Supplementary Information: Probing for Artifacts

March 14, 2020

Figure 1: Shifted level curves from [1]]. Dashed blue are
solutions to .7, = {z : fr(x) — fa(x) — c(i) = 0}
where ¢(i) is a positive constant we call confidence to
be consistent with the language of Carlini and Wagner.
Dashed green lines are the original solution set to %), =
{z : fr(x) — fa(x) = 0} prior to introducing a constant.
Orange arrows are not necessarily equal length.

1 Modifications to DeepFool

In this section, we refer the reader to [[1]] for details of nota-
tion and methodology. A multi-label classifier perturbation
solution set examined by [1] (Equation 6) is:

argmin ||r||z s.t. 3k :
wi (xo + 7)+b), > wzz(wo)(fﬂo +7) + Ok(ao)>
)]

so that a perturbation is a valid solution to the proposed
DeepFool if the classifier has an evasive label change.
Please refer to[1] for details. The issue is that the true
arg minimum perturbation, that is to say the exact solution,
is usually very close to the decision boundary. DeepFool is
an iterative algorithm and [[1]] suggest using an overshoot
on the last iteration to avoid boundaries. We found that
approach worked well in floating-point precision but not
as well as unsigned byte RGB images.

We modify the original DeepFool equation to be solu-
tions of the form:

argmin ||r||z s.t. 3k :
Wi (€0 + 1) + b 2 W) (€0 + 1) + bag) + Cis
@

where notation is as in [[1]; however, we add a constant ¢;
to the criteria for a valid solution to the argument minimum.
We do not assume that there exists an 7 that is a solution to
this criteria, and to get around that limitation, we gradually
decrease c; in an upper bound M to 0 until a solution is
found. At ¢; = 0 this algorithm is the original DeepFool.
Compared to the original "overshoot on the last iteration,"
this method tries to be explicit about how far past a decision
boundary an overshoot should be by building it into the
solution set.

To make the algorithm run efficiently, we decay c¢; in
the DeepFool optimization loop. Decaying c; inside of
the DeepFool optimization loop makes solutions heuristics
and not necessarily the true Lo minimizing perturbation,
but we have observed that it works well in practice. The
schedule decay is a function with ¢g = ¢(0) = M and
some future iteration k such that for all i > k, ¢(i) = 0.
We scaled ¢() linearly from 0.10 to 0.0 over the 100 max
iterations of DeepFool.

The modified Algorithm 2 from [[1] is recorded here as

1001

Procedure (1] with logit(z, k(z)) being f () for the argmax
of an image . One important operational note on this
modified Procedure [Tlcomes from the lines 4 and 6 with
and without —c¢(¢) present in the algorithm. When —¢(%)
is present, the absolute value of the arg min is minimized
for classes that are near the “further away boundary,” and
when it is absent, the nearest decision boundary will do
just fine. The net effect is the algorithm heads towards
appropriate solutions to the modified acceptance criteria.
The modified acceptance criteria is gradually relaxed in
importance as the algorithm proceeds to guarantee the
stopping criteria can be achieved.

Our application of DeepFool was to create evasive per-
turbations to Imagenet model input. Images begin on
disk as JPEG. They are loaded into memory as RGB un-
signed bytes: b. They are resized to model resolution:
r = resize(b). They are transformed to model input:
a = preprocess(r). After transformation DeepFool is ap-
plied to create x, = g(z), where g(x) is the adversar-
ial evasion, and then the whole process is inverted, omit-
ting resize, reapplied, and adversarial status is rechecked.
r, = preprocess !(z,), the inverse of the model pre-
processing, still as float32. b, = castto ubyte(r,).
We were interested in b, that remained adversarial af-
ter the inverse and the cast to ubyte, so then we pro-
ceeded by re-examining the adversarial status of z!, =
g(preprocess(b,)). We found two pecularities with Deep-
Fool. First often |b, — cast to ubyte(r)| = 0, meaning that
the inverted adversarial image was exactly the same as the
resized image as unsigned bytes (L; = 0), and z/, failed
to remain evasive. It is worth noting that the cleverhans
implementation of DeepFool is fine, the x, float32 per-
turbed image is usually truly evasive, but only just barely,
and it the perturbation does not often remain evasive after
casting to 24-bit RGB.

2 Adversary Mean Distortions

The average RGB perturbation in successful adversarial
evasions is presented in Table[2} The smallest distortions
in this data set is on Resnet50 DeepFool with an average
per pixel channel change of 0.024. On the same model,
CWL2 created distortions 66x larger on average. The
probe model also failed to detect Resnet50-DeepFool at a
recall rates larger than a controlled FPR. This is unlikely to

be a coincidence. 0.024 is a very small average distortion.

Also, on average RGB L;-norm of evasive distortions
are larger on 10-class variants. This also makes intuitive
sense because more work has to be done by the adversary
to reach a reduced set of decision boundaries.

3 FC2 Ablation

We studied the impact of adding a second fully connected
(FC) layer prior to a softmax output. As indicated in we
were unable to show any advantage for the second layer.
The only surprising thing about that is the 2 FC layer model
has more capacity than the 1 FC layer model. Though, if it
were only a matter of adding more parameters to models,
then the largest model would always be state-of-the-art,
and experience teaches that is just not true. FC2 remains
an important contrast to adding MobileNet-v2 to the model
because in that case results were markedly improved for
having more capacity.

References

[1] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pas-
cal Frossard. Deepfool: a simple and accurate method to
fool deep neural networks. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
2574-2582, 2016.

1002

Procedure 1 Modified DeepFool

Input: Image @, classifier f and scheduled decay c(i).
Output: Perturbation 7.
1: while k(x;) = k(xo) or logit(z;, k(x;)) < logit(xg, k(o)) + c(i) do

2. for k(x) # k(xo) do

3: w}c — Afk(.’lll) - Afk(:co)(xi) .

4: fio 6 fe(@i) = fr(ao) (®i) — (i)

5: end for 1

6: l <— arg mlnk?&k(mo) m

"/
7o Ty |ff| S W,
|[wil]3

8: Tit1 < xT; + 15

9: 1—1+1

10: end while
DeepFool Succ. Succ. Tried 24-bit 24-bit
Algorithm Mean Std. Dev. Evasion Successful ~ Success

Iy Ly Evasion Rate

Baseline cleverhans 0.64 - 993 2 < 0.01
Modified M = 0.01 0.11 0.11 995 903 0.91
Modified M = 0.05 0.11 0.11 991 932 0.94
Modified M = 0.15 0.16 0.16 994 991 > 0.99

Table 1: DeepFool succcess rates after inverting the preprocess, casting the adversarial perturbation to unsigned byte,
and then reapplying model preprocessing. Images are 1000 random sampled Imagenet images from 10-classes. Each
row had its own random sample. Tried is less than 1000 images because some images were discarded due to being
greyscale or 4-color channels. The successes for unmodified reference cleverhans were 2 out of 993. The successses of
the modified cleverhans were 91% to 100% depending on initial value of 4. All applications of DeepFool utilized 100
iterations and an overshoot on the last iteration of 1.05.

1003

Algorithm Model Successful Success Mean L,
Evasion Rate
FGSM xception 7937 0.772 1.959
FGSM vggl6 10010 0.973 1.963
FGSM slice-10 vggl6 6104 0.593 1.969
FGSM resnet50 9850 0.958 1.961
FGSM inception-resnet-v2 5919 0.575 1.959
FGSM slice-10 inception-v3 2903 0.282 1.963
FGSM inception-v3 7994 0.777 1.960
DeepFool xception 10286 1.000 0.100
DeepFool vggl6 10286 1.000 0.054
DeepFool slice-10 vggl6 10286 1.000 0.349
DeepFool resnet50 10286 1.000 0.024
DeepFool inception-resnet-v2 10286 1.000 0.183
DeepFool slice-10 inception-v3 10286 1.000 0.226
DeepFool inception-v3 10286 1.000 0.089
CWL2 xception 10286 1.000 1.594
CWL2 vgglo 10245 0.996 1.559
CWL2 slice-10 vggl6 8555 0.832 2.459
CWL2 resnet50 10092 0.981 1.602
CWL2 inception-resnet-v2 10286 1.000 1.840
CWL2 slice-10 inception-v3 10286 1.000 2.690
CWL2 inception-v3 10286 1.000 1.655

Table 2: Success rates and mean perturbation sizes for select training adversarial images. Number training images
attempted by each algorithm and model combination (row) is 10286. An adversary is considered successful only if the
pre-processing of the 24-bit RGB is evasive to the former top-1 label. FGSM is parameterized with € = 2.0. DeepFool
is modified with confidence parameter M/ = 0.10 decaying over 100 iterations, and Carlini-Wagner L2 has confidence
parameter 0.10 with a learning rate of 0.001. Mean L;-norm is on unsigned bytes (24-bit) RGB images. It is a mean
over successful evasions of mean distortion per image. Slice-10 is the 10-class Imagenet models created by slicing

logits prior to softmax.

1004

model FPR FGSM CWL2 conf.=0.1 DeepFool conf.=
e=2.0 0.1
xception-probe-16-FC1 0.01 0.92 0.43 0.13
xception-probe-16-FC2 0.01 0.91 0.43 0.12
xception-probe-32-mobilenet-v2 0.01 0.92 0.46 0.18
xception-probe-16-FC1 0.05 0.99 0.56 0.32
xception-probe-16-FC2 0.05 0.97 0.55 0.29
xception-probe-32-mobilenet-v2 0.05 0.98 0.58 0.40
xception-probe-16-FC1 0.10 1.00 0.65 0.45
xception-probe-16-FC2 0.10 099 0.63 0.43
xception-probe-32-mobilenet-v2 0.10 0.99 0.65 0.50
xception-probe-16-FC1 0.20 1.00 0.75 0.60
xception-probe-16-FC2 0.20 1.00 0.73 0.59
xception-probe-32-mobilenet-v2 0.20 1.00 0.75 0.65

Table 3: Ablation results for Xception probe model. The FC2 classifier has no advantage over FC1 in many scenarios.
The K = 32 probe into a mobilenet is more powerful than the lower capacity models for difficult to detect perturbations
such as DeepFool which on average were an order of magnitude smaller than CWL2. DeepFool averages less than a 1
unit RGB change per pixel. This table justifies the claim that a confidence parameterized DeepFool is very difficult to
detect. It uses an order of magnitude less L; difference to accomplish evasion compared to CWL2.

Name Sequential Operations on r Description
Model-Probe-K-FC Dense(512, activation=ReLU) Minimal probing into a dense clas-
BatchNormalization() sifier as in Figure ??.

DropOut(rate=0.50)
Dense(2, activation=ReLU)

Softmax()
Model -Probe-K-FC2 Dense(512, activation=ReLU) Probing followed by 2 dense activa-
BatchNormalization() tions.

DropOut(rate=0.50)
Dense(512, activation=ReLU)
Dense(2, activation=ReLU)

Softmax()

Model -Probe-32-MobileNet-v2 Reshape(N, K, 1) 32 unit probing followed by reshape
MobileNet-v2(ar = 1.0) into image like input into unlocked
Dense(512, activation=ReL.U) MobileNet-v2 for convolution arti-
BatchNormalization() fact detection.

DropOut(rate=0.50)
Dense(2, activation=ReL.U)
Softmax()

Table 4: Subsequent classifier construction on 7 probed features constructed by concatenating f;(v;|6;, K).

1005

Name Probed Trainable Non- Total

Layers (N) Params Trainable Params
Params
xception-probe-8 FC 91 1605306 21108360 22713666
xception-probe-16 FC 91 2962194 21108360 24070554
xception-probe-16 FC_2 91 3224850 21108360 24333210
xception-probe-32-mobilenet-v2 91 7043842 21122632 28166474
resnet50-probe-32-mobilenet-v2 121 7252270 23861068 31113338
inception-v3-probe-32 mobilenet-v2 216 6676290 22042080 28718370

Table 5: Probe model counts of probed layers and parameters. The name contains the probe dimension K. For example,
xception-probe-16-fc is a locked Xception model with probes with output dimension K=16 into a fully connected dense
classifier.

1006

