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A. Proofs
In this section we present the proofs of Theorems 2

and 3. Our analysis will make use of the differentiable ob-
jective

D(B,C) := R̃(B,C) + �ABCT − b�2, (26)

the non-convex function

N (X) := R(X) + �AX − b�2, (27)

and the convex function

C(X) = R(X) + �X − Z�2F . (28)

We will also use the functions

G̃(B,C) = R̃(B,C) + �BCT �2F , (29)
G(X) = R(X) + �X�2F , (30)

H(X) = �AX − b�2 − �X�2F . (31)

Note that D(B,C) = G̃(B,C) + H(BCT ) and N (X) =
G(X) + H(X). Throughout the section we use f = fµ
with fµ as in (8) (of the main paper) but for simplicity of
notation we will suppress the subscript µ. Furthermore,
the subdifferential ∂G(X) of G will be of importance. Let
g(x) = f(|x|) + x2. The scalar function g has

∂g(x) =





2x |x| ≥ √
µ

2
√
µsign(x) 0 < |x| ≤ √

µ

2
√
µ[−1, 1] x = 0

. (32)

The following lemma shows how to compute ∂G for the
matrix case using ∂g.

Lemma 1. The subdifferential of G(X) is given by

∂G(X) = {U∂g(Σ)V T +M : σ1(M) ≤ 2
√
µ,

UTM = 0 and MV T = 0}
(33)

where X = UΣV T is the SVD and ∂g(Σ) is the matrix of
same size as Σ with diagonal elements ∂g(σi).

Next we give the stationary point conditions for D that
are needed for proving Theorem 2.

Lemma 2. Let B = U
√
Σ, C = V

√
Σ and X = UΣV T .

If (B,C) is a stationary point of D, then

0 = B∂G(Σ) +∇H(BCT )C, (34)

0 = ∂G(Σ)CT +BT∇H(BCT ). (35)

We are now ready to prove Theorem 2.

Proof of Theorem 2. Let X̄ = B̄C̄T , X̃ = B̃C̃T and
ΔX = B̃C̃T − B̄C̄T . We first note that the limit

N �
ΔX(X̄) = lim

t�0

N (X̄ + tΔX)−N (X̄)

t
, (36)

exists since N is a sum of a finite convex function G and
a differentiable function H . Our goal is now to show that
the limit is non-negative. Suppose that we can find a fac-
torization B(t)C(t)T = X̄ + tΔX , such that R(X̄ +
tΔX) = R̃(B(t), C(t)), (B(t), C(t)) is continuous and
(B(0), C(0)) = (B̄, C̄). Then for small enough t we have

N (X̄+tΔX)−N (X̄) = D(B(t), C(t))−D(B̄, C̄). (37)

This quantity is clearly non-negative since (B̄, C̄) is a local
minimizer of D, which would prove that the limit (36) is
non-negative. It is not difficult to see that this can be done
when the two matrices X̄ and X̃ have singular value de-
compositions with the same U and V . In what follows we
will first show that all other cases can be reduced so that the
matrices are of this form. When this is done we proceed to
construct the factorization B(t)C(t)T which completes the
proof.

The directional derivatives can be computed using the
sub-differential

N �
ΔX = max

2Z∈∂G(B̄C̄T )
�2Z,ΔX�+ �∇H(B̄C̄T ),ΔX�.

(38)



By Lemma 1, the first term becomes

�U∂G(Σ)V T +M,ΔX� = �U∂G(Σ)V T , B̃C̃T �
+ �M, B̃C̃T �
− �U∂G(Σ)V T , B̄C̄T �.

(39)

The columns of B̃ can be written as a linear combination of
the columns in B̄ and those of a matrix B̄⊥ with at most k
columns that are perpendicular to B̄. Similarly, the columns
of C̃ can be written as a linear combination of the columns
in C̄ and those of a matrix C̄⊥ with at most k columns that
are perpendicular to C̄. Therefore, we may write

B̃C̃T =
�
B̄ B̄⊥

� �K11 K12

K21 K22

� �
C̄T

C̄T
⊥

�

= B̄K11C
T + B̄K12C̄

T
⊥

+ B̄⊥K21C̄
T + B̄⊥K22C̄

T
⊥,

(40)

where B̄T B̄⊥ = 0 and C̄T C̄⊥ = 0. Our goal is now to
show that the terms K12 and K21 and the off diagonal el-
ements of K11 vanish from (38) and can be assumed to be
zero.

For the last term of (39) we have

�U∂G(Σ)V T , B̄C̄T � = �∂G(Σ), UT B̄C̄TV �
= �∂G(Σ),Σ�, (41)

which is clearly independent of B̃ and C̃. The first term of
(39) reduces to

�U∂G(Σ)V T , B̃C̃T � = �U∂G(Σ)V T , B̄K11C̄
T �

= �B̄TU∂G(Σ)V T C̄,K11�
= �Σ∂G(Σ), K11�.

(42)

Note that the off diagonal elements of K11 vanish from this
expression since Σ∂G(Σ) is diagonal. Similarly, the second
term of (39) reduces to

�M, B̃C̃T � = �M, B̄⊥K22C̄
T
⊥�. (43)

We now consider the second term of (38)

�∇H(B̄C̄T ),ΔX� =
�∇H(B̄C̄T ), B̄K11C̄

T + B̄K12C̄
T
⊥

+ B̄⊥K21C̄
T + B̄⊥K22C̄

T
⊥ − B̄C̄T �.

(44)

For the first term we have

�∇H(B̄C̄T ), B̄K11C̄
T � = �∇H(B̄C̄T )C̄, B̄K11�

= −�B̄∂G(Σ), B̄K11�
= −�B̄T B̄∂G(Σ), K11�
= −�Σ∂G(Σ), K11�.

(45)

Again the off diagonal elements of K11 vanish. For the
second term of (44) we have

�∇H(B̄C̄T ), B̄K12C
T
⊥� = �BT∇H(BCT ), K12C

T
⊥�

= −�∂G(Σ)C̄T ,K12C̄⊥�
= −�∂G(Σ)C̄T C̄⊥,K12� = 0.

(46)
Similarly, the third term is �∇H(B̄C̄T ), B̄⊥K21C̄

T � = 0.
Thus

�∇H(B̄C̄T ),ΔX� = �∇H(B̄C̄T ), B̄T
⊥K22C̄

T
⊥�

− �Σ∂G(Σ), K11�
− �∇H(B̄C̄T ), B̄C̄T �.

(47)

Summarizing we see that we have now proven that all the
terms in (39) are independent of K12, K21 as well as the
off diagonal terms of K11. They therefore do not affect the
value of N �

ΔX and can be assumed to be zero. We can now
write ΔX as

ΔX =
�
U U⊥

� �(D − I)Σ 0

0 Σ̃

� �
V T

V T
⊥

�
, (48)

where D are the diagonal elements of K11 and U⊥Σ̃V T
⊥ is

the SVD of B̄⊥K22C̄
T
⊥ . Note that UT

⊥U = 0 since U and
U⊥ span orthogonal subspaces. Similarly V T

⊥ V = 0.
We now consider the directional derivative (36) with

B̄ = U
√
Σ, C̄ = V

√
Σ. It is clear that for small t the

matrix X̄ + tΔX has the singular value decomposition

�
U U⊥

� �((1− t)I + tD)Σ 0

0 tΣ̃

� �
V T

V T
⊥

�
. (49)

We now let

B(t) =
�
U U⊥

�
��

((1− t)I + tD)Σ 0

0 tΣ̃

�
, (50)

C(t) =
�
V V⊥

�
��

((1− t)I + tD)Σ 0

0 tΣ̃

�
. (51)

Then, we clearly have R̃(B(t), C(t)) = R(X + tΔX) for
small enough t, which completes the proof.

Next we will prove Theorem 3. Our results build on
those of [43] and we remind the reader that we exclusively
use fµ(σ) = µ−max(

√
µ−σ, 0)2 throughout this section,

but suppress the subscript µ. We will use the fact that the
directional derivatives in a local minimum are non-negative
for all low rank directions to show that (B̄, C̄) minimizes
the non-convex N over matrices of rank < k in Theorem 3.
For this we will need the following result:

Lemma 3. If X̄ is a solution to minrank(X)≤k C(X) with
rank(X̄) < k and the singular values of Z fulfill σi(Z) /∈
[(1− δ2k)

√
µ,

√
µ

(1−δ2k)
] then X̄ also solves minX C(X).



Proof of Lemma 3. By von Neumann’s trace theorem it is
easy to see that the problem minrank(X)≤k C(X) reduces to
a minimization over the singular values of X . We should
thus find σi(X) such that

n�

i=1

−max(
√
µ− σi(X), 0)2 + (σi(X)− σi(Z))2� �� �

:=gi(σi(X))

(52)

is minimized and at most k singular values are non-zero.
The unconstrained minimizers of gi can be written down in
closed form: If 0 ≤ √

µ < σi(Z) then σi(X) = σi(Z) is
optimal giving gi(σi(X)) = 0. If 0 ≤ σi(Z) <

√
µ then

σi(X) = 0 is optimal giving gi(σi(X)) = −µ + σi(Z)2.
Hence for any solution of minrank(X)≤k C(X) we have
σi(X) = 0 if 0 ≤ σi(Z) ≤ √

µ. There are now two cases:

1. If σk+1(Z) <
√
µ then the sequence of unconstrained

minimizers has at most k non-zero values. Thus, in
this case the resulting X solves both minX C(X) and
minrank(X)≤k C(X).

2. If σk+1 >
√
µ we will not be able to select σi(X) =

σi(Z) for all i where 0 ≤ √
µ < σi(Z). Choosing

σi(X) = 0 gives gi(0) = −µ + σi(Z)2 < 0. Since
σi(Z) is decreasing with i it is clear that the smallest
value is obtained when selecting σi(X) = σi(Z) for
i = 1, ..., k.

We now conclude that if rank(X̄) < k then we are in case 1
and therefore X̄ solves the unconstrained problem.

We are now ready to give the proof of Theorem 3.

Proof of Theorem 3. Since C and N has the same subdif-
ferential (see [37]) at X̄ = B̄C̄T it is clear that the di-
rectional derivatives C�

ΔX(X̄) = N �
ΔX(X̄) ≥ 0, where

ΔX = X̃ − B̄C̄T and rank(X̃) ≤ k. By convexity of
C it is then also clear that

B̄C̄T ∈ argmin
rank(X)≤k

C(X). (53)

Since rank(B̄C̄T ) < k, B̄C̄T is also the unrestricted global
minimizer of C(X) according to Lemma 3. By Lemma 3.1
of [43] it is then a stationary point of N (X).

What remains now is to prove that X̄ = B̄C̄T is a global
minimizer of N over all line segments X̄ + tΔX . This can
be done by estimating the growth of the directional deriva-
tives along such lines. For this purpose we consider the
functions G and H defined as in (30) and (31). Note that X̄
is a stationary point of N (X) = G(X)+H(X) if and only
if −∇H(X̄) = 2Z ∈ ∂G(X̄).

Since ∇H(X̄ + tΔX) − ∇H(X̄) = t∇H(ΔX) =
2t(A∗AΔX −ΔX) we have

�∇H(X̄ + tΔX)−∇H(X̄), tΔX� =
2t2(�AΔX�2 − �ΔX�2F ),

(54)

and due to RIP �AΔX�2−�ΔX�2F ≥ −δ2r�ΔX�2. From
Corollary 4.2 of [43] we see that for any 2Z � ∈ ∂G(X̄ +
tΔX) we have

�Z � − Z, tΔX� > t2δ2r�ΔX�2F , (55)

as long as t �= 0. Since G�
ΔX(X) =

max2Z∈∂G(X)�2Z,ΔX�, H �
ΔX(X) = �∇H(X),ΔX�

and 2Z +∇H �(X̄) = 0 we get

N �
ΔX(X̄ + tΔX) ≥ �2Z � +∇H(X̄ + tΔX),ΔX� > 0

(56)
This shows that X̄ solves (9). That X̄ also solves (10) is
now a consequence of the fact that R(X) ≤ µrank(X)
with equality if X have no singular values in the inter-
val (0,

√
µ]. Note that X̄ is the unrestricted minimizer

of C(X), where the singular values of Z fulfill σi(Z) /∈�
(1− δ2k)

√
µ,

√
µ

1−δ2k

�
. Since the solution to this problem is

hard thresholding X̄ has no singular values in
�
0,

√
µ

1−δ2k

�
⊃

(0,
√
µ].

For completeness we give the proofs that were previ-
ously omitted.

Proof of Lemma 1. With some abuse of notation we define
the function g : Rn → R by g(x) =

�n
i=1 g(xi), where xi,

i = 1, ..., n are the elements of x and g(x) = f(|x|) + x2.
The function g is an absolutely symmetric convex function
and G can be written G(X) = g ◦ σ(X), where σ(X) is
the vector of singular values of X . Then according to [39]
the matrix Y ∈ ∂G(X) if and only if Y = U � diag(∂g ◦
σ(X))V �T when X = U � diag(σ(X))V �T . (Here we use
the full SVD with square orthogonal matrices U � and V �.)
Now given a thin SVD X = UΣV T all possible full SVD’s
of X can be written

X =
�
U U⊥

� �Σ 0
0 0

� �
V T

V T
⊥

�
, (57)

where U⊥ and V⊥ are singular vectors corresponding to sin-
gular values that are zero. Note that U⊥ and V⊥ are not
uniquely defined since their corresponding singular values
are all zero. Therefore we get

Y =
�
U � U⊥

� �∂g(Σ) 0
0 D

� �
V �T

V T
⊥

�

= U �∂g(Σ)V �T + U⊥DV T
⊥ ,

(58)

where D is a diagonal matrix with elements in 2
√
µ[−1, 1].

It is clear that σ1(U⊥DV T
⊥ ) = σ1(D) ≤ 2

√
µ. Further-

more, since U⊥ and V⊥ can be any orthogonal bases of the
spaces perpendicular to the column and row spaces of X , it
is clear that any matrix M fulfilling UTM = 0, MV = 0
and σ1(M) ≤ 2

√
µ can be written M = U⊥DV T

⊥ , hence

∂G(X) = {U∂g(Σ)V T +M : σ1(M) ≤ 2
√
µ,

UTM = 0, MV = 0}.
(59)



Proof of Lemma 2. The gradients of G̃ are given by

∇BG̃(B,C) = ∇B(R̃(B,C)) +∇B(�BCT �2F ). (60)

For the first term we get

∇BiR̃(B,C) = f �
��Bi�2 + �Ci�2

2

�
Bi. (61)

With B = U
√
Σ and C = V

√
Σ we get

∇BR̃(B,C) = B



f �(σ1) 0 . . .

0 f �(σ2) . . .
...

...
. . .


 = Bf �(Σ),

(62)
which gives

∇BG̃(B,C) = Bf �(Σ) + 2BCTC = B(f �(Σ) + 2Σ).
(63)

For a non-zero σ we have ∂g(σ) = {f �(σ)+2σ} and there-
fore

∇BG̃(B,C) = B(∂G(Σ)), (64)

where g(X) = Rµ(X) + �X�2F . Similarly we get

∇CG̃(B,C) = C(∂G(Σ)). (65)

If (B,C) is a stationary point then

0 = B∂G(Σ) +∇H(BCT )C, (66)

0 = C∂G(Σ) + (∇H(BCT ))TB. (67)

The second equation can be re-written to the form stated in
the lemma.

B. Implementation Details
In this section we present some more details on our It-

eratively Reweighted VarPro approach. Recall that our ap-
proach consists of three main steps. In the first step we make
a quadratic approximation (20) of the regularization term
by replacing R̃(B,C) with

�k
i=1 w

(t)
i

�
�Bi�2 + �Ci�2

�
as

described in Section 4.
In the second step we apply one step of VarPro with the

Ruhe Wedin approximation, see [33] for details on the im-
plementation. VarPro uses Jacobians with respect to both
the B and C parameters. In our case we have two terms
that needs to be linearized. The regularization term can be
written

� diag(w(t))B�2F + � diag(w(t))C�2F , (68)

where diag(w(t)) is a diagonal matrix with the weights w(t)
i

in the diagonal. The residuals diag(w(t))B are already lin-
ear and by column stacking the varaibles we can write them

as J
reg
B b, where b is a column stacked version of B. If B

has k columns the matrix J
reg
B will consist of k copies of

the matrix diag(w(t)). Additionally, each row of J reg
B has

only one non-zeros element making the matrix extremely
sparse. Similarly, we obtain the contribution due to the
second bilinear factorC, which can be written as J

reg
C c.

Here we use c = vec(CT ), as it alleviates the computa-
tions of the data terms, hence J

reg
C consists of a k copies of

diag(w(t)) permuted to match this design choice. Given a
current iterate (b(t), c(t)) we write the regularization term
as �J reg

B δb+rB�2+�J reg
C δc+rC�2, where rB = J

reg
B b(t),

rC = J
reg
C c(t), b = b(t) + δb and c = c(t) + δc.

Linearizing the residuals ABCT − b around (b(t), c(t))
gives an expression of the form

Jdata
B δb+ Jdata

C δc+ rdata. (69)

The particular shape of the Jacobians in this expression de-
pends on the application; however, in all of our applications
they are sparse. For example, in the missing data problem
each residual corresponds to an element of the matrix X
which in turn only depends on k elements of B and C. Lo-
cally we may now write the objective function as

�JBδb+ JCδc+ r�2, (70)

where

JB =




J reg
B

0

Jdata
B


 , JC =




0
J reg
C

Jdata
C


 , r =




rB
rC
rdata


 . (71)

It was shown in [32] that each step of VarPro is equivalent
to first minimizing (70) with the additional dampening term
λ�δb�2 and then performing an exact optimization of (20)
over the C-variables (when fixing the B-variables to their
new values). Since we also have a reweighing we only do
one iteration with VarPro before updating the weights w(t).

The above procedure can return stationary points for
which R̃(B,C) > R(BCT ). Our last step is designed to
escape such points by taking the current iterate and recom-
pute the factorization of B̄C̄T using SVD. If the SVD of
B̄C̄T =

�r
i=1 σiUiV

T
i we update B̄ and C̄ to B̄i =

√
σiUi

and C̄i =
√
σiVi which we know reduces the energy and

gives R̃(B̄, C̄) = R(B̄C̄T ). Therefore we proceed by
refactorizing the current iterate using SVD in each iteration.
The detailed steps of the bilinear method are summarized in
Algorithm 1.

C. Additional Experiments on Real Data
C.1. pOSE: Psuedo Object Space Error

In this section we compare the energies over time for
ADMM optimizing the same energy [37], i.e. with the reg-
ularizer R, and f = fµ as in (8) (of the main paper), and



Input: Robust penalty function f , linear operator A and
regularization parameter µ, damping parameter λ.

Initialize B and C with random entries
while not converged do

Compute weights w(t) from current iterate (B,C)
Compute the vectorizations b = vec(B),
c = vec(CT )

Compute residuals rB rC , and Jacobians Jdata
B and

Jdata
B depending on A

Compute residual rreg, and Jacobians J reg
B and J reg

C

Create full residual r and Jacobians JB and JC

Compute J̃T J̃ + λI = JT
B (I − JCJ

+
C )JB + λI

Compute b� = b− (J̃T J̃ + λI)−1JBr and reshape
into matrix B�

Compute C� by minimizing (20) with fixed B�

if R(B�C�T ) + �A(B�C�T )− b�2 <
R(BCT ) + �A(BCT )− b�2 then

[U,Σ, V ] = svd(B�C�T )

Update B = U
√
Σ and C = V

√
Σ

Decrease λ

else
Increase λ

end
end

Algorithm 1: Outline of the bilinear method.

our proposed method. We let the bilinear method run until
convergence, and let ADMM execute the same time in sec-
onds. As a comparison we use the nuclear norm relaxation
and the discontinuous rank regularization. The results of the
experiment are shown in Figure 6.

Again, note that the bilinear method optimizes the same
energy as ADMM-Rµ, and that, despite the initial fast low-
ering of the objective value, the ADMM approach fails to
reach the global optimum, within the allotted 150 seconds.
This holds true for all methods employing ADMM. In all
experiments, the control parameter η = 0.5, and the µ pa-
rameter was chosen to be smaller than all non-zero singular
values of the best known optimum (obtained using VarPro).
For a fair comparison, the µ-value for the nuclear norm re-
laxation, was modified due to the shrinking bias, and was
chosen to be the smallest value of µ for which a solution
with accurate rank was obtained. Due to this modification,
the energy it minimizes is not directly correlated to the oth-
ers, but is shown for completeness. Furthermore, the itera-
tion speed of ADMM is significantly faster than for VarPro,
and therefore we show the elapsed time (in seconds) for
all methods. The reported values are averaged over 50 in-
stances with random initialization.

C.2. Background Extraction

The missing data problem formulation can also be used
in e.g. background extraction, where the goal is to separate

Figure 6. The average energy for the pOSE problem over 50 in-
stances with random initializations, for test sequence Door. (Note
that the energy for ADMM-Rank and ADMM-Rµ are very simi-
lar).

the foreground from the background in a video sequence.
For this experiment, security footage of an airport is used.
The frame size is 144× 176 pixels, and we use the first 200
frames, as in [30]. The camera does not move, hence the
background is static.

By concatenating the vectorization of the frames into a
matrix we expect it to be additively decomposable in terms
of a low rank matrix (background) and a sparse matrix (fore-
ground). We follow the setup used in [8], and crop the width
to half of the height, and shift it 20 pixels to the right after
100 frames to simulate a virtual pan of the camera. This in-
creases the complexity of the background, as it is no longer
static. Lastly, we randomly drop 70 % of the entries. To
allow for smaller singular values, we use Geman, as it is a
robust penalty with shrinking bias. The results are shown in
Figure 8.

Figure 7. Energy minimization comparison for the background ex-
traction experiment.

Initially ADMM struggles to find the correct balance be-
tween lowering the rank and fitting the data, which is seen
in Figure 7, where the objective is almost unaffected the first
forty seconds. At this point, the bilinear method has already
converged.

C.3. Photometric Stereo

Photometric stereo can be used for estimating depth and
surface orientation from images of the same object and view



Figure 8. Background extraction using Geman. Samples from frame no. 40, 70, 100, 130, 170 and 200. Top row: Original images. Middle
row: Training data with 70 % missing data. Bottom row: Reconstruction of background (bilinear method).

with varying lighting directions. Assuming M lighting di-
rections and N pixels define I ∈ �M×N , where Iij is the
light intensity for lighting direction i and pixel j. Assuming
Lambertian reflectance, uniform albedo and a distant light
source, I = LN , where L ∈ �M×3 contain the lighting
directions and N ∈ �3×N the unknown surface normals.
Thus, the resulting problem is to find a rank 3 approxima-
tion of the intensity matrix I .

We use the Harvard Photometric Stereo testset [19],
which contains images of various objects from varying
lighting direction. The images are scaled to 160× 125 pix-
els, and only the foreground pixels are used in the optimiza-
tion. Similar to [8], we introduce missing data by thresh-
olding dark pixels with pixel value less than 40 and bright
pixels with pixel value more than 205. The measurement
matrix is reconstructed using the bilinear method and the
ADMM equivalent with the Rµ regularization. The result
is shown in Figure 9. We let the bilinear method run un-
til convergence and let the ADMM equivalent run for the
same time in seconds, at which point the objective value is
still decreasing when ADMM is interrupted; however, the
reduction is almost negligible. In all cases ADMM fails to

converge to a low rank solution in the same time as the bi-
linear method, which yields a consistent result.



Figure 9. Images from the photometric stereo experiment. From left to right: (a) Ground truth image, (b) missing data mask with static
background (black), dark pixels (purple), bright pixels (yellow), (c) reconstruction using ADMM, and (d) reconstruction using the Bilinear
formulation.
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