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Abstract

One of the core challenges in Visual Dialogue problems
is asking the question that will provide the most useful infor-
mation towards achieving the required objective. Encour-
aging an agent to ask the right questions is difficult because
we don’t know a-priori what information the agent will need
to achieve its task, and we don’t have an explicit model of
what it knows already. We propose a solution to this prob-
lem based on a Bayesian model of the uncertainty in the im-
plicit model maintained by the visual dialogue agent, and
in the function used to select an appropriate output. By se-
lecting the question that minimises the predicted regret with
respect to this implicit model the agent actively reduces am-
biguity. The Bayesian model of uncertainty also enables
a principled method for identifying when enough informa-
tion has been acquired, and an action should be selected.
We evaluate our approach on two goal-oriented dialogue
datasets, one for visual-based collaboration task and the
other for a negotiation-based task. Our uncertainty-aware
information-seeking model outperforms its counterparts in
these two challenging problems.

1. Introduction

One of the fundamental problems in any challenge that
requires actively seeking the information required to carry
out a task is that of identifying the information that will best
enable the agent to achieve its objective. Identifying the in-
formation needed, and how to get it, is inherently complex,
not least because the space of all possibly useful informa-
tion is so large. We propose a solution to this problem here
that is applicable to reinforcement learning in general, and
that we demonstrate on the challenging problem of goal-
oriented visual dialogue.

Goal-oriented visual dialogue requires the participants to
engage in a natural language conversation towards a speci-
fied objective. The objectives of the two participants might
be collaborative, such as communicating the identity of a
specific object in an image [14], or they may be adversar-
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Figure 1. In GuessWhat [14] one player knows the correct ob-
ject (here shown in a red box), and the other must ask questions
to identify it. Traditionally an agent would generate questions by
sequentially selecting words with the highest conditional probabil-
ity, even though knowing the answer might be uninformative (in
this case ‘shirt’ in the Baseline histogram). Our solution, however,
selects ‘blue’, which corresponds to the highest sum of the proba-
bility and standard deviation (likely to be the most ‘informative’).

ial (see Sec. 4.2).

The primary technological challenge in goal-oriented vi-
sual dialogue is to devise natural language interactions that
are directed towards achieving the required objective. This
is in contrast to the more traditional approach that aims only
to keep the other participant talking for as long as possi-
ble [22, 27, 37]. Note that the performance criteria in these
two approaches are opposite, as in goal-directed visual dia-
logue success is indicated by achieving the shortest possible
conversation.

Inspired by the success of deep learning in both com-
puter vision and natural language processing (NLP), most
recent goal-oriented dialogue studies rely on sequence-to-
sequence (seq2seq) deep learning models [34, 37]. Ob-
taining the large datasets this approach requires is chal-
lenging, however. As a partial solution, a combination of
seq2seq and deep reinforcement learning [35] are are com-
monly used to train a model (i.e. agent) with unlimited self-
generated data in a self-play environment. Even if this was
achieved ideally, however, it is unlikely that it would lead
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to an agent capable of carrying out the complex reasoning
needed to devise the next interaction that will recover ex-
actly the information required to achieve an as yet unspeci-
fied objective.

Ideally, rather than learning to generate questions solely
by reinforcement learning, the method should calculate the
question that, when answered, will provide the most useful
information for achieving the agent’s objective. The direct
approach would require enumerating everything the agent
might ever need to know, and the value of each such piece
of information towards achieving its as yet unspecified ob-
jective. This would allow the identification of the missing
piece of information that is most critical to achieving the
agent’s objective, and the formulation of a corresponding
question.

This direct approach is infeasible because the agent has
the capacity to store all of the information it might need
to hold about the task, the intention of its counterpart, the
image, and so on. Additionally, in the current state of the
art approaches, this information is stored implicitly in the
weights of a neural network. Defining the scope of such
an information store is impossible, which makes measuring
its information content infeasible. Explicitly relating the
information stored to the agent’s objective is similarly in-
feasible. This makes it impossible to directly identify the
question that will provide the most useful information to-
wards achieving the agent’s objective.

Visual dialogue models trained using reinforcement
learning already learn to estimate the value of a particular
question as a step towards achieving their objective. This
is represented in the model’s value function. All that is re-
quired is a method for identifying the gaps in the model’s
internal information. We could then combine these informa-
tion gaps with the learned policy to identify the most useful
question.

Given that the models in question represent their internal
information implicitly, a good approximation of the model’s
information gaps is available in the uncertainty of its in-
ternal state. By propagating the model’s internal uncer-
tainty through the question generation process we can thus
identify questions that best reflect the model’s ambiguity in
achieving its objective. This is as compared to the current
process that selects the question the model is most certain
about (see Fig. 1).

We thus propose an information-seeking decoder (see
Fig. 2) that chooses each word in a question based on its
uncertainty about the environment and conditioned on the
history of the conversations. We prove this leads to the
minimum expected regret. An additional benefit of having
an accessible estimate of a model’s uncertainty is that it al-
lows a more systematic identification of the point at which
enough information has been gathered to make the required
decision.

We evaluate our model primarily on the well-known col-
laborative goal oriented visual dialogue problem Guess-
What [14]. To demonstrate that it is equally applicable to
(non-collaborative) negotiation tasks we also relate its per-
formance on Deal or No Deal [21]. GuessWhat is a visual
dialogue game between two agents in which they cooper-
ate to identify one of many objects in an image. Deal or
No Deal challenges two players to partition a collection of
items such that each is assigned to one only player. In con-
trast to GuessWhat, this game is semi-cooperative in that
one player can win more than their counterpart. Our ap-
proach significantly outperforms the baseline on both tasks.
Our framework is summarised in Fig. 2.

Overall, our contributions are fourfold:

e We propose a Bayesian Deep Learning method for
quantifying the uncertainty in the internal represen-
tation of a Reinforcement Learning model. This is
significant as it provides a theoretically sound method
for propagating uncertainty to the output space of the
model.

e We describe an uncertainty-aware information-seeking
decoder for goal-oriented conversation that actively
formulates questions that will provide the information
the agent needs to achieve its objective.

e We devise a method that exploits the confidence of
the predictor as a measure to indicate if the model
has enough information to produce an accurate output.
We show this approach is effective and leads to fewer
rounds of conversation for a goal to be achieved.

e We show that in both visual and textual dialogue chal-
lenges, whether cooperation or adversarial behaviour
is desired, our approach outperforms the baselines. To
the best of our knowledge, this is the first approach that
works well across domains and tasks.

2. Related Work

Goal-oriented dialogue Dialogue generation [22, 23, 29,

] has been studied for many years in the NLP literature,
and has many applications. Dialogue generation is typi-
cally viewed as a Seq2Seq problem, or formulated as a sta-
tistical machine translation problem [26, 29, 2]. Recently,
dialogue systems have been extended to the visual domain.
For example, Das et al. [1 1] proposed a visual dialogue task
that allows a machine to chat with a human about the con-
tent of a given image. Goal-oriented dialogue requires the
agent understand a user request and complete a related task
with a clear goal within a limited number of turns. Early
goal-oriented dialogue systems [38, 4 1] model conversation
as partially observable Markov Decision Processes (MDP)
with many hand-crafted features for the state and action
space representations, which restrict their usage to narrow
domains. Bordes et al. [8] propose a goal-oriented dialogue
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Figure 2. The framework in two applications in this paper: we develop a generic information-seeking decoder for dialogue systems. Our
decoder selects each word optimistically with an upper bound on the reward to maximise the information obtained (details in Sec. 3.2).
Samples from the reward posterior is taken by applying dropout to the context variable of the RNN which provably performs variational

inference (see Eq. 1 and the Supplements for details).

test-bed that requires a user chat with a bot to book a table
at a restaurant. In visual goal-oriented dialogue De Vries et
al. [14] propose a guess-what game style dataset, where one
person asks questions about an image to guess which object
has been selected, and the second person answers questions
as yes/no/NA.

RL in dialogue generation Reinforcement learning (RL)
has been applied in many dialogue settings. Li ef al. [22
simulate two virtual agents and hand-craft three rewards to
train the response generation model. Recently, some works
[6, 32] make an effort to integrate the Seq2Seq model and
RL. RL has also been widely used to improve dialogue man-
agers, which manage transitions between dialogue states
[25, 28]. In visual dialogue, Das et al. [11] use reinforce-
ment learning to improve cooperative bot-bot dialogues,
and Wu et al. [40] combine reinforcement learning and
generative adversarial networks (GANSs) to generate more
human-like visual dialogues. In [12], Das et al. introduce a
reinforcement learning mechanism for visual dialogue gen-
eration. They establish two RL agents corresponding to
question and answer generation respectively, to finally lo-
cate an unseen image from a set of images. The question
agent predicts the feature representation of the image and
the reward function is given by measuring how close the
representation is compared to the true feature.

Uncertainty There are typically two sources of uncer-
tainty to be considered: Aleatoric and Epistemic [19]. The
former addresses the noise inherent in the observation while
the later captures our ignorance about which model gener-
ated our data. Both sources can be captured with Bayesian
deep learning approaches, where a prior distribution over
the model weights is considered. However, performing
Bayesian inference on a deep neural network is challeng-
ing and computationally expensive. One simple technique

that has recently gained attention is to use Monte Carlo [1]
dropout sampling which places a Bernoulli distribution over
network weights [16, 17, 5, 4].

Most recently, Lipton et al. [24] proposed a Bayes-by-
Backprop Q-network (BBQ-network) to approximate the
Q-function and the uncertainty in its approximation. It en-
courages a dialogue agent to explore state-action regions
in which the agent is relatively uncertain in its action se-
lection. However, the BBQ-network only uses Thompson
sampling to model the distribution of rewards for the words
in a Bayesian manner and ignores the uncertainty in the es-
timators. This can lead to very uncertain decisions about
confident actions or vice versa. Our method, on the other
hand, models both the uncertainty in the actions (i.e. word
choices), and the estimators, by directly incorporating the
variance in the sampling procedure. We also provide a the-
oretical justification for the selection which is guaranteed to
minimise regret.

3. Goal-oriented Dialogue Systems

We ground our goal-oriented dialogue problem as an in-
teractive game between two agents for a collection of items.
The items are either 1) multiple objects in an image for one
agent to identify by asking the other questions, or 2) ob-
jects for the agents to split by negotiation. Conditioned on
this game, once enough information is gathered, a Guesser
takes the dialogue history and predicts the goal. The game
is a success when the goal is achieved. The game between
these two agents effectively simulates real natural language
based conversation to achieve a particular goal, e.g. uncov-
ering an unknown object, or an agreed split.

Each game is defined as a tuple (I, D, O, 0*), where I
is the observed collection, D is the dialogue with Tiiaogue

. . ! Tdialogue —
rounds of conversation pairs (W;, W});Z/* and W; =
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(w®) is a sequence of M, tokens w(® with a a prede-
fined vocabulary V', and W/ is the response. O = (0n) e,
is the list of objects, where N, is the number of candidate
objects in the collection. o* is the target or a list of targets.
In the GuessWhat game [14], o* is a target object that the
dialogue refers to. In the Deal or No Deal [21], it is a list of
target objects that the negotiator agent is interested in.

Given an input collection I, an initial statement W, is
generated by sampling from the model until the stop to-
ken is encountered. Then the counterpart agent receives
the statement W, and generates the answer W, the pair
(W1, W) is appended to the dialogue history. We repeat
this loop until the end of dialogue token is sampled, or the
number of questions reaches the maximum. Finally, the
Guesser takes the whole dialogue D and the object list O
as inputs to predict the goal. We consider the goal reached
if o™ is selected.

3.1. RL for Dialogue Generation

We model dialogue generation as a Markov Decision
Process (MDP) to be solved by using a reinforcement learn-
ing (RL) agent [35]. The agent interacts with the environ-
ment over a sequence of discrete steps in which we have
the dialogue generated based on the collection [ at time
step ¢ in round 7', the state of agent with the history of
conversation pairs and the tokens of current question gen-

erated so far: S, = (I, (W;, W))1_}, (wéf))?;l), where
= Zz:ll My, + m. The action of agent is to choose the
subsequent token wéfﬂ) from the vocabulary V' (we drop
T for brevity). Depending on the action the agent takes, the
transition between two states falls into one of the following:

1) w!*t! = end of statement: The current statement is
finished, it is the other agent’s turn.

2) w*t! = end of dialogue: The dialogue is finished, the
Guesser selects the output from list O.

3) Otherwise, the newly generated token w!*! is ap-
pended to the current statement, the next state Sy ; =
(L. OV W=, o)t ).

The maximum length of a statement W; is M, 4., and
the maximum number of rounds in a dialogue is Tgialogue-
Therefore, the number of time steps ¢ of any dialogue are
t < Minaz * Taialogue- We use the stochastic policy 7o (w|.S),
where 0 represents the parameters of the deep neural net-
work that produces the probability distributions for each
state. The goal of the policy learning is to estimate the pa-
rameter 6. At the end of the dialogue, a decision about the
unknown goal is made for which a reward is given by the
environment. RL seeks to maximise the expected reward.

After a complete dialogue is generated, we update the
RL agent’s parameters based on the outcome of the dia-
logue. Let 7, be the reward for achieving the goal after
completing the dialogue, v be a discount factor, and b be

a bias function estimating the running average of the com-
pleted dialogue rewards so far'. Let future reward R for an
action w® be R(w®) = E[ 377 7 (rye+s — b(w!t?))]
where expectation is with respect to the policy 7. The pa-
rameters of this model comprising of the policy and the
bias function are then optimised using gradient policy the-
orem [36] and REINFORCE [39]. The policy determines
how a statement is made in a dialogue system. Note that
at each step there is an estimation of the reward (which is
never directly observed) for each word in the RL and the
observable reward is only given to the complete dialogue.
Upon receiving the reward for the complete dialogue the
parameters are accordingly updated. Utilising this estima-
tion of the reward at each stage and a particular choice of
the word strategy, a sequence of words is generated.

In the subsequent section we discuss a particular strategy
that utilises the uncertainty in the policy (model) and seeks
to provide a better approach for exploration of the space
of possible dialogues. Moreover, since REINFORCE is a
Monte Carlo estimate that is known to have a high variance,
there is an additional source of uncertainty in evaluation of
the expected rewards. As such, it is essential to consider
uncertainty in policies manifesting in word choices.

3.2. Information-seeking Decoder

The decoder’s objective is, given the dialogue thus far, to
choose the subsequent word such that the resulting response
is most “informative”. To that end, we assume there is an
underlying reward for each word r,+) at step ¢ that we seek
to uncover by exploring the space of actions (tokens in the
vocabulary). A common practice is to model this value as
the output of a deterministic function fo(w®) : V. — R
parameterised by € such as a neural network for sequential
problems (e.g. LSTMs [18] or GRUs [9]). To select the
subsequent action using this function one can greedily se-
lect the action with highest value or sample from a softmax
(categorical distribution) built from this function.

However, this approach does not account for the uncer-
tainty in the prediction of the reward r ). This uncertainty
has two main sources, (1) model uncertainty which is due
to the imperfections in the parameters and (2) prediction
uncertainty which is due to the lack of information about
each action and its consequence. We choose a prior for the
parameters and update them with the likelihood of the dia-
logue observations to obtain the posterior distribution in a
Bayesian manner. The posterior at round 7’ is:

1 _
P(BIRs, D1, 1) = — [ [ p(w"™ |(W;, W)]=1' Ra, T, fo)p(6)
t

Z
eY)
where Z is the normaliser and p(0) is a prior for the pa-
rameters. Here, Ry = r,), ..., T, is the set of rewards
collected up to step ¢ in the dialogue. This formulation has a

I'This bias function reduces the variance of the estimator.
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self-regularising behaviour that, unlike likelihood maximi-
sation, is less susceptible to a local optima and performs
better in practice. The predictive distribution of rewards

from which each word is chosen becomes?:

p(rw(“rl) |w(t+1)7Rt7 Dt7 I)

- / p(rein [0, fo)p(BIRy, Dy, 1)d6 ®)

N
1 ) )
~ N E p(rw(wl)\w(tﬂ)aféz))a éz) ~p(O|R¢, Dy, 1)
i=1

where IV is the number of samples for the Monte Carlo
estimation of the integral and

p(rw(f+1)|w(t+1),f9) = t+1)) (t+1))

ye s Wy

3)
where |V| is the size of the dictionary. However, the poste-
rior p(@|R¢, D¢, I) in Eq.1 does not have a closed-form so-
lution. Thus, we resort to variational inference [15], the de-
tails of which is provided in the Supplements. In a nutshell,
inspired by [16, 17] we show that the posterior is approx-
imated by a particular mixture model which is equivalent
to performing typical MAP with dropout regularisation for
dialogue generation. Further, the Monte Carlo estimate in
Eq.2 is efficiently computed by applying dropout N times
in the RNN network (note we take N context variables in
Fig. 2). Hence, the mean and variance of the rewards com-
puted from the posterior are:

N
) = > s ) @

w®) Nz (f<> )

where 7 is the precision parameter. Using Chebyshev’s
inequality, we have:

softmax ( fg(wg

pw?) 77 )

p(|folw™) — aw®)| < Bow™) > 1- 2 ©
Bi

which means for 8y > 0, with high probability we have

| fo(w®) — a(w®)| < B;6(w®) for a random function

fo(w' ) Hence we have an upper bound on the random
function fg with high probability:

fo(w®) N+ Bio(w™) )

Selecting an action (word) with this upper bound both
accounts for the estimation of the high-reward values by
f(w™®) and the uncertainty in this estimation for the given
word & (w®). In this bound, /3; controls how much the un-
certainty is taken into account for selecting a word. Fur-
thermore, it is clear that with 5; — 0 this upper bound

< pw

2 An alternative view is that we model fg as a stochastic function and
choose words accounting for their uncertainty. fg is fully realised by its
parameters 6, hence we use the uncertainty in the functional and the pa-
rameters interchangeably.

approaches greedy selection. In the reinforcement learning
context, this approach mediates the exploration-exploitation
dilemma by changing f3;.

This upper-bound is inspired by the Upper Confidence
Bound (UCB) which is popular in multi-armed bandit prob-
lems [10]. A similar upper bound for Gaussian processes
was proposed in [30]. However, this bound for neural net-
works, in particular for dialogues systems, is novel.

Expected Regret and Information For a dialogue agent,
a metric for evaluating performance is cumulative regret,
that is the loss due to not knowing the best word to choose
at a given time. Suppose the best action at round ¢ is w(t)
for our choice w(*) , we incur instantaneous expected regret,
pi = By [fo(wl?) = fo(w®)]. The cumulative regret pf,
after T rounds is the sum of instantaneous expected regrets:
P = Zle pt. Note that neither p; nor p/. are ever re-
vealed during dialogues generation. Our expected regret at
each round is bounded as

D)+ 16 (w) = fo(w™)] < 28i6(w)

(®)
where the first inequality is due to fg (w&t)) < f(w®) +
Bi6(w®) and the second one is because |fg(w®) —
O] < Ao, then —fo(u) < ) +

Beo(w®)). Therefore, we have

pr <Egp [ﬂ(w

Pro < 2 pe(w!) ©
t

As such, the expected regret for each word selected is
bounded by the standard deviation of the predicted reward.
When we choose words with high standard deviation, we
actively seek to gain more information about the uncertain
words to effectively reduce our expected regret.

Further, let’s assume the predictive distribution is near
Gaussian with mean and variance /i(w®), 52(w®) (which
considering the central limit theorem is natural). The en-
tropy is then 1log(2mes?(w®)). Hence, selecting ac-
tions with hlgher uncertainty is also justified from an
information-theoretic perspective as means of selecting in-
formative words. In a dialogue system, when uttering a sen-
tence with length 7" the information we can obtain is at most
(using the union bound) 2 ZtT log(2mes? (w®)). An alter-
native to using the approach in Eq. 7 is to choose the words
with highest entropy (the most informative words). How-
ever, that is an extreme case that will lead the RL algorithm
to continuously explore the dialogue space.

3.3. Stopping Dialogue

One of the key challenges in a goal-oriented dialogue
system is to identify the point at which the agent has suffi-
cient information to make the required decision. We speci-
fied above that the probability of the unknown goal given
the dialogue thus far is p(o;y1|D:¢). The uncertainty in
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Algorithm 1 Training information-seeking dialogues

1: for Each update do

2 # Generate trajectories

3 for k = 1to K do > Select K of the objects/items
4 Pick target objects o}, € Oy,

S: Set Dy to initial input collection
6.

7

8

for j = 1 to Tgialogue dO > Generate (WV;, W]’) pairs
while w(t+1) not <stop> do

Sample £§" ~ p(foWj, Ri),n=1,...,N

o: Set a(w®), 6 (w®)) from £
10: wlttD) = argmax,, f(w)+ Br62(w)
11: end while
12: Wi = SuperviseAgent(W;, D¢)
13: if <stop> € W; or H(o441|D¢) < n then > Sec.3.3
14: delete (W;, W) and break;
15: else
16: append w1 to W,
17: end if
18: append (W;, W}) to D¢
19: end for
20: o = argmax, p(o|D¢) > Predict the goal
21: reward = 1 1ok o %%
0 Otherwise
22: end for
23: Evaluate policy and update parameters 0
24: end for

this measure reflects the agent’s confidence in its prediction,
and thus provides a natural measure for the stopping crite-
ria of the conversation. Intuitively, the agent stops when it
feels confident in its prediction of the goal. Hence, we have
H(o0¢41|D¢) < nwhere H is the entropy and 7 is an appro-
priately chosen hyper-parameter for the confidence. When
7 is larger, we allow for less confident predictions leading
to shorter dialogues. See Alg. 1 for the full algorithm.

4. Experiments

To evaluate the performance of the proposed approach
we conducted experiments on two different goal-oriented
dialogue tasks: GuessWhat [14] and Deal or No Deal [21].
Our approach outperforms the baseline in both cases. In
both experiments we pre-train the networks using the su-
pervised model and refine using reinforcement learning.
To that end, we employ a two stage algorithm in which
we learn to imitate the human dialogue behaviour in a su-
pervised learning task and subsequently fine-tune for bet-
ter generalisation and goal discovery using reinforcement
learning. In both experiments, our decoder takes the his-
tory of the dialogue in addition to input collection (e.g. an
image) and, guided by the uncertainty of each word, pro-
duces a question. Similar two-stage approaches are taken
in [13, 14, 21]. Without using supervised learning first, the
dialogue model may diverge from human language.

4.1. GuessWhat
In GuessWhat [ 14] a visually rich image with several ob-
jects is shown to two players. One player selects an object

New Object

Sampling | Greedy | Beam Search | Avg. Ques
Supervised [ 14] 41.6 43.5 47.1 5
RL [31] 58.5 60.3 60.2 5
TPG [43] 62.6 - - 5
Ours 61.4 62.1 63.6 5
Ours (n = 0.05) 58.5 59.5 59.6 4.2
Ours (n = 0.01) 59.8 59.3 60.4 4.5
Ours+MN 68.3 69.2 - 5
New Image
Supervised [14] 39.2 40.8 44.6 5
RL [31] 56.5 58.4 58.4 5
Ours 59.0 59.82 60.6 5
Ours (n = 0.05) 56.7 56.5 57.3 43
Ours (n = 0.01) 58.0 57.5 58.5 4.5
Ours+MN 66.3 67.1 - 5

Table 1. Accuracy in identifying the goal object in the GuessWhat
dataset (higher is better). The numbers in parentheses is the thresh-
old used in questions for guessing the object in the image. Average
number of questions is shown at the last column (lower is better).

from the image. The task of the other player, the ques-
tioner, is to locate the unknown object by asking a series
of yes/no questions. After enough information is gathered
by the questioner, it then guesses what the selected object
was. If the questioner guesses the correct object the game
is successfully concluded. It is desirable for the questioner
to guess the correct answer in as few rounds of question-
ing as possible. The dataset includes 155,281 dialogues
of 821, 955 pairs of question/answers with vocabulary size
11,465 on 66, 537 unique images and 134, 074 objects.

Implementation Details We follow the same experimen-
tal setup as [14] in which three main components are built:
a yes/no answering agent, a guesser and a questioner. The
questioner is a recurrent neural network (RNN) that pro-
duces a sequence of state vectors for a given input sequence
by applying long-short term memory (LSTM) as a transition
function. The output of this LSTM network is the internal
estimate of the reward with size 1024. To obtain a distribu-
tion over tokens, a softmax is applied to this output.

The samples of the reward estimate in the questioner are
taken utilising dropout with parameter 0.5. Subsequently,
the upper bound in Eq. 7 is calculated to choose words. For
this experiment we set 8; = 1°.

Once the questioner is trained using our information
seeking decoder in RL, we take three approaches to evaluat-
ing the performance of the questioner: (1) sampling where
the subsequent word is sampled from the multinomial dis-
tribution in the vocabulary, (2) greedy where the word with
maximum probability is selected and (3) beam search keep-
ing the K-most promising candidate sequences at each time
step (we choose K = 20 in all experiments). During train-
ing the baseline uses the greedy approach to select the se-

3We observed marginal performance improvement by using a larger 3
on Guesswhat, despite the additional training overhead.
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is it a person?

is he wearing a brown coat?
is he wearing a white shirt?
is he wearing a blue shirt?

are they sitting down?

Man in Orange

is it the guy in the orange shirt
to the left?

Figure 3. Sample dialogue from the GuessWhat dataset. The agent
asks about a brown coat and then changes it to orange in anticipa-
tion of wrong identification.

quence of words as in [14].

Overall Results We compare two cases, labelled New
Object and New Image. In the former the object sought is
new, but the image has been seen previously. In the latter
the image is also previously unseen. We report the predic-
tion accuracy for the guessed objects. It is clear that the
accuracies are generally higher for the new objects as they
are obtained from the already seen images.

The results are summarised in Tab. 1. As shown, simply
applying REINFORCE improves the output of the system
significantly, in particular in the new image case where the
generalisation is tested. This improvement is because the
question generator has the chance to better explore possible
questions. Additionally, the greedy approach outperforms
others in the RL baseline in [31]. This illustrates that the
distribution of the words obtained from the softmax in the
question generator is not very peaked and the difference be-
tween the best and second best word is often small. This
indicates that the prediction at test time is very uncertain
and supports our approach.

Since our approach seeks uncertain words, those words
are exploited at training time, which leads to lower vari-
ance (a more peaked distribution) and better performance
of the greedy selection. Beam search significantly increases
performance when we carry out 5 rounds (as in [14, 31])
of question-answering. This is because the most informa-
tive words are selected by our approach which, combined
with the beam-search’s mechanism for forward exploration,
leads to better performance.

Note that our approach is generic enough that can be
used in combination with other architectures (e.g. [20, 42]).
For instance, in Tab. 1 “Ours+MN” uses the Memory Net-
work [33] and Attention mechanism [7] in the Guesser (sim-
ilar to that of [43]) which leads to better question genera-
tion. Fig. 3 shows one example produced by our dialogue
generator. More examples can be found in the supplements.

Ablation Study on Early Stopping In goal-oriented dia-
logue systems, it is desirable to make a decision as soon as
possible. In this experiment, we control the dialogue length
by changing the threshold 7 (see Sec. 3.3 for more details).
When 7 is larger, we accept less confident predictions lead-
ing to shorter dialogues. As shown in the Tab. 1, our mod-
els achieve a comparable performance to the baseline even

o
>

o

o

0.5
.2 II
1 2 3 4 5

Baseline ERL HOurs

Figure 4. The proportion of dialogues successful in identifying the
goal object at each round in GuessWhat.

using shorter rounds of question answering. The Fig. 4
shows the proportion of dialogues successful in identifying
the goal object at each round. Our model achieves higher
accuracy even in the earlier rounds, e.g. at the round three.
Human Study To evaluate how well humans can guess
the target object based on the questions generated by our
models, we conduct a human study. Following [42], we
show human subjects 50 images with generated question-
answer pairs from our model, and let them guess the objects.
We ask three human subjects to play on the same split and
the game is recognised as successful if at least two of them
give the right answer. In our experiment, the average perfor-
mance of humans was 79% compared to 52% and 70% for
the supervised [14] and RL [31] models. We are even better
than a model proposed in [42] (76%), which has three com-
plex hand-crafted rewards. These results indicate that our
agent can provide more useful information that can benefit
a human in achieving the final goal.

4.2. Deal or No Deal

Here two agents receive a collection of items, and are
instructed to divide them so that each item is assigned to one
agent. This problem is, unlike the GuessWhat game, semi-
cooperative game in that the goals are adversarial. Each
agent’s goal is to maximise its own rewards which may be
in direct contradiction with its opponents goals.

Each item has a different random non-negative value for
each agent. These random values are constrained so that:

Score % Agreed % Selection
e Supervised [21] 5.4 vs. 5.5 87.9 50.78 vs 49.23
o RL [21] 7.1vs. 4.2 89.9 55.81 vs 44.19
Cg RL+Rollouts [21] 8.3 vs. 4.2 94.4 60.02 vs 39.98
Br=1 8.09 vs 4.08 92.02 77.13 vs 22.87
@ Bt =10 8.27 vs 4.23 94.79 88.56 vs 11.44
5 Bt = 1000 | 8.21vs4.33 94.65 87.05 vs 12.95
Bt = 10+Rollouts | 8.58 vs 4.13 95.75 93.62 vs 6.38

Table 2. Prioritising words with greater uncertainty leads to better
performance in negotiations.‘% Selection’ represents the percent-
age of trials in which the final decision is made by each agent.
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(1) the sum of values for all items for each agent is 10;
(2) each item has a non-zero value for at least one agent;
and (3) there are items with non-zero value for both agents.
These constraints are to ensure both agents cannot receive
a maximum score, and that no item is worthless to both
agents. After 10 turns, agents are given the option to com-
plete the negotiation with no agreement, which is worth 0
points to each. There are 3 item types (books, hats, balls) in
the dataset and between 5 and 7 total items in the collection.

Implementation Details The supervised learning model
comprises 4 recurrent neural networks implemented as
GRUs. The agent’s input goal is encoded as the hidden
state of a GRU with size 64. The tokens are generated
by sampling from the distribution of tokens. Simple max-
imum likelihood often leads to accepting an offer because
it is more often than proposing a counter offer. To rem-
edy this problem, similar to the previous GuessWhat exper-
iment, we perform goal-oriented reinforcement learning to
fine-tune the model. In addition, following [21] we exper-
imented with rollouts. That is, considering the future ex-
pected reward in the subsequent dialogue, which is similar
to the beam search in the previous experiment.

Results & Ablation Analysis Results are shown in
Tab. 2. We report the average reward for each agent and
the percentage of agreed upon negotiations. We see that our
approach significantly outperforms the baseline RL. This is
due to the information-seeking behaviour of our approach
that leads to the agent learning to perform better negotia-
tions and achieve agreements when the deals are acceptable.

We also evaluate the influence of 3; (in Eq. 7), which
controls how much the uncertainty is taken into account in
selecting a word, in turn controling the extent of exploration
in dialogue generation. Increasing f3; leads to more explo-
ration and more confidence in the actions at the expense of
later convergence. From Tab. 2, we can see that a larger 3;
leads to better performance. We also observed that if 3; is
too high, say 1000, it diminishes performance as the agent
continues exploring (by uttering risky statements that may
lead to better understanding of the agent’s counterpart at the
cost of losing the deal) rather than exploiting its knowledge
about the best word choices at each step of the negotiation.

Tab. 3 shows examples of the negotiations generated us-
ing our model. The baseline model sometimes refuses an
option that could lead to a desirable deal. She learns to be
forceful in some cases, and consistent. This is because our
model uncovers that by taking this risk, the counterpart may
change his strategy. This is in part due to the fact that the
supervised case the agent is willing to compromise quickly
and our approach exploits that. This is achieved by repeat-
ing the same proposition by our model. Furthermore, our
model learns to give her counterpart an option to give him
a false sense of control over the negotiation, thus deceiv-
ing him. While she seems to have given-up in favour of the

Alice : book=(2, 0) hat=(2, 5) ball=(1, 0)
Bob : book=(2, 2) hat=(2, 2) ball=(1, 2)

Our Approach vs Baseline
Alice: i would like the hats

Baseline vs Baseline
Alice: i’d like the hats and the ball.

and the books. Bob: you can have the ball , but i
Bob: i need the hats and the need the hats and the books .
books. Alice: i need the hats and a book .

Alice: you can have the ball if
i can have the rest

Bob: ok deal
Alice: 10, Bob: 2 points Alice: 0, Bob: 4 points

Alice : book=(1, 0) hat=(1, 7) ball=(3, 1)

Bob : book=(1, 9) hat=(1, 1) ball=(3, 0)

Bob: i would like the book and Bob: i want the book and 2 balls
the hat . Alice: i need the hat and the balls

Alice : you can have the book Bob: i need the book and one ball
if i can have the rest Alice: how about i take the hat and 1

Bob: ok , deal ball?
Bob: sorry i cant make a deal without

the book

Alice: then we will need the hat and
the book

Alice: 10, Bob: 9 points Alice: 0 (7)*, Bob: 0 points

Table 3. Samples from the negotiation experiments: Our approach
is Alice and Bob is the baseline. * is the potential reward.

Bob: no deal . i can give you the ball
and both books

other’s benefit, she enforces her choice and is consistent.

5. Conclusion

One of the primary limitations of current goal-directed
dialogue systems is their limited ability to identify the infor-
mation required to achieve their goal, and the steps required
to obtain it. This limitation inherent in any reinforcement
learning-based system that needs to learn to acquire the in-
formation required to achieve a goal. We have described a
simple extension to reinforcement learning that overcomes
this limitation, and enables an agent to select the action that
is most likely to provide the information required to meet
their objective. The selection process is simple, and con-
trollable, and minimises the expected regret. It also enables
a principled approach to identifying the appropriate point at
which to stop seeking more information, and act.

The approach we propose is based on a principled
Bayesian formulation of the uncertainty in both the inter-
nal state of the model, and the process used to select actions
using this state information. We have demonstrated the per-
formance of the approach when applied to generating goal-
oriented dialogue, which is one of the more complex prob-
lems in its class due to the generality of the actions involved
(natural language), and the need to adapt to the unknown
intentions of the other participant. The proposed approach
none the less outperforms the comparable benchmarks.

Acknowledgment: We gratefully acknowledge the sup-
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