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1. Network architecture
In this section, we give the implementation details of the
encoder-decoder network and the hourglass network dis-
cussed in Section 3.1 of our paper.

1.1. Encoder-decoder network

As shown in Figure 1, our encoder-decoder network con-
sists of two parts, the encoding part, and the decoding
part. The encoding part contains several depth-wise sepa-
rable convolutional layers [2] to extract the discriminative
features from the input image. Each depth-wise separable
convolutional layer consists of a depth-wise convolutional
layer, and a point-wise convolutional layer. The output fea-
ture map of the encoding module is ×4 downsampled com-
pared to the input image. The decoding part consists of
three decoding blocks. The first and second decoding block
consists of two plain convolutional layers. The third de-
coding block is implemented by stacked atrous multi-scale
(SAM) module proposed in [3]. Inspired by the U-Net ar-
chitecture [6], we concatenate the feature maps from the
encoding block to the decoding blocks. The exact design of
the encoding and the decoding blocks can be found in Table
1.

During the training, we uniformly quantize the input
continuous depth x with depth-range [α, β] into B bins in
the log scale. As shown in Eq. 1, the input continuous depth
x is quantized to discrete value b, B is the number of bins,
and q is the width of each bin.

b = round(log10(x)− log10(α))/q)

q = (log10(β)− log10(α))/B.
(1)

The soft classification loss Lcls mentioned in our paper
at Section 3.1 is calculated based on this quantized depth.
We use Adam optimizer with initial learning rate = 0.0001
to train our encoder-decoder network. The learning rate is
set to 0.00001 after 10 epochs.

1.2. Hourglass network

Our hourglass network follows a similar architecture as [1].
It consists of a series of convolutions based on inception [7]
module and downsampling, followed by a series of convo-
lutions and upsampling, interleaved with skip connections
that add back features from high resolutions. The symmet-
ric shape of the network resembles a ‘hourglass’. In Figure
2, we visualize the network design of our hourglass net-
work. Only the Block H is a convolution with 3× 3 filters,
while all other blocks are inception blocks, as given in Fig-
ure 3. Each inception block consists of four branches with
different filter size. The outputs of these four branches are
concatenated together. The exact design of these inception
blocks are detailed in Table 2.

We use use Adam optimizer with initial learning rate =
0.0005 to train our hourglass network. The learning rate
decays 10 times every 5 epochs.

2. Additional implementation details
In this section, we give more implementation details of
training our network with SUW-Learn on M&M dataset, as
well as on KITTI dataset.

2.1. KITTI datset

In Section 4.1 of our paper, we mentioned that the train-
ing of SUW-Learn framework on KITTI dataset utilized the
object-motion based unsupervised learning and patch-based
weakly supervised learning. Here we give more details of
these two modules.

2.1.1 Unsupervised learning with object motion

KITTI dataset doesn’t provide the extrinsic matrices for all
frames, so we use a pose estimation network to calculate
the camera motion and the object motion. When estimating
the camera motion, the whole input frames It−1, It, It+1
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Figure 1. Network architecture of the encoder-decoder network.

Table 1. Network architecture of the encoder-decoder network.‘s’ means stride, ‘d’ means dilation rate, ‘dw’ means depth-wise separable
convolutions. ‘convbn’ layer includes a convolutional layer, followed by a batch normalization layer. ‘SAM’ stands for ‘stacked atrous
multi-scale’ module [3].

Layers Output feature map size

Input 3×W ×H

Encoding block 1
convbn, 3× 3, 32, s2, d1

convbn, 3× 3, 64, s1, d1
64× 1

2
W × 1

2
H

Encoding block 2
[convbn, 3× 3, 64, s1, d1, dw]× 3

convbn, 3× 3, 128, s2, d1, dw
128× 1

4
W × 1

4
H

Encoding block 3
[convbn, 3× 3, 128, s1, d1, dw]× 3

convbn, 3× 3, 256, s1, d1, dw
256× 1

4
W × 1

4
H

Encoding block 4
[convbn, 3× 3, 32, s1, d2, dw]× 12

convbn, 3× 3, 256, s1, d1, dw
256× 1

4
W × 1

4
H

Encoding block 5
convbn, 3× 3, 256, s1, d1, dw

convbn, 1× 1, 128, s1, d1
128× 1

4
W × 1

4
H

Decoding block 1
convbn, 3× 3, 32, s1, d1

convbn, 3× 3, 32, s1, d1
32× 1

4
W × 1

4
H

Decoding block 2
convbn, 3× 3, 32, s1, d1

convbn, 3× 3, 32, s1, d1
32× 1

4
W × 1

4
H

Decoding block 3 SAM 32× 1
4
W × 1

4
H

Output layer
convbn, 3× 3, B, s1, d1

softmax,weighted sum
1× 1

4
W × 1

4
H

are utilized as input. When estimating the object motion,
the object-masked input frames It−1,m, It,m, It+1,m are uti-
lized as input. It,m is the RGB image of frame t masked
by aligned mth object. To obtain such object mask, we
use Mask-RCNN to generate the instance segmentation map
of KITTI images, and only consider persons, bicycles, and
cars since these objects will have different motion vectors
as the camera. In each of the 3-frame video clip used
for KITTI training, we align these objects among these 3
frames based on IoU (Intersection over Union). An object
is considered as aligned if
- There are three object masks (generated by Mask-RCNN)
with same object category appearing in frame t− 1, t, t+1

- The IoU between the object mask of frame t−1 and frame

t is higher than 0.3
- The IoU between the object mask of frame t and frame
t+ 1 is higher than 0.3
This mask generation and alignment procedure is applied
offline, so that it will not increase the training time.

When implementing the pose estimation network, we
also use an encoder-decoder network. The encoding part
shares the same weights as the depth estimation network1

given in Table 1. The decoding part consists of four
32 × 3 × 3 plain convolutional layers, and an additional
output layer to make the output size of the pose estimation
network to 6 dimensions (3 angles for rotation and 3 dis-

1The input channel of the first layer of the encoding part is different
since the pose estimation requires multiple time stamps as input.
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Figure 2. Network design of our hourglass network. The ⊕ sign denotes the element-wise addition. Blocks sharing the same color are
identical. The exact design of the blocks A to H can be found in Table 2.

Block Id A B C D E F G
#In/#Out 128/64 128/128 128/128 128/256 256/256 256/256 256/128
Inter Dim 64 32 64 32 32 64 32

Conv1 1x1 1x1 1x1 1x1 1x1 1x1 1x1
Conv2 3x3 3x3 3x3 3x3 3x3 3x3 3x3
Conv3 7x7 5x5 7x7 5x5 5x5 7x7 5x5
Conv4 11x11 7x7 11x11 7x7 7x7 11x11 7x7

Table 2. Implementation of the inception blocks in our hourglass network. Conv1 to Conv4 correspond to the Conv1 to Conv4 in Figure 3.
Conv2 to Conv4 share the same number of input and is specified in Inter Dim.

Figure 3. Inception blocks used in our hourglass network as shown
in Figure 2.

tances for translation).

2.1.2 Generate the weak depth label from semantic
mask

To generate the weakly depth label for KITTI dataset, we
use PSPNet [8] to obtain the semantic mask of KITTI train-
ing images. We adopt the following heuristic rules to extract
the weakly-labeled patch-pairs from semantic knowledge,
including

- The sky is farther than any other objects (see patch pair
A in Figure 4)

- The tree/building laying at the top-left/top-right of the
image is farther than the road/fence/grass laying at the
bottom-left/bottom-right of this tree/building (see patch pair
B1 and B2 in Figure 4)

Figure 4. Using semantic knowledge to generate weakly labeled
depth.

- The car/person/bicycle/traffic sign is farther than the
road laying at the bottom of this car/person/bicycle/traffic
sign (see pixel pair C in Figure 4)2

The above rules can be utilized in generating both the
pixel-based label, and our proposed patch based label when
the patch pair {x, y} comes from different semantic classes.
During the training, we randomly generate one pixel or
patch-pair from the pre-generated semantic mask for each
of the image in each iteration. The patch sizeW×H ranges
from 3× 3 to 9× 9.

2.2. M&M dataset

When training our hourglass network on this dataset, we
rescale all images to fix resolution of 320 × 240, and cor-
respondingly change its available ground truth (SfM depth)
and camera parameters (intrinsic or extrinsic). Since Man-
nequin Challenge (MC) dataset doesn’t provide ground

2The second and third rules are not correct in all the scenario. But these
rules are correct for the driving scenes in KITTI.
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truth depth maps, we use the COLMAP algorithm to gener-
ate SfM+MVS depth for MC images following all the depth
refinement steps as outlined in [4].

MegaDepth (MD) dataset only provides single frame im-
ages, so it is not possible to extract the camera and object
motion for unsupervised learning. Most of the Mannequin
Challenge (MC) images are indoor scenarios, which lacks
of the consistency ordinal depth relationship from the se-
mantic knowledge. When training with our SUW-Learn
framework on M&M dataset, we only calculate the unsu-
pervised loss for MC images, and the weakly supervised
loss for MD images. Since all the intrinsic and extrin-
sic matrices of MC images are given, we may calculate
the camera relative pose from these parameters of adja-
cent frames directly to calculate the unsupervised loss Lu

when training the SUW. In MC images, all the objects are
frozen, so that the object motion is consistent with cam-
era motion. Thus our unsupervised loss function is only
calculated based on the ego-motion as Lu = Lu,ego. We
follow a same way as the MD paper [5] to calculate our
weakly supervised loss Lw = Lw,pix based on the pixel la-
bels, since the MD dataset already provides the the official
foreground/background maps to generate these pixel-based
weak labels.

3. Additional experimental results

3.1. Ablation study on generating the weak depth
label

In this section, we give more analysis of our proposed
weakly supervised learning based on patch labels. Our pro-
posed patch-based label can be extracted based on two stra-
gies, from the same semantic class, or different semantic
classes. In Table 3, we train our encoder-decoder networks
with supervised learning and weakly supervised learning
(SW) by using different ways to generate the weak labels.
It can be seen that if we generate the patch-based label from
one of the above two strategies (row 4, row 5), the accuracy
is still better than using supervised learning only (row 2), as
well as the S+W with pixel-based weak label (row 3). If we
generate the patch-based label using two strategies together,
the accuracy is further improved, as given in row 6.

Another way to generate the weak depth label is ran-
domly sampling from the ground-truth depth (this is not
weakly supervised learning anymore). Since KITTI’s
ground-truth is very sparse, it is hard to extract two patches
with exact same number of labeled pixels. So we only gen-
erate the pixel-based labels with the closer/farther relation-
ship measured by the ground-truth absolute depth. It can
be seen that the accuracy (row 7) is still lower than our
patch-based label generated from semantic knowledge (row
6). The reason is that randomly sampling does not capture
any semantic information. The generated weak label will

be less discriminative. The above results validate the ef-
fectiveness of our weak label generation method based on
semantic knowledge.

3.2. Visualizations of our depth outputs

We give more visualizations of our estimated depth from
SUW-KITTI model in the supplementary video3, which
demonstrates that the more learning strategies we use, the
better depth estimation accuracy we may get. Using all the
supervised, unsupervised, and weakly supervised learning
together (SUW) can achieve the best accuracy.

In Figure 5, we give more results of our SUW-model
trained on M&M datasets when evaluating on wild images
downloaded from google. It can be seen that our network
also generalizes well on real-world scenarios. This indi-
cates that training on M&M dataset is an effective way to
obtain a depth estimation network with good generalization
ability.
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Table 3. Depth estimation accuracy of our encoder-decoder network with different ways to generate the weak labels on KITTI Eigen’s split.
‘same’ means that the two patches in our weak depth label come from same semantic class. The depth cap is 80m. The official ground-truth
is utilized for evaluation.

Method Learning Weak label Generation REL (%) RMSE (in meter)
Ours S - - 6.61 3.058
Ours SW pixel Diff 5.67 2.802
Ours SW patch Same 5.61 2.699
Ours SW patch Diff 5.49 2.601
Ours SW patch Same+Diff 5.17 2.478
Ours SW* pixel Random from gt 5.51 2.796

Figure 5. Some qualitative results on images from the wild. The sky region is masked out since sky doesn’t have any meaningful depth.
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