
An Evaluation of Objective Image Quality Assessment for
Thermal Infrared Video Tone Mapping

[Supplementary Material]

Michael Teutsch1, Simone Sedelmaier1,2, Sebastian Moosbauer1, Gabriel Eilertsen3, Thomas Walter2

1 Hensoldt Optronics GmbH, Oberkochen, Germany
{michael.teutsch, simone.sedelmaier, sebastian.moosbauer}@hensoldt.net

2 Ulm University of Applied Sciences, Germany 3 Linköping University, Sweden
thomas.walter@thu.de gabriel.eilertsen@liu.se

Abstract

In this supplementary material, we show details about
the systematic image degradation performed to quantita-
tively evaluate the IQA measures presented in the main
manuscript. Furthermore, we present pseudo code for the
four considered IQA measures to provide more insight into
the evaluation procedure and the pre-processing. Finally,
we show some details about training the deep learning
based TMO approach.

1. Degraded Images for IQA Evaluation
An overview of the applied artificial image degrading

techniques used to evaluate the IQA measures is given in
Fig. 1 (a-e). For over-/underexposure, we use clipping in a
way that we bring more and more pixels to saturation. Clip-
ping for loss of contrast (Fig. 1 (c)) is used vice versa so
that image contrast gets lost. The example images for blur
and noise speak for themselves. The temporal coherence
measure is evaluated using artificial flickering as shown in
Fig. 1 (e). We clip the image with random clipping direction
to either enforce more saturation or reduced contrast.

2. IQA Measures Pseudo Code
In this section, the pseudo code for the four considered

evaluation measures exposure, contrast, noise visibility and
temporal incoherence is presented.

2.1. Over-/Underexposure Measure

The tone mapped 8-bit images are read in as grayscale
images. Algorithm 1 describes the histogram based calcu-
lation of the fraction of underexposed and overexposed pix-
els. Then, the values are averaged over all images and at the

Algorithm 1: Exposure measure
Input: set of sequences with tone mapped images

sT = {s1T , s2T , s3T , ...}
1 Function exposure(sT){
2 for i← 1 to |sT | do
3 for j ← 1 to |siT | do

// calculate histogram
4 hist← histogram(Tj)

// underexposed pixels
5 under exp pix← under exp pix +∑

hist[0:0.02]∑
hist · 100

// overexposed pixels
6 over exp pix← over exp pix +∑

hist[0.95:end]∑
hist · 100

7 end
// calculate average

8 under exp[i]← under exp pix
|siT |

9 over exp[i]← over exp pix
|siT |

10 end
// average over all sequences

11 under exp all←

|sT |∑
i=1

under exp[i]

|sT |

12 over exp all←

|sT |∑
i=1

over exp[i]

|sT |
13 }
14 return under exp all, over exp all

end over all sequences. On this basis, the standard deviation
can then be calculated.

(a) over-/underexposure - clipping (0, 0.15, 0.3, 0.45)

(b) loss of contrast - Gaussian blur (0.0, 1.1, 2.0, 3.0)

(c) loss of contrast - clipping (0, 0.15, 0.3, 0.45)

(d) noise visibility - noise (no noise, Poisson noise, Gaussian noise sigma 0.03 and 0.17)

(e) temporal coherence - flickering by random clipping with maximum value 0.3

Figure 1. Overview of the artificial image quality degrading techniques used to evaluate the IAQ measures.

2.2. Loss Of Contrast

Algorithm 2: Local contrast measure
Input: set of sequences with HDR images

sL = {s1L , s2L , s3L , ...} and tone mapped
images sT = {s1T , s2T , s3T , ...}

1 Function contrast local(sL, sT){
2 for i← 1 to |sT | do
3 for j ← 1 to |siT | do

// local contrast LDR
4 c1T ← Fbi(Tj)
5 c2T ← Tj − c1T
6 c3T ← c3T + mean(Lj · |c2T |)

// local contrast HDR
7 c1L ← Fbi(Lj)
8 c2L ← Lj − c1L
9 c3L ← c3L + mean(Lj · |c2L |)

10 end
// sequence’s mean values

11 cT [i]← c3T
|siT |

12 cL[i]← c3L
|siT |

13 temp[i]← cT [i]− cL[i]

14 end
// average over all sequences

15 measure←

|sT |∑
i=1

temp[i]

|sT |
16 }
17 return measure

We first discuss the different pre-processing steps de-
pending on the input format. Considering HDR images in
EXR format, they are read in as grayscale images with any
bit depth. Afterwards, these images are converted to 32-bit
single precision floating point format. The next step is to
remove all negative and zero values of the HDR image, so
that a transformation into the log domain can be applied.
If the HDR images are in TIFF format, the pre-processing
also includes reading in as grayscale images. The images
are then available in 16-bit unsigned integer format. After-
wards, a conversion into the 32-bit single precision floating
point format takes place and the images are normalized. For
16-bit images, the normalization is done by a division with
216 = 65, 535 and for 14-bit images with 214 = 16, 383.
Finally, all negative and zero values are removed before the
images are transformed into the log domain.

The tone mapped images are read in as grayscale images
and are then available in 8-bit unsigned integer format, since
they are stored as TIFF or PNG. The conversion of the im-
ages is also done in the 32-bit single precision floating point
format, so that the HDR and tone mapped LDR images are
in the same format before they get processed with the con-

Algorithm 3: Global contrast measure
Input: set of sequences with HDR images

sL = {s1L , s2L , s3L , ...} and tone mapped
images sT = {s1T , s2T , s3T , ...}

1 Function contrast global(sL, sT){
2 for i← 1 to |sT | do
3 for j ← 1 to |siT | do

// global contrast LDR
4 g1T ← Fg(Tj)
5 g2T ← g1T · g1T
6 g3T ← Fg(Tj · Tj)
7 g4T ←

√
g3T − g2T

8 gT ← gT + mean(g4T)
// global contrast HDR

9 g1L ← Fg(Lj)
10 g2L ← g1L · g1L
11 g3L ← Fg(Lj · Lj)
12 g4L ←

√
g3L − g2L

13 gL ← gL + mean(g4L)

14 end
// sequence’s mean values

15 cT [i]← gT
|siT |

16 cL[i]← gL
|siT |

17 temp[i]← cT [i]− cL[i]

18 end
// average over all sequences

19 measure←

|sT |∑
i=1

temp[i]

|sT |
20 }
21 return measure

trast measure. Subsequently, the tone mapped images are
normalized with 28 = 255 as they are saved as 8-bit im-
ages. The last step involves removing all negative and zero
values, so that the transformation into the log domain can
take place. In addition, a gamma correction with γ = 2.2 is
performed for the tone mapped images.

The implementation design of the local contrast measure
is represented in Algorithm 2 using the bilateral filter func-
tion Fbi. For the diameter of each pixel neighborhood used
during filtering, a diameter is calculated from the value of
σsp = 10. σc of the bilateral filter is set to 0.2. The loss
of local contrast is finally the average of all images in a se-
quence and then averaged over all sequences.

Algorithm 3 describes the implementation of the global
contrast measure using the Gaussian filter function Fg . The
kernel size is defined with a width and height of 9 and the
standard deviation in horizontal direction is set to 3. Con-
sequently, the standard deviation in vertical direction is also
3. As with local contrast, all images in a sequence are aver-

aged and finally all sequences are averaged.

2.3. Noise Visibility Measure

Algorithm 4: Noise visibility measure
Input: set of sequences sL, sT , sL̂, sT̂

1 Function noise visibility(sL, sT , sL̂, sT̂){
2 for i← 1 to |sT | do
3 for j ← 1 to |siT | do
4 if HDR image format =̂ exr then
5 Do read reference HDR image Lj
6 L← Lj

max(L)

7 Do read test HDR image L̂j
8 L̂← L̂j

max(L̂j)

9 end
10 if HDR image format =̂ tif then
11 Do read reference HDR image Lj
12 L← Lj

65535

13 Do read test HDR image L̂j
14 L̂← L̂j

65535

15 end
16 Do read reference tone mapped image

Tj
17 T ← Tj

255

18 Do read test tone mapped image T̂j
19 T̂ ← T̂j

255
// get metric Θ

20 ΘHDR ← hdrvdp(30 · L̂, 30 · L,
’luminance’, 30)

21 ΘTM ← hdrvdp(30 · T̂ , 30 · T ,
’luminance’, 30)
// noise visibility

22 n← n+ (ΘHDR −ΘTM)

23 end
24 temp[i]← n

|siT |

25 end

26 measure←

|sT |∑
i=1

temp[i]

|sT |
27 }
28 return measure

Algorithm 4 describes the implementation of the noise
visibility measure. If the input HDR images are available
in the EXR format, they can be read in for example with
the help of the HDR Toolbox provided by Banterle et al.
[1]. Afterwards, the images are normalized with their indi-
vidual maximum value. For HDR images in the TIFF for-
mat, a standard function can be used to read them in. The
HDR images get converted from 16-bit unsigned integer to

double and normalized with 65,535 or 16,383 depending
on their bit depth. In the same way, the tone mapped im-
ages are converted from 8-bit unsigned integer to double
and normalized with 255, so that the values are between
0 and 1. The HDR-VDP metric offers several options as
to how the input images can be interpreted. For grayscale
images, the option luminance is chosen, which identi-
fies images that contain absolute luminance values and ex-
actly one color channel. Other options are for example
sRGB-display, which should be used if the color encod-
ing is adapted for standard LDR color images, where the
maximum pixel value must be 1 and not 256. Furthermore,
the option rgb-bt.709 is used to adjust the color encod-
ing for HDR images. After the noise visibility has been
calculated, the mean value of all images in a sequence and
finally of all sequences is calculated.

2.4. Temporal Incoherence Measure

Again, we first discuss the different pre-processing steps
depending on the input format. If the HDR image format
is the EXR format, they can be read with the help of the
HDR Toolbox provided by Banterle et al. [1]. Images with
the standard formats like TIFF can be read in with a stan-
dard function. Subsequently, the HDR images are converted
to double, normalized to an interval of [0, 1] and converted
to grayscale images. The tone mapped images are read in
like the HDR images, but an additional gamma correction
is performed. By definition, the input of the temporal in-
coherence measure is a stack of images. For this evalua-
tion framework, the temporal radius of the neighborhood
of each image pair to be considered is set to 5. Therefore,
the inputs of the measure are 11 image pairs. As a sec-
ond pre-processing step, the images are transformed into
the log domain. To do this, all negative and zero values of
the images have to be removed as otherwise the logarithm
is not defined. The image stacks are then the basis to cal-
culate the global and local temporal incoherence measure
independently of each other.

Algorithm 5 shows the calculation of the global incoher-
ence coefficient. The input is a stack of HDR images and
their corresponding tone mapped images. If each stack con-
tains eleven images, the variable d is defined with 5. For
the local incoherence measure the same succession is per-
formed, but the calculations are done elementwise as de-
scribed above.

3. Training the TMO DCNN
The described deep learning framework based on the

Context Aggregation Network (CAN24 AN) architecture
and model provided by Chen et al. [2] is pre-trained only
with 8-bit visual-optical images. Therefore, additional
training with IR data is necessary. We use the original train-
ing code provided with the paper. However, it has to be no-

Algorithm 5: Global temporal incoherence
Input: paths to HDR images and tone mapped

images
1 Function

global incoherence measure(HDR stack,
TM stack){

2 d← b stack size2 c

3 µL ←

 µL−d

...
µLd

, µT ←

 µT−d

...
µTd


4 X ←

(
−d · · · d

)
5 wL ←

t+d∑
k=t−d

µT
L·X

X·XT , wT ←

t+d∑
k=t−d

µT
T ·X

X·XT

6 K ←


1

2d+1
...
1

2d+1


7 yL ← wL ·X +

t+d∑
k=t−d

K · µL,

yT ← wT ·X +
t+d∑

k=t−d
K · µT

8 t̂L ← µL − yTL , t̂T ← µT − yTT

9 σ2
L ←

t+d∑
k=t−d

K · (t̂L)2,

σ2
T ←

t+d∑
k=t−d

K · (t̂T)2

10 t̃L ← t̂L·σT

σL

11 tL ← 0.25 ·XT + t̃L,
tT ← 0.25 ·XT + t̂T

12 q1 ←
t+d∑

k=t−d
K · (tL)2

13 q2 ←
t+d∑

k=t−d
K · (tT)2

14 q3 ←
t+d∑

k=t−d
K · tL · tT

15 cfglobalLT ← 1−max
(

0, q3√
q1·q2

)
16 }
17 return cfglobalLT

ticed that this network shows boundary artifacts (Fig. 3 af-
ter epoch 10), which is also illustrated in the paper of Wu et

Table 1. FLIR dataset [4] split into training, validation, and test.
Set #Frames Resolution

Train 8,862 640× 512
Val 1,366 640× 512
Test 4,224 640× 512

Figure 2. Loss curve of the training and the validation loss for
the DCNN based approach [2] trained on the FLIR training sub-
dataset [4]. Both curves converge well. This shows that our DCNN
does not suffer from overfitting even after epoch 180.

al. [5]. A further development of the CAN24 AN model
is provided by Wu et al., but for the operator of multiscale
tone manipulation (which is the considered task closest to
tone mapping) their network shows worse results compared
to the CAN24 AN, which is why it is not further investi-
gated in this paper.

The FLIR dataset with the training, validation and
test split described in Table 1 is used for training the
CAN24 AN model [2] with a learning rate of 0.001. We
train for 180 epochs and the loss curve is shown in Fig. 2.
Figure 3 shows example images after epoch 10, after epoch
125, and after epoch 180, and processed with the reference
TMO [3]. After epoch 10, boundary artifacts and halos are
visible which disappear after epoch 125. Noise is further
reduced between epoch 125 and 180. In general, the ex-
ample image is still noisy after epoch 180, but this is also
the case with the image processed with the reference TMO.
The contrast enhancement between the epochs can be seen
on the wheels close to the right image border.

It could be expected that the processing time decreased
when using the DCNN for tone mapping instead of the ref-
erence TMO as stated by Chen et al. [2] or Wu et al. [5].
However, we did not evaluate the runtime and we did not
try to optimize the DCNN in any way using quantization or
pruning techniques for example.

Reference TMO [3]After Epoch 180After Epoch 125After Epoch 10

Figure 3. Evolution of the DCNN’s [2] TMO quality during transfer learning along the epochs. The clearly visible halos after epoch 10
disappear after epoch 125. However, noise is still more visible compared to the reference TMO. This gets better after epoch 180. Training
is stopped after epoch 180.

References
[1] Francesco Banterle, Alessandro Artusi, Kurt Debattista, and

Alan Chalmers. Advanced high dynamic range imaging. AK
Peters/CRC Press, 2017. 4

[2] Qifeng Chen, Jia Xu, and Vladlen Koltun. Fast image process-
ing with fully-convolutional networks. In IEEE ICCV, 2017.
4, 5, 6

[3] Gabriel Eilertsen, Rafał K. Mantiuk, and Jonas Unger. Real-
time noise-aware tone mapping. ACM Transactions on Graph-
ics (TOG), 34(6):198:1–198:15, 2015. 5

[4] FLIR Systems. FREE FLIR Thermal Dataset for Algo-
rithm Training. https://www.flir.com/oem/adas/
adas-dataset-form/. [Accessed 8 March 2020]. 5

[5] Huikai Wu, Shuai Zheng, Junge Zhang, and Kaiqi Huang. Fast
end-to-end trainable guided filter. In IEEE CVPR, 2018. 5

https://www.flir.com/oem/adas/adas-dataset-form/
https://www.flir.com/oem/adas/adas-dataset-form/

