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Abstract

This package of Supplemental Materials contains three
items: 1) Datasets, 2) Invariance Proof of Radial Object
Descriptor, and 3) Sample Filter Heatmaps.

1. Datasets
Datasets used in our experiments are anonymously

shared at:

https://www.dropbox.com/s/
p8rzqehytqred2h/datasets.zip?dl=0

This folder contains four High-throughput Phenotyping
(HTP) datasets for Fine-Grained Recognition (FGR) ap-
plications which are respectively related to plant cultivars
of soybean, arabidopsis, bean, and komatsuna. Each of
the four datasets corresponds to notations used in our pa-
per as: HTP-Soy, Arabidopsis [2], Bean [1], and
Komatsuna [3]. For more details about HTP-Soy, please
see our paper. For more details about the other three
datasets, please see citations.

2. Invariance Proof of ROD
Below we prove that the newly proposed feature descrip-

tor, Radial Object Descriptor (ROD), is invariant under scal-
ing, rotation, and translation.

Theorem 1. Radial Object Descriptor is invariant under
uniform scaling, rotation, and translation.

Proof. Based on Algorithm 1, this theorem can be formu-
lated as

xi − xmin

xmax − xmin
=

x′i − x′min

x′max − x′min

,∀i = 1, 2...|x|

where x and x′ respectively denote the ROD before and af-
ter transformation.

Suppose that there is a transformation of translation by
factor (t1, t2), rotation by angle θ, and uniform scaling by

factor a. Then a contour pixel e =
[
e1
e2

]
will be transformed

to e′ =
[
e′1
e′2

]
, which satisfies

e′1e′2
1

 =

1 0 t1
0 1 t2
0 0 1

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

a 0 0
0 a 0
0 0 1

e1e2
1


=

cos θ · a · e1 − sin θ · a · e2 + t1
sin θ · a · e1 + cos θ · a · e2 + t2

1


Similarly, a seed s =

[
s1
s2

]
will be transformed to s′ =[

s′1
s′2

]
=

[
cos θ · a · s1 − sin θ · a · s2 + t1
sin θ · a · s1 + cos θ · a · s2 + t2

]
. Then we can

write x′i = ||e′ − s′||2 as

x′i =
√
(e′1 − s′1)2 + (e′2 − s′2)2

=

√√√√(cos θ · a · (e1 − s1)− sin θ · a · (e2 − s2))2+
(sin θ · a · (e1 − s1) + cos θ · a · (e2 − s2))2

=

√√√√ cos2 θ · a2 · (e1 − s1)2 + sin2 θ · a2 · (e2 − s2)2+
sin2 θ · a2 · (e1 − s1)2 + cos2 θ · a2 · (e2 − s2)2

= a ·
√

(e1 − s1)2 + (e2 − s2)2

= a · xi

We can use similar procedures to show that x′max = a ·
xmax and x′min = a · xmin. Now we can see that

x′i − x′min

x′max − x′min

=
a · (xi − xmin)

a · (xmax − xmin)
=

xi − xmin

xmax − xmin

which concludes the proof.

https://www.dropbox.com/s/p8rzqehytqred2h/datasets.zip?dl=0
https://www.dropbox.com/s/p8rzqehytqred2h/datasets.zip?dl=0


3. Sample Filter Heatmaps
Using sample filter heatmaps, figure 1 and 2 (see next

two pages) illustrate the effectiveness of fusing ROD and
Histogram of Oriented Gradients (HOG) in Softmax regres-
sion. Figure 1 is based on classifying 6 replicates (with dif-
ferent collection times) of arabidopsis plants into 2 classes
while figure 2 is based on classifying 6 replicates (with dif-
ferent camera view angles) of soybean plots into 2 classes.

For the HOG feature, we present the visualizations of
the most discriminative parts (top and bottom) based on the
filter heatmaps of WHOG. Observe that the most discrimina-
tive parts of arabidopsis plants and soybean plots are along
their contours, which indicates the significance of features
along contour.

For the ROD feature, we present the 1-dimensional
RODs that are unfolded from 2-dimensional contours. Ob-
serve that even under the changes of collection time or cam-
era’s view angle, replicates in each class share RODs with
very similar shapes. Also, we present the filter heatmaps of
WROD in the form of 2-dimensional contours. Again, ob-
serve that most elements in RODs are very discriminative,
which indicates the important cues provided by contour-
based RODs, even though RODs’ vector lengths are much
smaller than HOGs’.
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