Appendix

Appendix I: Proofs

Nonlinearity \[? \] concludes that SM, IG, LRP, DeepLIFT are equivalent for linear models and their proof also applies to SG. We first introduce the following proposition:

Proposition 1. All attribution methods mentioned in Sec \[?? \] except GradCAM and Guided Backpropagation are equivalent if the model behaves linearly.

Proof. As the Proposition 4 and Conclusion 6 in \[?? \] prove that Saliency Map, Integrated Gradient, DeepLIFT and LRP are equivalent for a linear model, we just need to prove SmoothGrad is equivalent to Saliency Map if the model is linear.

If a model behaves linearly, we can express the output score \(y_c \) for class \(c \) as a linear combination such that \(y_c = w_c^T x + b_c \). Then the SmoothGrad \(S(x)_c \) is

\[
S(x)_c = \mathbb{E}_{x \sim \mathcal{N}(0,1)} \frac{\partial [w_c^T (x + \epsilon) + b_c]}{\partial x} = \mathbb{E}_{x \sim \mathcal{N}(0,1)} w_c = w_c \frac{\partial y_c}{\partial x}
\]

(Saliency Map)

\[\square \]

Proof to Proposition 4 If an attribution method \(A \) satisfies both sensitivity-\(n_1 \) and sensitivity-\(n_2 \), then \(N^k_p(x, A) = 0 \) under the condition if \(\sum_{i=1}^{n_1} s_i = \sum_{j=1}^{n_2} s_j = kS(x, A), s_i \in \pi^+_A(x), s_j \in \tilde{\pi}^+_A(x), k \in [0, 1], \) but not vice versa.

Proof. If \(A \) satisfies sensitivity-\(n_1 \), for any given ordered subset \(\pi \), we have

\[
\sum_{i=1}^{n_1} s_i = R(x, \pi)
\]

Same thing happens to \(n_2 \) if \(A \) satisfies sensitivity-\(n_2 \). Under the condition if \(\sum_{i=1}^{n_1} s_i = \sum_{j=1}^{n_2} s_j = kS(x, A), s_i \in \pi^+_A(x), s_j \in \tilde{\pi}^+_A(x), k \in [0, 1], \)

\[
N^k_p(x, A) = |R(x, \pi_A(x)) - R(x, \tilde{\pi}^+_A(x))| = |\sum_{i=1}^{n_2} s_i - \sum_{j=1}^{n_2} s_j| = |kS(x, A) - kS(x, A)| = 0
\]

\[\square \]

Appendix II: Implementation Details

Models

We evaluate N_Ord, S_Ord for all attribution methods mentioned in Section \[?? \]. We evaluate on 9600 images from ImageNet \[?? \] with pre-trained on VGG16\[?? \].

Attribution Methods

Saliency Map

As discussed in Sec \[?? \], we use \(\text{grad} \times \text{input} \) to represent the Saliency Map, instead of the vanilla gradient.

Integrated Gradient

We use the black image as the baseline for all images and we use the 50 samples on the linear path from the baseline to the input.

Smooth Gradient

As discussed in Sec \[?? \], we use \(\text{smooth_grad} \times \text{input} \) to represent the Smooth Gradient. We pick a noise level of 20 % as it appears to be the best parameter in its original paper \[?? \]. We randomly sample 50 points from the Gaussian distribution for the aggregation.

DeepLIFT

We use the black image as the baseline for all images and we use the RevealCancel rule for DeepLIFT \[?? \].

LRP

We use the implementation of LRP-\(\alpha 2/31 \) with generalization tricks mentioned by \[?? \] who argues this rule is better for image explanations.

Guided Backpropagation

To implement Guided Backpropagation, we modify the ReLU activation in the network to filter out the negative gradient in tensorflow.

```python
@ops.RegisterGradient("GuidedBackProp")
def _GuidedBackProp(op, grad):
dtype = op.inputs[0].dtype
return grad * tf.cast(grad > 0., dtype) * 
          tf.cast(op.inputs[0] > 0., dtype)
```

GradCAM

We use the last convolutional layer to compute the GradCAM for all images.

Appendix III

More examples of evaluating each images with TPN and TPS are shown in Fig \[1 \]

\[^1 \text{We use the release code on https://github.com/kundajelab/deeplift} \]
Figure 1. More visualizations of different attribution methods. Red checks mark the winner of Total Proportionality for Necessity and blue checks mark the winner of Total Proportionality for Sufficiency.