.t.
αt ∈ R, then we have αt ≥ 0; ∀t ∈ N.

Proof. We provide the proof here for completeness. Since c1 = minw̃t∈F ‖wt − w̃t‖ and w̃t = αtsign(wt), we have the
following:

c1 = minw̃t∈F ‖wt − αtsign(wt)‖.

After rearranging, if given any t ∈ N, we assume that exists the αt < 0, then we have

αt =
1

d

d∑
i=0

wt,i − c1I
sign(wt,i)

< 0.

Since the property of projection operator w̃t ∈ F and convex feasible set F , we have

d∑
i=0

(
|wt,i| −

c1I
sign(wt,i)

)
≥ 0. (1)

Hence the above inequality is false, and the inequality is true if only αt ≥ 0.

We complete the proof of this lemma.

Lemma 2. Suppose vt = β2vt−1 + (1− β2)g2t with v0 = 0 and 0 ≤ β2 < 1. Given ‖gt‖ ≤ G∞, we have

T∑
t=1

‖vt‖ ≤
T∑
t=1

G2
∞. (2)

Proof. If β2 = 0, the vt = g2t , it satisfies our claim. Otherwise, for 0 < β2 < 1, we have

‖vt‖ = β2‖vt−1‖+ (1− β2)‖g2t ‖
≤ β2‖vt−1‖+ (1− β2)‖G2

∞‖.

The inequality follows from the gradient constraint ‖gt‖ ≤ G∞. In particular, since that v0 = 0, we get

‖vt‖ ≤ (1− β2)

t∑
i=1

‖g2i ‖βt−i2 .

Take the summation of above inequality with t = [1, T ], we have



T∑
t=1

‖vt‖ ≤ (1− β2)

T∑
t=1

t∑
i=1

‖g2i ‖βt−i2

= (1− β2)

T∑
i=1

T∑
t=i

‖g2i ‖βt−i2

≤
T∑
t=1

‖gt‖2 ≤
T∑
t=1

G2
∞.

The second inequality follows from the constraint of

N∑
i=0

βi2 ≤
∞∑
i=0

βi2 =
1

1− β2
.

for 0 < β2 < 1.

We complete the proof of this lemma.

Lemma 3. For the parameter settings and conditions assumed in Theorem 4, we have

T∑
t=1

ηt
2(1− β1t)

‖V̂ −1/4t mt‖2 +

T∑
t=1

ηtβ1t
2(1− β1t)

‖V̂ −1/4t mt−1‖2

≤ η
√

1 + log T

(1− β1)2(1− γ)
√

(1− β2)

d∑
i=1

‖α1:T,i‖2$

(3)

Proof. We start the proof with the following:

T∑
t=1

ηt
2(1− β1t)

‖V̂ −1/4t mt‖2 +

T∑
t=1

ηtβ1t
2(1− β1t)

‖V̂ −1/4t mt−1‖2

≤ 1

2(1− β1)

[ T∑
t=1

ηt‖V̂ −1/4t mt‖2 +

T∑
t=1

ηt‖V̂ −1/4t mt−1‖2
]

≤ 1

(1− β1)

[ T−1∑
t=1

ηt‖V̂ −1/4t mt‖2 + η

d∑
i=1

(
∑T
j=1

∏T−j
k=1 β1(T−k+1)αj,i$)2√

T ((1− β2)
∑T
j=1 β

T−j
2 α2

j,i$)

]

≤ 1

(1− β1)

[ T−1∑
t=1

ηt‖V̂ −1/4t mt‖2 + η

d∑
i=1

(
∑T
j=1

∏T−j
k=1 β1(T−k+1))(

∑T
j=1

∏T−j
k=1 β1(T−k+1)αj,i$)2√

T ((1− β2)
∑T
j=1 β

T−j
2 α2

j,i$)

]

≤ 1

(1− β1)

[ T−1∑
t=1

ηt‖V̂ −1/4t mt‖2 +
η

(1− β1)
√
T (1− β1)

d∑
i=1

T∑
j=1

βT−j1√
βT−j2

αj,i

]

(4)

The first inequality follows from the fact of β1t ≤ β1 < 1. The second inequality follows from the definition of αT,iv̂T,i,
which is maximum of all αT,ivT,i until the current time step and the update rule of Algorithm 1. The third inequality follows
from Cauchy-Schwarz inequality. The fourth inequality follows from the fact the β1k ≤ β1;∀k ∈ [T ] and the

∑T
j=1 β

T−j
1 ≤

1/(1− β1). By using the upper bounds for all time steps, the quantity in Eq. 4 is further bounded as:



T∑
t=1

ηt
2(1− β1t)

‖V̂ −1/4t mt‖2 +

T∑
t=1

ηtβ1t
2(1− β1t)

‖V̂ −1/4t mt−1‖2

≤
T∑
t=1

η

(1− β1)2
√
t(1− β1)

d∑
i=1

T∑
j=1

βT−j1√
βT−j2

αj,i

≤ η

(1− β1)2(1− β1/
√
β2)
√

(1− β2)

d∑
i=1

‖α1:T,i‖2

√√√√ T∑
t=1

1

t

≤ η
√

1 + log T

(1− β1)2(1− β1/
√
β2)
√

(1− β2)

d∑
i=1

‖α1:T,i‖2

The second inequality follows from the proof by Reddi et al. (Reddi, Kale, and Kumar (2018)) in their Appendix D. The last
inequality is due to the bound on harmonic sum

T∑
t=1

1

t
≤ (1 + log T )

We complete the proof of this lemma.

Lemma 4 [Reddi, Kale, and Kumar 2018]. Suppose F = [a, b] for a, b ∈ R and

yt+1 =
∏
F

(yt + δt).

∀t ∈ [T ], y1 ∈ F and furthermore, there ∃i ∈ [T ] such that δj ≤ 0; ∀j ≤ i and δj > 0; ∀j > 0. Then we have,

yT+1 ≥ min{b, y1 +

T∑
j=1

δj}. (5)

Proof. yi+1 ≥ y1 +
∑i
j=1 δj since δj ≤ 0; ∀j ≤ i.

Furthermore, yT+1 ≥ min b, yi+1 +
∑T
j=i+1 δj since δj ≥ 0; ∀j > i.

Lemma 5 [Mcmahan & Streeter 2010] For any Q ∈ Sd+ and convex feasible set F ⊂ Rd, suppose u1 = minw∈F ‖Q1/2(w −
z1)‖ and u2 = minw∈F ‖Q1/2(w − z2)‖ then we have

‖Q1/2(u1 − u2)‖ ≤ ‖Q1/2(z1 − z2)‖. (6)

Proof. Since u1 = minw∈F ‖Q1/2(w− z1)‖ and u2 = minw∈F ‖Q1/2(w− z2)‖ and from the property of projection operator,
we have the following:

〈z1 − u1, Q(z2 − z1)〉 ≥ 0 and 〈z2 − u2, Q(z1 − z2)〉 ≥ 0.

Combining the above inequalities, we have

〈u2 − u1, Q(z2 − z1)〉 ≥ 〈z2 − z1, Q(z2 − z1)〉. (7)
Also, observe the following:

〈u2 − u1, Q(z2 − z1)〉 ≤ 1

2
[〈u2 − u1, Q(u2,−u1)〉+ 〈z2 − z1, Q(z2 − z1)〉].

The above inequality can be obtained from the fact that

〈(u2 − u1)− (z2 − z1), 〈Q((u2,−u1)−Q(z2 − z1))〉 ≥ 0.

as for any Q ∈ Sd+.

Rearranging the terms. Combining the above inequality with Eq. 7, we have the required result.



C Proof of Theorem 1
Proof. We consider the setting where ft are linear functions with the latent weights and F = [−1, 1]. In details, we define the
following function sequences:

ft(w) =


−1 for w̃ = −1;

w̃ for − 1 < w̃ ≤ 1 and t mod C = 1;

−w̃ for − 1 < w̃ ≤ 1 and t mod C = 2;

0 otherwise,

where the w̃ = αwb is the latent weight, which approximate the w by minimizing the quantization errors minw̃t∈F ‖wt − w̃t‖
then we have

ft(w) =


−1 for αwb = −1;

αwb for − 1 < αwb ≤ 1 and t mod C = 1;

−αwb for − 1 < αwb ≤ 1 and t mod C = 2;

0 otherwise,

For simplifying the notation, we drop the � as the problem is one-dimensional, and we further drop indices representing
coordinates from all quantizes in Adam optimization.

For this function sequence, it is not hard to see that the w̃ = −1 provides the minimum regret. Without loss of generality,
assume that the initial point is w1 = 1. This can be assumed without any loss of generality because for any choice of initial
point, we can always translate the coordinate system such that the initial point is w1 = 1 in the new coordinate system and then
choose the sequence of functions as above in the new coordinate system.

As the execution of Adam algorithm for this sequence of functions with

β1 = 0,
β2
1

β2
< 1 and ηt =

η√
t
.

and F has bounded L∞ diameter. All conditions on parameters required for Adam are satisfied (Diederik and Jimmy (2015)).

For proving the said theorem, we claim that for any initial step size η, we have w̃t > 0; ∀t ∈ N, and furthermore, w̃Ct+3 =
1; ∀C ∈ N ∪ {0}. In details, we resort to the principle of mathematical induction. For every C steps, suppose for some t ∈ N,
we have w̃Ct+1 ≥ 0. Our aim at proving that for w̃Ct+i > 0; ∀i ∈ N∩ [2, C + 1]. It is not hard to see that the conditions holds
if w̃Ct+1 > 1. Now we assume w̃Ct+1 ≤ 1, as wb = sign(w) and w̃t > 0, we observe that the gradients have:

∇fi(w) =


αt for − 1 < α ≤ 1 and i mod C = 1;

−αt for − 1 < α ≤ 1 and i mod C = 2;

0 otherwise,

For the (Ct+ 1)-th update of Adam, we obtain

ŵCt+2 = w̃Ct+1 −
η√

Ct+ 1

αCt√
β2vCt + α2

Ct(1− β2)

As β2vCt ≥ 0; ∀t ∈ N, we have the following

η√
Ct+ 1

αCt√
β2vCt + α2

Ct(1− β2)
≤ η√

Ct+ 1

αCt√
α2
Ct(1− β2)

=
η√

Ct+ 1

1√
(1− β2)

< 1

The second inequality follows from the fact that 0 < η < 1√
(Ct+1)(1−β2)

. Therefore, we have 0 < ŵCt+2 < 1 and hence

w̃Ct+2 = ŵCt+2.

To complete the proof, we need to prove that w̃Ct+3 = 1. For proving this claim, if ŵCt+3 ≥ 1, it readily translates to
w̃Ct+3 = 1 as w̃Ct+3 =

∏
F (ŵCt+3) and F = [−1, 1], where

∏
F is simple Euclidean projection (

∏
F,
√
Vt

=
∏
F in



one-dimension).

In particular, we need to consider the following case:

After (Ct+ 2)-th update, we have:

ŵCt+3 = ŵCt+2 +
η√

Ct+ 2

αCt+1√
β2vCt+1 + α2

Ct+1(1− β2)

= w̃Ct+1 −
η√

Ct+ 1

αCt√
β2vCt + α2

Ct(1− β2)
+

η√
Ct+ 2

αCt+1√
β2vCt+1 + α2

Ct+1(1− β2)

The third equality is due to ŵCt+2 = w̃Ct+2. For proving ŵCt+3 ≥ 1, we aim at proving:

η√
Ct+ 1

αCt√
β2vCt + α2

Ct(1− β2)
≤ η√

Ct+ 2

αCt+1√
β2vCt+1 + α2

Ct+1(1− β2)

Rearranging the terms, then we have

η√
Ct+ 2

αCt+1√
β2vCt+1 + α2

Ct+1(1− β2)
− η√

Ct+ 1

αCt√
β2vCt + α2

Ct(1− β2)
≥

ηβ2√
Ct+ 2

√
β2vCt + (1− β2)

√
β2vCt+1 + (1− β2)

(αCt+1vCt − αCtvCt+1) ≥ 0

This last inequality is due to the following lower bound:

αCt+1vCt − αCtvCt+1 = αCt+1vCt − αCt(β2vCt + (1− β2)α2
Ct)

= (αCt+1 − αCtβ2)

[
(1− β2)(

t∑
i=1

βCi−12 α2
Ci−1 +

t∑
i=1

βCi−22 α2
Ci−2)

]
− (1− β2)α3

Ct

≥ (αCt+1 − αCtβ2)

[
(1− β2)(

βC−12 α2
Ct

1− βC2
+
βC−22 α2

Ct

1− βC2
)

]
− (1− β2)α3

Ct

≥ 2(αCt+1 − αCtβ2)βC−22 α2
Ct − (1− β2)α3

Ct ≥ 0

The first and second equality follows from the definition of vt and rearranging the terms. The first inequality follows from
Lemma 1. The second inequality is due to the fact of β2 < 1. The last inequality follows from the assumption if C ∈ N satisfies
βC−22 ≤ 2(αt+1−αtβ2)

1−β2
.

Furthermore, since the gradient is equal to 0 when w̃i ≥ 0 and i mod C 6= 1 or 2, we have

w̃Ct+4 = ŵCt+3 = w̃Ct+3 ≥ 0

w̃Ct+5 = ŵCt+4 = w̃Ct+4 ≥ 0

...

w̃Ct+C+1 = ŵCt+C = w̃Ct+C ≥ 0

Therefore, given w1 = 1, it holds for all t ∈ N by the principle of mathematical induction. Thus, we have

C∑
i=0

fkC+i(wkC+i)−
C∑
i=0

fkC+i(−1) ≥ 0− (−C) = C

where k ∈ N. Therefor, for every C steps, ADAM suffers a regret of C. More specifically, RT ≥ CT/C = T . Thus,
RT /T 9 0 as T →∞.

We complete the proof.



D Proof of Theorem 2
Theorem 2 generalizes the optimization setting used in Theorem 1. In details, we construct the binary optimization problem
with the bounded gradients and a more general case if adding a bias constant in the denominator of the update in Adam as
follows:

ŵt+1 = w̃t − ηtmt/
√
Vt + εI.

Here we provide the setting of the example for completeness.

Proof. Consider the setting where ft are linear functions with the latent weights and F = [−1, 1]. In details, we define the
following function sequences:

∇ft(w) =


−1 for w̃ = −1;

Cαt for − 1 < w̃ < 1 and t mod C = 1;

−αt for − 1 < w̃ < 1 and t mod C 6= 1;

0 otherwise,

whereγ = β1√
β2
< 1. Hence, C ∈ N satisfies the large constant that depends on β1, β2, α and ε ≤ (1− β2)(1− β(C−2)/2

2 C2).

According to the proof given by Reddi et al. (Reddi, Kale, and Kumar (2018)) in their Appendix B, if mkC ≤ 0; ∀k ∈ N∪{0},
and for the general case the mkC+C is observed as mkC+C = −(1− βC−11 )

∑C−1
t=1

∑t
i=1 β

t−i
1 αi + (1− β1)βC−11 CαC−1 +

βC1 mkC .

If mkC ≤ 0, it can be easily shown that the constraint of mkC+C ≤ 0 is still satisfied. Now we consider the case of mkC > 0,
assuming the β(C−2)/2

2 C2 ≤ α(C−2)/2 ≤ 1 and (1 − β1)βC−11 CαC−1 ≤ −(1 − βC−11 )
∑C−1
t=1

∑t
i=1 β

t−i
1 αi by using the

principle of mathematical induction.

Consider an iterate at time ste t of the form kC after T ′, we further prove the following claim:

xt+C ≥ min{xt + ct, 1} (8)

for some ct > 0, considering the updates of Adam for the particular sequence of functions with latent weights, we have

δt = − η√
t

(1− β1)Cαt + β1mt√
(1− β2)C2α2

t + β2vt + ε
,

δt+i = − η√
t+ i

(1− β1)αt + β1mt+i−1√
(1− β2)α2

t + β2vt+i + ε
.

where i ∈ {1, . . . , C}. If δt+j ≥ 0 for some j ∈ {1, . . . , C − 1} then δt+s ≥ 0; ∀s ∈ {j, . . . , C − 1}. Using Lemma 5, we
have the following:

xt+C ≥ min{xt +

t+C−1∑
i=t

δi, 1}

Let i′ = C/2. In order to prove the claim in Eq. 8, we need to prove the following:

δ =

t+C−1∑
i=t

δi > 0

To this end, we have:

t+C−1∑
i=t+1

δi =

C−1∑
i=1

− η√
t+ i

−(1− β1)αt + β1mt+i√
(1− β2)α2

t + β2vt+i

≥ η

ρ
√
t(1 + β2)

(
C − i′ − βi

′−1
1

1− β1

)
− η√

t

γ(1− β1)(1− γC−1)

(1− γ)
√

(1− β2)
≥ 0.



The above inequality is using the Lemma 2, the definition of ρ2t ≥ t+C; ∀t ≥ T ′ and the constraints of C from Eq. 2. And it
is further due to the following upper bound that applies for all i′ ≤ i ≤ C:

vt+i−1 = (1− β2)

t+i−1∑
j=1

βt+i−1−j2 g2j

≤ (1− β2)

[
βi
′−1
2 C2

1− βC2
+

1

1− β2

]
≤ 2

The above inequality follows from the online problem setting where gradient is Cαi+C once every C iterations and αi for the

rest, and the fact that βC2 ≤ β2 Furthermore, from the above inequality and (1 + γ(1−γC−1)
1−γ ) +

β
C/2−1
1

1−β1
≤ C

3 , we have

t+C−1∑
i=t

δi ≥ δt +
η

ρ
√
t(1 + β2)

(
C − i′ − βi

′−1
1

1− β1

)
− η√

t

γ(1− β1)(1− γC−1)

(1− γ)
√

(1− β2)

≥ η

ρ
√
t

[
C

3
− β

C/2−1
1

1− β1
− 3(1− β1)

2
√

1− β2

(
1 +

γ(1− γC−1)

1− γ

)]
=

η√
t
γ

According to the conditions hold for Reddi et al. (Reddi, Kale, and Kumar (2018)), hence, when t ≥ T
′

1, for every C steps,
Adam optimizing the deep binary model suffers a regret of at least 2. More specifically, RT ≥ CT/C = T . Thus, RT /T 9 0
as T →∞.

We complete the proof.

E Proof of Theorem 3
According to the examples proposed by Reddi et al. (Reddi, Kale, and Kumar (2018)) in their Appendix C, we extend it with
the constraints to satisfy Theorem 3.

Proof. Let ξ be an arbitrary small positive constant. Considering the following one dimensional stochastic optimization setting
over the domain [−1, 1]. At each time step t, the gradient of function ft(w) is chosen as following:

∇fi(w) =

{
Cαt$t for − 1 < w̃ ≤ 1 and with probability p := 1+ξ

C+1 ;

−αt$t for − 1 < w̃ ≤ 1 and with probability 1− p;

The expected function is F (w) = ξw. Thus the optimal point over [−1, 1] is w∗ = −1. At each time step t the gradient gt
equals Cαt$t with probability p and −αt$t with probability 1− p, where $t = sign(w̃t) = {−1,+1}.

Then, the step taken by ADAM as

4t =
−ηt

(
β1mt−1 + (1− β1)Cαt$t

)
√
β2vt−1 + (1− β2)C2α2

t

there exists a large enough C

− 1 + ξ

C + 1

(
1√

1− β2
+
−β1(1− β1)d log(Cα

∗+1)
log(1/β1)

e√
(1− β2)(β2 − β2

1)

)
+

(
1− 1 + ξ

C + 1

)
1− β1√

β2(1 + ξ)Cα∗ + (1− β2)
.

where C as a function of ξ, β1, β2 and α∗, where α∗ is an optimal solution for specific constraints of quantization, and the
above expression can be made non-negative. According to the proof in Appendix C in Reddi et al. (Reddi, Kale, and Kumar
(2018)), such that E[4t] ≥ 0, which then implies that the Adam’s step keep drifting away from the optimal solution w∗ = −1.
It should be noticed that there is no limitation of the initial step size η currently, which completes the proof.



F Proof of Theorem 4
The proof of Theorem 4 presented below which provides a claim of convergence for BAMSProd. Since our examples show
a non-convergence of Adam for optimizing the deep binary model, the main issues is that Υt causes a increasing step size
even maintains the maximum of all vt until the time step t. Hence, the following proofs fixes these issues and provide a proof
convergence for BAMSProd.

Proof. Let w∗ = arg minw̃∈F
∑T
t=1 ft(w̃), which w∗ exists as F is closed and convex. We begin with the following observa-

tion:

w̃ =
∏
F,
√
V̂t

(w̃t − ηtV̂ −1/2t mt) = min
w̃∈F
‖V̂ −1/2t (w̃ − (w̃t − ηtV̂ −1/2t mt))‖

where ∀w∗ ∈ F ;
∏
F,
√
V̂t

(w∗) = w∗. Using Lemma 4 with u1 = w̃t+1 and u2 = w∗, we have the following:

‖V̂ 1/4
t (w̃t+1 − w∗)‖2 ≤ ‖V̂ 1/4

t (w̃t − ηtV̂ −1/2t mt − w∗)‖2

= ‖V̂ 1/4
t (w̃t − w∗)‖2 + η2t ‖V̂

−1/4
t mt‖2 − 2ηt〈mt, w̃t − w∗〉

= ‖V̂ 1/4
t (w̃t − w∗)‖2 + η2t ‖V̂

−1/4
t mt‖2 − 2ηt〈β1tmt−1 + (1− β1t)g̃t, w̃t − w∗〉

= ‖V̂ 1/4
t (w̃t − w∗)‖2 + η2t ‖V̂

−1/4
t mt‖2 − 2ηt〈β1tmt−1 + (1− β1t)αt$t, w̃t − w∗〉

Rearranging the above inequality, we have

〈αt$t, w̃t − w∗〉 ≤
1

2ηt(1− β1t)

[
‖V̂ 1/4

t (w̃t − w∗)‖2 − ‖V̂ 1/4
t (w̃t+1 − w∗)‖2

]
+

ηt
2(1− β1t)

‖V̂ −1/4t mt‖2

+
β1t

1− β1t
〈mt−1, w̃t − w∗〉

≤ 1

2ηt(1− β1t)

[
‖V̂ 1/4

t (w̃t − w∗)‖2 − ‖V̂ 1/4
t (w̃t+1 − w∗)‖2

]
+

ηt
2(1− β1t)

‖V̂ −1/4t mt‖2

+
ηtβ1t

2(1− β1t)
‖V̂ −1/4t mt−1‖2 +

β1t
2ηt(1− β1t)

‖V̂ 1/4
t (w̃t − w∗)‖2

(9)

The second inequality follows from Cauchy-Schwarz and Young’s inequality. We now use the standard approach of bounding
the regret at each step using convexity of the function ft in the following manner:

T∑
t=1

ft(w̃t)− ft(w∗) ≤
T∑
t=1

〈αt$t, w̃t − w∗〉

≤
T∑
t=1

[
1

2ηt(1− β1t)

[
‖V̂ 1/4

t (w̃t − w∗)‖2 − ‖V̂ 1/4
t (w̃t+1 − w∗)‖2

]
+

ηt
2(1− β1t)

‖V̂ −1/4t mt‖2

+
ηtβ1t

2(1− β1t)
‖V̂ −1/4t mt−1‖2 +

β1t
2ηt(1− β1t)

‖V̂ 1/4
t (w̃t − w∗)‖2

] (10)

The first inequality is due to the convexity of function ft. The second inequality follows from the bound in Eq. 9. For further
bounding this inequality, using the Lemma 3, we then have

T∑
t=1

ft(w̃t)− ft(w∗) ≤
T∑
t=1

[
1

2ηt(1− β1t)

[
‖V̂ 1/4

t (w̃t − w∗)‖2 − ‖V̂ 1/4
t (w̃t+1 − w∗)‖2

]
+

β1t
2ηt(1− β1t)

‖V̂ 1/4
t (w̃t − w∗)‖2

]
+

η
√

1 + log T

(1− β1)2(1− β1/
√
β2)
√

(1− β2)

d∑
i=1

‖α1:T,i‖2

≤ 1

2η1(1− β1)
‖V̂ 1/4

1 (w̃1 − w∗)‖2 +
1

2(1− β1)

T∑
t=2

[‖V̂ 1/4
t (w̃t − w∗)‖2

ηt
−
‖V̂ 1/4

t−1 (w̃t − w∗)‖2

ηt−1

]
+

T∑
t=1

[ β1t
2ηt(1− β1t)

‖V̂ 1/4
t (w̃t − w∗)‖2

]
+

η
√

1 + log T

(1− β1)2(1− β1/
√
β2)
√

(1− β2)

d∑
i=1

‖α1:T,i‖2



=
1

2η1(1− β1)

d∑
i=1

v̂
1/2
1,i (w̃1,i − w∗i )2 +

1

2(1− β1)

T∑
t=2

d∑
i=1

(w̃t,i − w∗i )2
[
v̂
1/2
t,i

ηt
−
v̂
1/2
t−1,i

ηt−1

]

+
1

2(1− β1)

T∑
t=1

d∑
i=1

β1t(w̃t,i − w∗i )2v̂
1/2
t,i

ηt
+

η
√

1 + log T

(1− β1)2(1− β1/
√
β2)
√

(1− β2)

d∑
i=1

‖α1:T,i‖2

(11)

The first and second inequality use the fact that β1t ≤ β1 ≤ 1. Considering the definition in paper Section 4 with the constraint
‖w̃x − w̃y‖∞ ≤ D∞ and the Lipschitz-continuous ‖ft(w̃x)− ft(w̃y)‖ ≤ C(α)‖w̃x − w̃y‖ ≤ C(α)D∞, then we have

T∑
t=1

ft(w̃t)− ft(w∗) ≤
1

2η1(1− β1)

d∑
i=1

v̂
1/2
1,i (w̃1,i − w∗i )2 +

1

2(1− β1)

T∑
t=2

d∑
i=1

(w̃t,i − w∗i )2
[
v̂
1/2
t,i

ηt
−
v̂
1/2
t−1,i

ηt−1

]

+
η
√

1 + log T

(1− β1)2(1− β1/
√
β2)
√

(1− β2)

d∑
i=1

‖α1:T,i‖2 + C(αt)

T∑
t=1

√
‖w̃t − w∗‖√Ṽt−1

By the definition of v̂t,i with
v̂
1/2
t,i

ηt
≥ v̂

1/2
t−1,i

ηt−1
and using the ‖C(αt)‖ ≤ L∞ on the feasible region and making use of the above

property in Eq. 11, we have

RT =

T∑
t=1

ft(w̃t)− ft(w∗) ≤
D2
∞
√
T

η(1− β1)

d∑
i=1

v̂
1/2
T,i +

D2
∞

2(1− β1)

T∑
t=1

d∑
i=1

β1tv̂
1/2
T,i

ηt

+
η
√

1 + log T

(1− β1)2(1− β1/
√
β2)
√

(1− β2)

d∑
i=1

‖α1:T,i‖2 + L∞D∞

T∑
t=1

√
‖wt − α∗‖√Ṽt−1

we further consider the quantization property as

w̃t = αtsign(w); s.t. sign(w) ∈ (Sd)

Then we have

RT =

T∑
t=1

ft(w̃t)− ft(w∗) ≤
D2
∞
√
T

η(1− β1)

d∑
i=1

v̂
1/2
T,i +

D2
∞

2(1− β1)

T∑
t=1

d∑
i=1

β1tv̂
1/2
T,i

ηt

+
η
√

1 + log T

(1− β1)2(1− β1/
√
β2)
√

(1− β2)

d∑
i=1

‖α1:T,i‖2 + L∞D∞

T∑
t=1

√
D∞ + α2d2w̃

The equality follows from simple telescopic sum, which yields the regret of BAMSProd to be bounded by O(G∞
√
T ). It is not

hard to see that. Thus, the regret of BAMSProd is upper bounded by minimum of O(G∞
√
T ) and bound in the Theorem 4 and

therefore, the worst case dependence of regret on T in our case is O(
√
T ).


