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1. Training details for the experiments
For the experiments in Section 4.1 and 4.2, we use the

same set of training parameters. Specifically, we set the
batch size to 8 and the weight decay to 0.0005, use stochastic
gradient descent (SGD) with a momentum of 0.9. The initial
learning rate is set as 0.1 and decreases by a factor of 10 after
about 6 epochs. The training process stops after 25 epochs.

2. Discussions
Comparison to implicit function-based approaches Re-
cently, implicit functions are used in deep learning as the
3D shape representation [1, 2, 3]. We did not conduct ex-
periments to compare with these methods since they are
orthogonal to our method: they focus on the shape represen-
tation whereas we focus on network structures. Technically,
DeepSDF [3] was applied to shape completion by optimizing
the latent code to match the partial data while completing
the missing part, per shape, in a computationally expensive
and memory-costly way. Our method can directly output
the shape in one single forward pass. OccNet [2] use the
autoencoder architecture directly without skip-connection,
the partial input cannot be well preserved. IM-Net [1] has
not been tested the completion task.

Ablation study on skip connections l2 and l3 in Figure 2
3DEPN is based on a dense U-Net and the decoder of SGC-
Net is also a dense network. We regard them as comparable
dense networks and do the comparisons with similar amount
of parameters and network depth in Section 4. 3DEPN and
SGCNet use full skip-connections, including l2 and l3. In
the ablation studies, our network without l2 and l3 achieves
better results.

3. Shape reconstruction from a meso-skeleton
To demonstrate the flexibility of the proposed method,

we also conduct experiment on the task of reconstructing a
complete 3D shape from its meso-skeleton.
Dataset We use the chair and plane datasets provided
by [5], which include the synthesized meso-skeletons and

the corresponding 3D shapes. The chair dataset contains 889
training and 100 testing pairs, and the airplane dataset con-
tains 626 training and 100 testing pairs. The meso-skeletons
are represented as point cloud containing 2048 points, with
which we build the octree directly. For the 3D shapes, we
use the virtual scanner to convert them into dense point cloud
with oriented normals [4], then build the target octrees. The
depth of octree is set as 6. The two datasets are trained
separately, which is the same as P2P-NET.
Implementation details We use the same network as the
one used in shape completion. To avoid overfitting, we rotate
each skeleton and the corresponding ground-truth object
along with the upright axis 12 times for data augmentation.
The batch size is set as 24, and the network is trained using
SGD with a momentum of 0.9 and a weight decay of 0.0005.
The initial learning rate is set as 0.1 and decreases by a
factor of 2 after 60 epochs. The training process stops after
120 epochs. We use the Chamfer distance defined in as the
evaluation metric.
Comparison We do a comparison with P2P-Net [5]. Since
there is no explicit point correspondence between the meso-
skeleton and the target shape, P2P-Net relies on a loss func-
tion enforcing a shape-wise similarity between the predicted
and the target point sets during the training stage to build
the correspondence. We directly build the correspondence
between the input meso-skeleton and output shape with the
proposed skip connections. On the dataset plane and chair,
the medians of Chamfer distances are 1.04 and 5.55 for our
methods, 1.66 and 6.06 for P2P-Net.
Visual results The visual results are shown in Figure 1.
Compared with P2P-Net, the point clouds produced by our
method are regularly distributed. Since the point normal is
also regressed with the loss function, the output point cloud
can be directly used as the input of the Poisson Reconstruc-
tion method. The reconstructed meshes are shown in the
fourth column of Figure 1. However, it is very hard and even
impossible to reconstruct surface mesh from the point cloud
of P2P-Net, since the point cloud of P2P-Net is scattered
and the internal volume structure of the shape is not kept,
which makes it extremely difficult to define the inside and
outside for the shape.
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Figure 1: Visual results of shape reconstruction from meso-skeletons. Compared with P2P-Net, the point cloud of our method
is regularly distributed. And since the normal is also regressed, the complete meshes can be reconstructed, which is hard or
even impossible for the point clouds of P2P-Net.

References
[1] Zhiqin Chen and Hao Zhang. Learning implicit fields for

generative shape modeling. In Computer Vision and Pattern
Recognition (CVPR), 2019. 1

[2] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In Computer
Vision and Pattern Recognition (CVPR), 2019. 1

[3] Jeong Joon Park, Peter Florence, Julian Straub, Richard New-
combe, and Steven Lovegrove. DeepSDF: Learning continuous
signed distance functions for shape representation. In Com-
puter Vision and Pattern Recognition (CVPR), 2019. 1

[4] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun,
and Xin Tong. O-CNN: Octree-based convolutional neural
networks for 3D shape analysis. ACM Trans. Graph. (SIG-
GRAPH), 36(4), 2017. 1

[5] Kangxue Yin, Hui Huang, Daniel Cohen-Or, and Hao Zhang.
P2P-NET: Bidirectional Point Displacement Net for Shape
Transform. ACM Trans. Graph. (SIGGRAPH), 37(4), 2018. 1


