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Figure 1: Test error of AlexNet and Resnet18 trained on
CIFAR10 over the training epochs.

Figure 2: Test error of AlexNet and Resnet18 trained on
CIFAR10 over the training epochs

Appendix

More experimental results

In this section of the appendix we show further experi-
mental results.

Convergence of dithered backprop

Figures 1 and 2 show the training curves of AlexNet and
Resnet18 trained on CIFAR10 with the baseline method,
dithered backprop, the reduced precision training method
[1] and the combination of the latter two. As one can see,
the training convergence is not affected by dithered back-
prop in any of the cases.

Figure 3: Learning performance at different levels of aver-
age sparsity of the preactivation gradients of a multilayer
perceptron with two hidden layers (500, 500) trained on CI-
FAR10, using either regular back propagation (Baseline),
dithered backprop (D. backprop) or meProp [2]. Multiple
runs with different random seeds were executed for each
configuration. Points show mean performance with stan-
dard deviation indicated as span.

Comparison to meProp

In figure 3 we show the learning performance of the mul-
tilayer perceptron when trained on CIFAR10. As one can
see, meProp does not reach as high accuracies as dithered
backprop. We attribute this to the biased nature of their gra-
dients estimates, which affects negatively the learning per-
formance of the model.

Distributed training

Here we show the trend of the computational complexity
of the convolutional layers as the number of participating
nodes increases. As can be seen in figures 4 and 5, the com-
putational decreases as the number of nodes increases.



Figure 4: Average sparsity of the preactivation gradients of
the convolutional layers of AlexNet trained on CIFAR10
with dithered backprop in a distributed training setting, at
different number of participating nodes configuration. As
the number of nodes increases, so does the sparsity at each
node and therefore its computational savings for training.

Figure 5: Maximal, worst-case bit-precision of the convolu-
tional layers of AlexNet trained on CIFAR10 with dithered
backprop in a distributed training setting, at different num-
ber of participating nodes configuration. As the number of
nodes increases, the number of bits necessary to represent
the non-zero values decreases, and with it the computational
cost for training at each node.
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