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1. Gradient computation of the Grassmann
Log Map

In this document, we present a derivation of the gradient
of the log map for the Grassmann manifold G(d,m). For
that, we utilise various conventional techniques to operate
differential forms [1].

Given the data and the loss gradient ∇HL = Ḣ , we
compute the gradients with respect to the tangency point and
data.

The Grassmann log consists of the three equations below:

B = (K>X)−1(K> −K>XX>), (1)

WΘZ> = B>, (2)

LogK X = H = W ∗ arctan(Θ∗)Z∗>, (3)

where W ∗,Θ∗,Z∗ represent the matrices with the first m
columns of W ,Θ and Z∗ respectively. It should be noted
that equation 2 is the transposed SVD of B. The differential
of the expression 3 may be written as:

H =W ∗ arctan(Θ∗)Z∗> = W ∗SZ∗>, (4)

dH =dW ∗SZ∗> +W ∗dSZ∗> +W ∗SdZ∗>. (5)

Above, we performed the change of variables S =
arctan(Θ∗). This contains an element-wise differential,
simple to compute:

dS = ΩdΘ, (6)

where Ωi = 1/(1 + Θ2
i ) is a diagonal matrix and i =

1, . . . , d iterates over the diagonal. Since W ∗ is an orthogo-
nal matrix, W ∗>dW ∗ is skew-symmetric. This constraint
leads to Townsend’s solution [2] for equation 5. We use
this result and reverse the change of variables to obtain the
update equations for each variable:

Ẇ ∗ = W ∗(F ◦ [W ∗>ḢZ∗ arctan(Θ∗)

+ arctan(Θ∗)Z∗>Ḣ>W ∗]

+ (I −W ∗W ∗>)ḢZ∗ arctan(Θ∗)−1). (7)

Θ̇∗ = I ◦ [W ∗>ḢZ∗]Ω−1 (8)

Ż∗ = Z∗(F ◦ [arctan(Θ∗)W ∗>ḢZ∗

+Z∗>Ḣ>W ∗ arctan(Θ∗)])

+ (I −Z∗Z∗>)Ḣ>W ∗ arctan(Θ∗)−1. (9)

◦ represents the Hadamard product, and I represents the
identity matrix. F is a matrix of the form:

Fij =

{
1/(arctan2(Θj)− arctan2(Θi)), i 6= j

0, i = j.
(10)

The results Ẇ ∗, Θ̇∗ and Ż∗ are m-leftmost matrices, so
to continue back to the full matrix gradients we can fill in
columns of zeros until the matrices become square, where
then we write then as Ẇ , Θ̇ and Ż. Then, the next step is to
consider the equation WΘZ> = B>. Since it is a recon-
struction rather than a decomposition, its update equation
can be obtained as:

Ḃ> = [W (F ◦ [W>Ẇ − Ẇ>W ])Θ

+ (I −WW>)ẆΘ−1]Z>

+W (I ◦ Θ̇)Z> +W [Θ(F ◦ [Z>Ż − Ż>Z])Z>

+Θ−1Ż>(I −ZZ>)], (11)

where F follows equation 10, but the non-diagonals are
defined as 1/(Θ2

j −Θ2
i ).
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Finally we consider the equation B> =
(X>K)−1(X> − X>KK>). We transpose it and
call A = (X> −X>KK>) and C = (X>K)−1, then
derivate it by the product rule, massaging the equation to
obtain a general form:

dB =dAC +AdC (12)

dA =dX − (dKK>X +KdK>X +KK>dX)
(13)

dC =− (K>X)−1(dK>X +K>dX)(K>X)−1

(14)

We obtain two update rules, one to from dB with respect
to X in case a gradient-based pre-processing needs it, and
one with respect to K to update it as a parameter. The
derivative with respect to X is calculated as follows. First
we consider dK = 0:

dB = (X − (dKK>X +KdK>X

+KK>dX))C +A(−(K>X)−1(dK>X

+K>dX +K>dX)(K>X)−1) (15)

dB = (I −KK>)dX(K>X)−1

−A(K>X)−1K>dX(K>X)−1 (16)

dB = (I−KK>−A(K>X)−1K>)dX(K>X)−1

(17)

Then, since our loss function outputs a single real value,
we can massage the equations to a canonical form dL =
tr Ḃ>dB:

dL = tr Ḃ>((I −KK>

−A(K>X)−1K>)dX(K>X)−1), (18)

which leads to the final update equation for the gradient of
X:

Ẋ = (K>X)−1Ḃ>[(I−KK>)(I−X(K>X)−1K>].
(19)

Repeating the same technique, the update equation for K
can be derived as:

K̇ = −(K>X)−1Ḃ>[K>X

+K>X> + (X>K)−1X>(I −KK>)]. (20)
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