Paper ID 1 APPENDIX
BAMSProd: A Step towards Generalizing the Adaptive Optimization Methods to Deep Binary Model
A Optimization setup

We follow the work [Reddi, Kale, and Kumar 2018] to employ a common definition of the online learning [Bianchi, Conconi,
and Gentile 2002] with a sequence of observations for analyzing the deep learning optimizers. At ¢-th time step, the algorithm
picks a model with parameter w; € F, and a loss f;(w;) is produced by the function f;(-) in w;. After T rounds, the regret of

the algorithm is given by R = ZiT:1 fir(wy) —minger 23:1 fi(w*), where w* is used to denote the global optimal solution.
In the following of the paper, we assume that the F has bounded diameter and ||V f;(w:)||oo is bounded for all ¢t € [T] and
w € F. For the main problem, our objective is to devise an algorithm that ensures Ry = o(T"), which implies that the model is
converged to the optimal on average with average regret Ry /T — 0 as T — .

B Auxiliary Lemmas

Lemma 1. For any w; € R¢ and convex feasible set F C R¢, suppose ¢y = ming,cr ||wy — || and Wy = aysign(wy) s.t.
ay € R, then we have oy > 0; ¥Vt € N.

Proof. We provide the proof here for completeness. Since ¢; = ming,cr |w; — W] and W, = aysign(w;), we have the
following:

¢1 = ming, e r ||ws — azsign(wy)||.

After rearranging, if given any ¢ € N, we assume that exists the a; < 0, then we have
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Since the property of projection operator w; € F and convex feasible set F, we have
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Hence the above inequality is false, and the inequality is true if only a; > 0.
We complete the proof of this lemma.

Lemma 2. Suppose vy = Bovy_1 + (1 — B2)g? withvg = 0 and 0 < B3 < 1. Given ||g¢|| < G oo, we have
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Proof. If B3 = 0, the v; = gf, it satisfies our claim. Otherwise, for 0 < B3 < 1, we have
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The inequality follows from the gradient constraint ||g:|| < Go. In particular, since that vy = 0, we get
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Take the summation of above inequality with ¢ = [1, T'|, we have
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The second inequality follows from the constraint of
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for0 < f2 < 1.

We complete the proof of this lemma.

Lemma 3. For the parameter settings and conditions assumed in Theorem 4, we have
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The first inequality follows from the fact of 31; < 81 < 1. The second inequality follows from the definition of oz ;07 ;,
which is maximum of all oy ;v7; until the current time step and the update rule of Algorithm 1. The third inequality follows

from Cauchy-Schwarz inequality. The fourth inequality follows from the fact the 81 < 81;Vk € [T] and the Z 1 pr—1 <
1/(1 — B1). By using the upper bounds for all time steps, the quantity in Eq. 4 is further bounded as:
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The second inequality follows from the proof by Reddi et al. (Reddi, Kale, and Kumar (2018)) in their Appendix D. The last
inequality is due to the bound on harmonic sum
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We complete the proof of this lemma.

Lemma 4 [Reddi, Kale, and Kumar 2018]. Suppose F = [a,b] for a,b € R and

Yt+1 = Hf(yt + ).

Vt € [T],y1 € F and furthermore, there 3i € [T such that 6; < 0; Vj < i and 6; > 0; Vj > 0. Then we have,

T
yr+1 > min{b,y; + Z5j}- &)
J=1

Proof. yiy1 > 1 + Zi-:l d; since §; < 0; Vj <.

Furthermore, y741 > minb, y; 41 + Z d; since 0; > 0; Vj > i.

Jj=i+1

Lemma 5 [Mcmahan & Streeter 2010] For any Q € S% and convex feasible set F C RY, suppose u1 = min, e [|QY/?(w —
21)|| and uy = miny,e 7 [|QY/?(w — 22)|| then we have

QY2 (w1 —up)|| < QY2 (21 — 22)I. (6)

Proof. Since u; = ming,cr [|Q'/?(w — 21)|| and uy = min,e 7 ||Q'/?(w — 22)|| and from the property of projection operator,
we have the following:

(z1 —u1,Q(22 — 1)) > 0and (22 — uz, Q(21 — 22)) > 0.
Combining the above inequalities, we have

(ug —u1, Q22 — 21)) > (22 — 21, Q(22 — 21)). (7

Also, observe the following:

(ug —u1, Q(z2 — 21)) < 5 [(ug —u1, Quz, —u1)) + (22 — 21, Q(22 — 21))].

The above inequality can be obtained from the fact that
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((uz —u1) = (22 = 21), (Q((u2, —u1) — Q22 — 21))) = 0.
as for any Q) € Sjl_.

Rearranging the terms. Combining the above inequality with Eq. 7, we have the required result.



C Proof of Theorem 1

Proof. We consider the setting where f; are linear functions with the latent weights and F = [—1, 1]. In details, we define the
following function sequences:

-1  forw=-1;
w for —1<w<1landtmodC =1;
—w for —1 <w<1landtmodC = 2;
0 otherwise,

where the @ = awy is the latent weight, which approximate the w by minimizing the quantization errors ming, ¢ x ||[w; — Wy ||
then we have

-1 for awy, = —1;

awy for — 1 < aw, <landtmodC =1;
—awy for —1 < aw, <1andtmod C = 2;
0 otherwise,

fi(w) =

For simplifying the notation, we drop the © as the problem is one-dimensional, and we further drop indices representing
coordinates from all quantizes in Adam optimization.

For this function sequence, it is not hard to see that the w = —1 provides the minimum regret. Without loss of generality,
assume that the initial point is w; = 1. This can be assumed without any loss of generality because for any choice of initial
point, we can always translate the coordinate system such that the initial point is w; = 1 in the new coordinate system and then
choose the sequence of functions as above in the new coordinate system.

As the execution of Adam algorithm for this sequence of functions with
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and F has bounded L, diameter. All conditions on parameters required for Adam are satisfied (Diederik and Jimmy (2015)).

For proving the said theorem, we claim that for any initial step size 7, we have w, > 0; V¢t € N, and furthermore, wWc¢43 =
1; VC € N U {0}. In details, we resort to the principle of mathematical induction. For every C' steps, suppose for some ¢ € N,
we have Wcyy1 > 0. Our aim at proving that for wWeq; > 0; Vi € NN [2,C 4+ 1]. Tt is not hard to see that the conditions holds
if o1 > 1. Now we assume we1 < 1, as wy, = sign(w) and w; > 0, we observe that the gradients have:

o for —1<a<1landimodC =1,
Vii(w)=< —a; for —1<a<1landimodC = 2;
0 otherwise,
For the (Ct + 1)-th update of Adam, we obtain

act

n
VOt +1\/Bovey + a2, (1 — B2)

Weop42 = Wop41 —

As Bavey > 0;Vt € N, we have the following

n act < n act
VCt+1+/Bover + a2, (1 — Ba) ~ VCt+1./a2,(1 - B)
n 1

<1

CVCEH T /(1 =By
The second inequality follows from the fact that 0 < 1 < m Therefore, we have 0 < wWc¢4+2 < 1 and hence
Wett2 = Wot42-

To complete the proof, we need to prove that weyy3 = 1. For proving this claim, if wey43 > 1, it readily translates to
Weirs = 1 as Worrs = [[#(Wctts) and F = [—1,1], where [~ is simple Euclidean projection ([[» ; = [[7 in



one-dimension).
In particular, we need to consider the following case:
After (C't + 2)-th update, we have:

aCt41

VOi+2 \/ﬁzv(JtH + a1 (1 B2)

W43 = Wopt2 +

n Qct n ACt+1
VOE+ 1/ Bovor + ady (1= Bo) \/Ct +2 \/B2U0t+1 + 01 (1 - Ba)

The third equality is due to Wey42 = Weet2. For proving weg43 > 1, we aim at proving:
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Rearranging the terms, then we have
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This last inequality is due to the following lower bound:

Q4100 — QciVeti1 = aotr1vor — act(Baver + (1 — Be)ady)
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The first and second equality follows from the definition of v, and rearranging the terms. The first inequality follows from

Lemma 1. The second inequality is due to the fact of 52 < 1. The last inequality follows from the assumption if C' € N satisfies
C 2 < 2(ap 41— C!fﬁQ)
- 1-PB2

Furthermore, since the gradient is equal to 0 when w; > 0 and ¢ mod C' # 1 or 2, we have

Wet44 = Wopt3 = Wopgs > 0

Wet45 = Wota = Wopta > 0
Wet4C+1 = Wetrc = Worye = 0

Therefore, given wy = 1, it holds for all ¢ € N by the principle of mathematical induction. Thus, we have
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where k& € N. Therefor, for every C steps, ADAM suffers a regret of C. More specifically, Rr > CT/C = T. Thus,
Ry /T -+ 0asT — oco.

We complete the proof.



D Proof of Theorem 2

Theorem 2 generalizes the optimization setting used in Theorem 1. In details, we construct the binary optimization problem
with the bounded gradients and a more general case if adding a bias constant in the denominator of the update in Adam as
follows:

’lZ)t_;,_l = U~)t — ntmt/\/ ‘/t + el

Here we provide the setting of the example for completeness.

Proof. Consider the setting where f; are linear functions with the latent weights and F = [—1, 1]. In details, we define the
following function sequences:

-1 forw = —1;

Ca; for —1<w<landtmodC =1;
—ay for —1<w< 1landtmodC # 1;
0 otherwise,

Vfi(w) =

wherey = ﬁﬁ% < 1. Hence, C € N satisfies the large constant that depends on 1, 32, @ and ¢ < (1 — S82)(1 — 55072)/202).

According to the proof given by Reddi et al. (Reddi, Kale, and Kumar (2018)) in their Appendix B, if myc < 0; Vk € NU{0},
and for the general case the myc ¢ is observed as mpcyrc = —(1 — 1071) f:_ll Ele ﬁf’ai +(1-— ,6’1)61()’16’04071 +
B myc.

If mie <0, it can be easily shown that the constraint of myc+c < 0 is still satisfied. Now we consider the case of myc > 0,

assuming the 550_2)/202 < ae—2yy2 < land (1 — B)BCCap_ < —(1 - BEY tc:ll S B, by using the
principle of mathematical induction.

Consider an iterate at time ste ¢ of the form kC' after 7", we further prove the following claim:

Tiro > min{zs + ¢, 1} ®)

for some ¢; > 0, considering the updates of Adam for the particular sequence of functions with latent weights, we have
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where i € {1,...,C}. If 6,4; > Oforsome j € {1,...,C — 1} then d;45s > 0; Vs € {j,...,C — 1}. Using Lemma 5, we
have the following:
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Let i’ = C/2. In order to prove the claim in Eq. 8, we need to prove the following:
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To this end, we have:
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The above inequality is using the Lemma 2, the definition of p?t >t + C; Vt > T" and the constraints of C' from Eq. 2. And it
is further due to the following upper bound that applies for all i/ < i < C:
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The above inequality follows from the online problem setting where gradient is CCEZ+C once every C' iterations and «; for the

_1 C/2 1
rest, and the fact that ,82C < By Furthermore, from the above inequality and (1 + (= 'Y — )) + 5= I < %, we have
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According to the conditions hold for Reddi et al. (Reddi, Kale, and Kumar (2018)), hence, when ¢ > Tll, for every C steps,
Adam optimizing the deep binary model suffers a regret of at least 2. More specifically, R > CT/C = T. Thus, Ry /T - 0
as ' — oo.

We complete the proof.

E Proof of Theorem 3

According to the examples proposed by Reddi et al. (Reddi, Kale, and Kumar (2018)) in their Appendix C, we extend it with
the constraints to satisfy Theorem 3.

Proof. Let £ be an arbitrary small positive constant. Considering the following one dimensional stochastic optimization setting
over the domain [—1, 1]. At each time step ¢, the gradient of function f;(w) is chosen as following:

C+17

Vfi(w) = Cayw;  for —1 < < 1and with probability p := t5;
” | —ayw,  for —1 < @ < 1 and with probability 1 — p;

The expected function is F'(w) = &w. Thus the optimal point over [—1, 1] is w* = —1. At each time step ¢ the gradient g;
equals C'ayoy with probability p and —ao; with probability 1 — p, where @, = sign(w;) = {—1,+1}.

Then, the step taken by ADAM as

s (5177%—1 +(1- 51)C'Oétwt)
VBavi—1 + (1 = B2)C2a2

t =

there exists a large enough C'

_1+§< 1 +61(1Bl)[liifﬁﬂfW)Jr(l_Hf) 1- 6 |
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where C' as a function of &, 31, 82 and o, where o™ is an optimal solution for specific constraints of quantization, and the
above expression can be made non-negative. According to the proof in Appendix C in Reddi et al. (Reddi, Kale, and Kumar
(2018)), such that E[A;] > 0, which then implies that the Adam’s step keep drifting away from the optimal solution w* = —1.
It should be noticed that there is no limitation of the initial step size 7 currently, which completes the proof.



F Proof of Theorem 4
The proof of Theorem 4 presented below which provides a claim of convergence for BAMSProd. Since our examples show
a non-convergence of Adam for optimizing the deep binary model, the main issues is that Y, causes a increasing step size
even maintains the maximum of all v, until the time step ¢. Hence, the following proofs fixes these issues and provide a proof
convergence for BAMSProd.

Proof. Let w* = argminge r Zthl fi(w), which w* exists as F is closed and convex. We begin with the following observa-
tion:
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where Yw* € F; HF \/;(w*) = w*. Using Lemma 4 with u; = W41 and uy = w*, we have the following:
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Rearranging the above inequality, we have
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The second inequality follows from Cauchy-Schwarz and Young’s inequality. We now use the standard approach of bounding
the regret at each step using convexity of the function f; in the following manner:
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The first inequality is due to the convexity of function f;. The second inequality follows from the bound in Eq. 9. For further
bounding this inequality, using the Lemma 3, we then have
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The first and second inequality use the fact that 5;; < 87 < 1. Considering the definition in paper Section 4 with the constraint
ltg — Wylloo < Doo and the Lipschitz-continuous || f;(ws) — fi(wy)]| < C(a)||Wy — Wy|| < C(a)Doo, then we have
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property in Eq. 11, we have
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we further consider the quantization property as

Wy = aysign(w); s.t. sign(w) € (S%)

Then we have
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The equality follows from simple telescopic sum, which yields the regret of BAMSProd to be bounded by O(G s v/T). It is not
hard to see that. Thus, the regret of BAMSProd is upper bounded by minimum of O(G »,+/T') and bound in the Theorem 4 and
therefore, the worst case dependence of regret on 7" in our case is O(v/T).




