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1. The details of HRNet architecture
The proposed HRNet contains 4-level. The exact spec-

ification of each level is shown in the Table 1 where the
parameter l indicates the level (top level equals to 0 while
bottom level is 3). We utilize the PixelUnShuffle layers [7]
to downsample the input with scale of 2, 4 and 8 for three
lower levels. Therefore, the input sizes for each level (from
top to bottom) are 3×256×256, 12×128×128, 48×64×64,
and 192×32×32. The output feature maps of lower level
are pixel-shuffled and concatenated to a convolutional layer
in the superior level.

For each level, except the inter-level integration, we use
residual dense block (ResDB) [2, 4] for artifacts reduction
and residual global block (ResGB) [2, 3] for global fea-
ture extraction. The input and output channels are related
to current level, as shown in Table 1. Each residual global
block contains 5 dense-connected convolutional layers and
a residual. While each residual global block contains 2 con-
volutional layers and 3 MLP layers with a residual.

2. Experiment on NIR image colorization
The proposed Hierarchical Regression Network (HR-

Net) is initially utilized for spectral reconstruction. As
the reverse task, the colorization for NIR image is signifi-
cant for near infrared data visualization. To further demon-
strate the advance of HRNet, we perform an experiment on
KAIST multispectral pedestrian detection dataset [5]. The
spectral images from the dataset contains the near infrared
information but the channel equals to 1. It implies the infor-
mation of different spectrum is compacted into one channel.

We randomly divide the training and validation images
from KAIST dataset to form 19:1 ratio. The other exper-
imental settings are unchanged compared with spectral re-
construction. However, the input and output data for each
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algorithm is replaced by NIR data and RGB images, respec-
tively. The U-ResNet [1] NIR data colorization method and
proposed HRNet (original size and each channel reduced to
half) are included in this experiment.

Some colorized results are shown in Figure 1 and quan-
titative comparison results on validation set is summarized
in Table 2. The PSNR and SSIM [8] are utilized for evalu-
ation. The HRNet can still achieve fair performance across
all the methods since it effectively extracts different scales
of features by proposed 4-level architecture, residual dense
block, and residual global block. We believe these designs
will improve the NIR image colorization performance.

3. Additional results of spectral reconstruction
from RGB images by HRNet

To better visualize the results from different methods, we
show more generated samples. The Figure 2 and 3 illustrate
all generated spectral bands for both tracks. Each band is
represented by pesudo-color map. For different bands, the
color characteristics are obviously distinct. Since the input
data of track 2 is noisy, the generated results from real world
RGB images are less sharper than track 1.

While the Figure 4, 5, 6, 7, 8 and 9 show the addi-
tional comparison results generated by U-Net [6], U-ResNet
[6, 2], and proposed HRNet. The readers are encouraged
to compare the texture information and background details.
The proposed HRNet produces spectral images with more
similar visual quality to ground truth than other two meth-
ods.
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Stage Number Convolution Input Feature Map Size Output Feature Map Size
Input Conv 1 k3s1p1 (3 × 4l) × (h/2l) × (w/2l) (64 × 2l) × (h/2l) × (w/2l)
Concatenation 1 / (64 × (2l + 2l+1/4) × (h/2l) × (w/2l) (64 × 2l) × (h/2l) × (w/2l)
RDB 1-4 k3s1p1 (64 × 2l) × (h/2l) × (w/2l) (64 × 2l) × (h/2l) × (w/2l)
RGB 1 k3s1p1 (64 × 2l) × (h/2l) × (w/2l) (64 × 2l) × (h/2l) × (w/2l)
TM Conv 1 k1s1p0 (64 × 2l) × (h/2l) × (w/2l) (64 × 2l) × (h/2l) × (w/2l)
Output Conv 1 k3s1p1 (64 × 2l) × (h/2l) × (w/2l) (64 × 2l) × (h/2l) × (w/2l) or 31
PixelShuffle 1 / (64 × 2l) × (h/2l) × (w/2l) (64 × 2l/4) × (h/2l−1) × (w/2l−1)

Table 1. Specification for each level. The tone mapping convolution (TM Conv) only exists in bottom level. If it is the top level, the final
output channels should be 31 to match the number of bands. Otherwise, the output needs to be pixel-shuffled. For instance, the 3 × 256
× 256 represents channels × height × width. The k3s1p1 represents a convolutional layer with kernel size, stride, and padding number
equal to 3, 1, and 1, respectively.

Figure 1. Visual comparison of the results generated by different architectures on KAIST multispectral pedestrian detection validation
dataset.

Method HRNet HRNet (half) U-ResNet
PSNR 23.28 21.88 23.12
SSIM 0.8177 0.7876 0.8126

Table 2. The comparison results of different architectures on
KAIST multispectral pedestrian detection validation dataset.
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Figure 2. Visualization of input image from track 1 and all generated bands by HRNet. From left upper image to right bottom image, the
results represent input clean RGB image and spectral image with bands from 400nm - 410 nm to 690nm - 700 nm.

Figure 3. Visualization of input image from track 2 and all generated bands by HRNet. From left upper image to right bottom image, the
results represent input real world RGB image and spectral image with bands from 400nm - 410 nm to 690nm - 700 nm.
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Figure 4. Visualization of additional generated result (1) from U-ResNet, U-Net, and proposed HRNet on track 1.

Figure 5. Visualization of additional generated result (1) from U-ResNet, U-Net, and proposed HRNet on track 2.



Figure 6. Visualization of additional generated result (2) from U-ResNet, U-Net, and proposed HRNet on track 1.

Figure 7. Visualization of additional generated result (2) from U-ResNet, U-Net, and proposed HRNet on track 2.



Figure 8. Visualization of additional generated result (3) from U-ResNet, U-Net, and proposed HRNet on track 1.

Figure 9. Visualization of additional generated result (3) from U-ResNet, U-Net, and proposed HRNet on track 2.


