
A. MicroNet-C10 & MicroNet-C100 Networks
The MicroNet-C10 and MicroNet-C100 networks were designed for the CIFAR-10 and CIFAR-100 datasets, respectively.

They share the same architecture described in Table A.1, which consists of three sections of layers. The first section is
represented by the input layer or “Stem Convolution”. The next section has three stages, each one containing identical
building blocks, whose elements are depicted in Figure A.1. This block was designed by introducing the building blocks
PyramidNet [33] in the ResNet-44 architecture [34]. The third section consists of a global average-pooling layer followed
by a fully-connected layer. Finally, as an important remark, when applying the Entropy-Constrained Trained Ternarization
(EC2T) approach, the first and last layers are not quantized.

Table A.1. Architecture of MicroNet-C10 and MicroNet-C100 networks, where d and w are scaling factors for the networks’ depth and
width, respectively. For the baseline neworks (i.e., before applying compound-model-scaling), d = w = 1. The number of classes,
nclasses, corresponds to 10 for CIFAR-10 and 100 for CIFAR-100.

Stage Operation Resolution Output Channels Repetitions

Stem Convolution (3× 3)
+ BN & ReLU 32× 32 16× w 1

1 Building Block 32× 32 16× w 7× d
2 Building Block 16× 16 32× w 7× d
3 Building Block 8× 8 64× w 7× d

ReLU & Global Avg. Pooling 8× 8 64× w 1
Fully-Connected 1× 1 nclasses 1

BatchNorm 3x3
conv BatchNorm ReLU 3x3

conv BatchNorm
Input Output

SkipOp

Figure A.1. Building block for the baseline models, MicroNet-C10 and MicroNet-C100.



B. Efficient Storage of Sparse & Ternary Weight Matrices
In addition to the trainable network parameters, we count those values that are needed to reconstruct the model from sparse

matrix formats, i.e., binary masks or indices. Specifically, full-precision parameters (32-bits) count as one, while quantized
parameters (with less than 32-bits) as a fraction of a parameter. For instance, a binary mask element counts as 1/32 with
respect to a full-precision (32-bit) parameter.

If Compressed-Entropy-Row(CER)/Compressed-Sparse-Row (CSR) formats are not applied, a ternary convolution layer
of size NK2M consists of two binary masks as illustrated in Figure B.1. One mask indicates the location of the centroid
values (see Figure B.1b), while the other describes the sign of those values (see Figure B.1c). Thus, the parameter count
for these masks is 1/32 × NK2M and 1/32 × σNK2M, respectively. In this notation, N is the number of effective
input channels, K the kernel size, M the number of effective output channels, and σ = 1 − sparsity, with σ ∈ [0, 1].
The effective number of channels is computed as the original number of channels minus the number of channels pruned by
the Entropy-Constrained Trained Ternarization (EC2T) approach. To calculate the layers’ sparsity, we exclude the pruned
channels. The third matrix in Figure B.1, uses two 16-bit numbers to represent the centroid values. Thus, they count as a
single full-precision (32-bit) parameter (Figure B.1d). For the batch normalization layers, we add a 16-bit value (bias) per
effective output channel. Therefore, their corresponding parameter count isM/2.
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Figure B.1. Efficient storage of sparse and ternary weight matrices.


