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Abstract

This package of Supplemental Materials contains three
items: 1) Datasets, 2) Invariance Proof of Radial Object
Descriptor, and 3) Sample Filter Heatmaps.

1. Datasets

Datasets used in our experiments are anonymously
shared at:

https://www.dropbox.com/s/
p8rzgehytgred2h/datasets.zip?dl=0

This folder contains four High-throughput Phenotyping
(HTP) datasets for Fine-Grained Recognition (FGR) ap-
plications which are respectively related to plant cultivars
of soybean, arabidopsis, bean, and komatsuna. Each of
the four datasets corresponds to notations used in our pa-
per as: HTP-Soy, Arabidopsis [2], Bean [I], and
Komatsuna [3]. For more details about HTP-Sovy, please
see our paper. For more details about the other three
datasets, please see citations.

2. Invariance Proof of ROD

Below we prove that the newly proposed feature descrip-
tor, Radial Object Descriptor (ROD), is invariant under scal-
ing, rotation, and translation.

Theorem 1. Radial Object Descriptor is invariant under
uniform scaling, rotation, and translation.

Proof. Based on Algorithm 1, this theorem can be formu-
lated as

/ /

Li — Tmin Ty — T .
= ST Twin i — 1,2, a
Tmax — Lmin Thmax — Lhmin

where z and 2’ respectively denote the ROD before and af-
ter transformation.

Suppose that there is a transformation of translation by
factor (¢1,t2), rotation by angle 6, and uniform scaling by

factor a. Then a contour pixel e = [Zl} will be transformed
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Similarly, a seed s = { } will be transformed to s’ =

] . Then we can
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which concludes the proof.


https://www.dropbox.com/s/p8rzqehytqred2h/datasets.zip?dl=0
https://www.dropbox.com/s/p8rzqehytqred2h/datasets.zip?dl=0

3. Sample Filter Heatmaps

Using sample filter heatmaps, figure 1 and 2 (see next
two pages) illustrate the effectiveness of fusing ROD and
Histogram of Oriented Gradients (HOG) in Softmax regres-
sion. Figure 1 is based on classifying 6 replicates (with dif-
ferent collection times) of arabidopsis plants into 2 classes
while figure 2 is based on classifying 6 replicates (with dif-
ferent camera view angles) of soybean plots into 2 classes.

For the HOG feature, we present the visualizations of
the most discriminative parts (top and bottom) based on the
filter heatmaps of Wyopg. Observe that the most discrimina-
tive parts of arabidopsis plants and soybean plots are along
their contours, which indicates the significance of features
along contour.

For the ROD feature, we present the 1-dimensional
RODs that are unfolded from 2-dimensional contours. Ob-
serve that even under the changes of collection time or cam-
era’s view angle, replicates in each class share RODs with
very similar shapes. Also, we present the filter heatmaps of
Wrop in the form of 2-dimensional contours. Again, ob-
serve that most elements in RODs are very discriminative,
which indicates the important cues provided by contour-
based RODs, even though RODs’ vector lengths are much
smaller than HOGs’.
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