
LIDIA: Lightweight Learned Image Denoising with Instance Adaptation
(Supplementary material)

Gregory Vaksman
Department of Computer Science,
Technion Institute of Technology

Technion City, Haifa 32000, Israel
grishav@campus.technion.ac.il

Michael Elad
Google Research

Mountain-View, California
melad@google.com

Peyman Milanfar
Google Research

Mountain-View, California
milanfar@google.com

1. Multi-Scale Patches
In Section 2.2 of our paper we describe the two scales

used in handling the image patches. A visualization of the
corresponding 1st and 2nd scale patches is depicted in Fig-
ure (1) , showing how the two are aligned.

Figure 1: Visualization of the corresponding 1st and 2nd

scale patches: Blue dots are the processed image pixels; the
green square is a 1st scale patch, while the red square is its
corresponding 2nd scale patch. Both are of size 7×7 pixels.

2. Network Architecture
Section 2.3 of our paper presents the architecture of the

proposed filtering network. In this section we bring visual-
ization of some elements of its architecture.

Figure 2 schematically shows concatenation of two TRT
blocks. Since concatenation of two SL layers can be re-
placed by a single effective SL, due to their linearity, we
remove one SL layer in any concatenation of two TRT-s.
The TRT component without the second transform is de-
noted by TR, and when concatenating k TRT-s, the first
k − 1 blocks should be replaced by TR-s.

Another component of the filtering network, Aggrega-
tion block (AGG), is depicted in Figure 3. This block

Figure 2: Concatenation of two TRTs: One SL layer is re-
moved due to linearity, converting the first TRT into TR.

Figure 3: Aggregation (AGG) block.

imposes consistency between overlapping patches {zi} by
combining them to a temporary image xtmp using plain av-
eraging, and extracting them back from the obtained image.
Sizes of the network layers are listed in Tables 1 and 2.

3. Denoising with Known Noise Level
In this section we bring additional examples of denoising

results. Figures 6, 7, 8 and 9 present examples of denois-
ing results. Since our architecture is related to both BM3D
and NLNet, we focus on qualitative comparisons with these
algorithms. For all noise levels our results are significantly
sharper, contain less artifacts and preserve more details than
those of BM3D. In comparison to NLNet, our method is
significantly better in high noise levels due to our multi-
scale treatment, recovering large and repeating elements, as
shown in Figure 6p. In fact our algorithm manages to re-
cover repeating elements better than all methods presented
in Figure 6 except NLRN. In addition, in cases of high noise
levels, the multi-scale treatment allows handling smooth ar-
eas with less artifacts than NLNet, as one can see from the
results in Figure 7p and 7o. In medium noise levels, our al-
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TR0 TBR1 Tpre TRpost
TBR2 TBR3 T4

TR
(2)
0 TBR

(2)
1 T

(2)
pre TR

(2)
post

W1 49× 64 64× 64 64× 49 49× 64 64× 64 64× 64 64× 49

W2 14× 14 14× 14 14× 1 1× 14 56× 56 56× 56 56× 1

Table 1: Size of the network layers for grayscale image denoising

TR0 TBR1 Tpre TRpost
TBR2 TBR3 T4

TR
(2)
0 TBR

(2)
1 T

(2)
pre TR

(2)
post

W1 75× 80 80× 80 80× 75 75× 80 80× 80 80× 80 80× 75

W2 14× 14 14× 14 14× 1 1× 14 56× 56 56× 56 56× 1

Table 2: Size of the network layers for color image denoising

gorithm recovers more details, while NLNet tends to over-
smooth the recovered image. For example, see the Elephant
skin in Figure 8 and the mountain glacier in Figure 9.

Figures 10, 11 and 12 present examples of denoising re-
sults for color images that show that our method, C-LIDIA,
handles low frequency regions better than CBM3D and
CNLNet, due to its multi-scale treatment.

4. Comparison between LIDIA and LIDIA-S
This section presents visual comparison between LIDIA

(our regular architecture) and LIDIA-S (a further simplified
version of our architecture) denoising results. Examples de-
picted in Figure 13 show that the visual quality gap between
the two is marginal.

5. Network Adaptation
Figure 4 presents a graph of the PSNR (denoising perfor-

mance) vs. the number of adaptation training epochs. This
graph corresponds to the text image adaptation experiment
using a single training image. As can be seen, after 3 epochs
we get a 2.8dB improvement. Continuation of this training
leads to more than 4dB performance boost.

Still on the same topic, Figure 5 shows the training im-
ages used for the external adaptation experiments, and Fig-
ure 14 presents example of external adaptation for an as-
tronomical image. Table 3 contains values of minimum,
maximum and median improvement achieved by internal
adaptation on Urban100 and BSD68 image sets.

Code that reproduces results reported in the article will
be realised soon.
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(a) Original (b) Noisy with σ = 50 (c) DnCNN [6]
PSNR = 25.56dB

(d) BM3D [3]
PSNR = 24.99dB

(e) NLRN [5]
PSNR = 26.11dB

(f) TNRD [1]
PSNR = 25.07dB

(g) NLNet [4]
PSNR = 25.21dB

(h) LIDIA (ours)
PSNR = 25.60dB

(i) Original (j) Noisy (k) DnCNN (l) BM3D

(m) NLRN (n) TNRD (o) NLNet (p) LIDIA (ours)

Figure 6: Denoising example with σ = 50.



(a) Original (b) Noisy with σ = 50 (c) DnCNN [6]
PSNR = 23.95dB

(d) BM3D [3]
PSNR = 23.36dB

(e) NLRN [5]
PSNR = 24.22dB

(f) TNRD [1]
PSNR = 23.61dB

(g) NLNet [4]
PSNR = 23.63dB

(h) LIDIA (ours)
PSNR = 23.91dB

(i) Original (j) Noisy (k) DnCNN (l) BM3D

(m) NLRN (n) TNRD (o) NLNet (p) LIDIA (ours)

Figure 7: Denoising example with σ = 50.



(a) Original (b) Noisy with σ = 15 (c) DnCNN [6]
PSNR = 32.32dB

(d) BM3D [3]
PSNR = 31.70dB

(e) NLRN [5]
PSNR = 32.47dB

(f) TNRD [1]
PSNR = 32.05dB

(g) NLNet [4]
PSNR = 32.14dB

(h) LIDIA (ours)
PSNR = 32.30dB

(i) Original (j) Noisy (k) DnCNN (l) BM3D

(m) NLRN (n) TNRD (o) NLNet (p) LIDIA (ours)

Figure 8: Denoising example with σ = 15.



(a) Original (b) Noisy with σ = 25 (c) DnCNN [6]
PSNR = 24.47dB

(d) BM3D [3]
PSNR = 23.81dB

(e) NLRN [5]
PSNR = 24.58dB

(f) TNRD [1]
PSNR = 24.14dB

(g) NLNet [4]
PSNR = 24.12dB

(h) LIDIA (ours)
PSNR = 24.38dB

(i) Original (j) Noisy (k) DnCNN (l) BM3D

(m) NLRN (n) TNRD (o) NLNet (p) LIDIA (ours)

Figure 9: Denoising example with σ = 25.



(a) Original (b) Noisy with σ = 50 (c) CDnCNN [6]
PSNR = 27.81dB

(d) CBM3D [2]
PSNR = 26.98dB

(e) CFFDNet [7]
PSNR = 27.72dB

(f) CNLNet [4]
PSNR = 27.41dB

(g) C-LIDIA (ours)
PSNR = 27.79dB

(h) Original (i) Noisy (j) CDnCNN (k) CBM3D

(l) CFFDNet (m) CNLNet (n) C-LIDIA (ours)

Figure 10: Color image denoising example with σ = 50.



(a) Original (b) Noisy with σ = 50 (c) CDnCNN [6]
PSNR = 26.85dB

(d) CBM3D [2]
PSNR = 26.23dB

(e) CFFDNet [7]
PSNR = 26.78dB

(f) CNLNet [4]
PSNR = 26.62dB

(g) C-LIDIA (ours)
PSNR = 26.90dB

(h) Original (i) Noisy (j) CDnCNN (k) CBM3D

(l) CFFDNet (m) CNLNet (n) C-LIDIA (ours)

Figure 11: Color image denoising example with σ = 50.



(a) Original (b) Noisy with σ = 50 (c) CDnCNN [6]
PSNR = 36.68dB

(d) CBM3D [2]
PSNR = 35.51dB

(e) CFFDNet [7]
PSNR = 36.62dB

(f) CNLNet [4]
PSNR = 35.98dB

(g) C-LIDIA (ours)
PSNR = 36.56dB

(h) Original (i) Noisy (j) CDnCNN (k) CBM3D

(l) CFFDNet (m) CNLNet (n) C-LIDIA (ours)

Figure 12: Color Image denoising example with σ = 50.



(a) Original (b) Noisy with σ = 15

(c) LIDIA
PSNR = 29.38dB

(d) LIDIA-S
PSNR = 29.34dB

(e) Original (f) Noisy with σ = 25

(g) LIDIA
PSNR = 28.96dB

(h) LIDIA-S
PSNR = 28.89dB

Figure 13: Comparison between full and small versions of
the LIDIA network.

(a) Clean astronomical
(800× 570)

(b) Noisy with σ = 50

(c) CDnCNN [6]
PSNR = 27.05dB

(d) LIDIA (before adaptation)
PSNR = 26.44dB

(e) LIDIA (after adaptation)
PSNR = 28.04dB

(f) Clean

(g) Noisy (h) DnCNN

(i) LIDIA (ours)
(before adaptation)

(j) LIDIA (ours)
(after adaptation)

Figure 14: An example of external adaptation for an astro-
nomical image.


