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Abstract

One of the core challenges in Visual Dialogue problems

is asking the question that will provide the most useful infor-

mation towards achieving the required objective. Encour-

aging an agent to ask the right questions is difficult because

we don’t know a-priori what information the agent will need

to achieve its task, and we don’t have an explicit model of

what it knows already. We propose a solution to this prob-

lem based on a Bayesian model of the uncertainty in the im-

plicit model maintained by the visual dialogue agent, and

in the function used to select an appropriate output. By se-

lecting the question that minimises the predicted regret with

respect to this implicit model the agent actively reduces am-

biguity. The Bayesian model of uncertainty also enables

a principled method for identifying when enough informa-

tion has been acquired, and an action should be selected.

We evaluate our approach on two goal-oriented dialogue

datasets, one for visual-based collaboration task and the

other for a negotiation-based task. Our uncertainty-aware

information-seeking model outperforms its counterparts in

these two challenging problems.

1. Introduction

One of the fundamental problems in any challenge that

requires actively seeking the information required to carry

out a task is that of identifying the information that will best

enable the agent to achieve its objective. Identifying the in-

formation needed, and how to get it, is inherently complex,

not least because the space of all possibly useful informa-

tion is so large. We propose a solution to this problem here

that is applicable to reinforcement learning in general, and

that we demonstrate on the challenging problem of goal-

oriented visual dialogue.

Goal-oriented visual dialogue requires the participants to

engage in a natural language conversation towards a speci-

fied objective. The objectives of the two participants might

be collaborative, such as communicating the identity of a

specific object in an image [14], or they may be adversar-
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Is he wearing a …
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Figure 1. In GuessWhat [14] one player knows the correct ob-

ject (here shown in a red box), and the other must ask questions

to identify it. Traditionally an agent would generate questions by

sequentially selecting words with the highest conditional probabil-

ity, even though knowing the answer might be uninformative (in

this case ‘shirt’ in the Baseline histogram). Our solution, however,

selects ‘blue’, which corresponds to the highest sum of the proba-

bility and standard deviation (likely to be the most ‘informative’).

ial (see Sec. 4.2).

The primary technological challenge in goal-oriented vi-

sual dialogue is to devise natural language interactions that

are directed towards achieving the required objective. This

is in contrast to the more traditional approach that aims only

to keep the other participant talking for as long as possi-

ble [22, 27, 37]. Note that the performance criteria in these

two approaches are opposite, as in goal-directed visual dia-

logue success is indicated by achieving the shortest possible

conversation.

Inspired by the success of deep learning in both com-

puter vision and natural language processing (NLP), most

recent goal-oriented dialogue studies rely on sequence-to-

sequence (seq2seq) deep learning models [34, 37]. Ob-

taining the large datasets this approach requires is chal-

lenging, however. As a partial solution, a combination of

seq2seq and deep reinforcement learning [35] are are com-

monly used to train a model (i.e. agent) with unlimited self-

generated data in a self-play environment. Even if this was

achieved ideally, however, it is unlikely that it would lead
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to an agent capable of carrying out the complex reasoning

needed to devise the next interaction that will recover ex-

actly the information required to achieve an as yet unspeci-

fied objective.

Ideally, rather than learning to generate questions solely

by reinforcement learning, the method should calculate the

question that, when answered, will provide the most useful

information for achieving the agent’s objective. The direct

approach would require enumerating everything the agent

might ever need to know, and the value of each such piece

of information towards achieving its as yet unspecified ob-

jective. This would allow the identification of the missing

piece of information that is most critical to achieving the

agent’s objective, and the formulation of a corresponding

question.

This direct approach is infeasible because the agent has

the capacity to store all of the information it might need

to hold about the task, the intention of its counterpart, the

image, and so on. Additionally, in the current state of the

art approaches, this information is stored implicitly in the

weights of a neural network. Defining the scope of such

an information store is impossible, which makes measuring

its information content infeasible. Explicitly relating the

information stored to the agent’s objective is similarly in-

feasible. This makes it impossible to directly identify the

question that will provide the most useful information to-

wards achieving the agent’s objective.

Visual dialogue models trained using reinforcement

learning already learn to estimate the value of a particular

question as a step towards achieving their objective. This

is represented in the model’s value function. All that is re-

quired is a method for identifying the gaps in the model’s

internal information. We could then combine these informa-

tion gaps with the learned policy to identify the most useful

question.

Given that the models in question represent their internal

information implicitly, a good approximation of the model’s

information gaps is available in the uncertainty of its in-

ternal state. By propagating the model’s internal uncer-

tainty through the question generation process we can thus

identify questions that best reflect the model’s ambiguity in

achieving its objective. This is as compared to the current

process that selects the question the model is most certain

about (see Fig. 1).

We thus propose an information-seeking decoder (see

Fig. 2) that chooses each word in a question based on its

uncertainty about the environment and conditioned on the

history of the conversations. We prove this leads to the

minimum expected regret. An additional benefit of having

an accessible estimate of a model’s uncertainty is that it al-

lows a more systematic identification of the point at which

enough information has been gathered to make the required

decision.

We evaluate our model primarily on the well-known col-

laborative goal oriented visual dialogue problem Guess-

What [14]. To demonstrate that it is equally applicable to

(non-collaborative) negotiation tasks we also relate its per-

formance on Deal or No Deal [21]. GuessWhat is a visual

dialogue game between two agents in which they cooper-

ate to identify one of many objects in an image. Deal or

No Deal challenges two players to partition a collection of

items such that each is assigned to one only player. In con-

trast to GuessWhat, this game is semi-cooperative in that

one player can win more than their counterpart. Our ap-

proach significantly outperforms the baseline on both tasks.

Our framework is summarised in Fig. 2.

Overall, our contributions are fourfold:

• We propose a Bayesian Deep Learning method for

quantifying the uncertainty in the internal represen-

tation of a Reinforcement Learning model. This is

significant as it provides a theoretically sound method

for propagating uncertainty to the output space of the

model.

• We describe an uncertainty-aware information-seeking

decoder for goal-oriented conversation that actively

formulates questions that will provide the information

the agent needs to achieve its objective.

• We devise a method that exploits the confidence of

the predictor as a measure to indicate if the model

has enough information to produce an accurate output.

We show this approach is effective and leads to fewer

rounds of conversation for a goal to be achieved.

• We show that in both visual and textual dialogue chal-

lenges, whether cooperation or adversarial behaviour

is desired, our approach outperforms the baselines. To

the best of our knowledge, this is the first approach that

works well across domains and tasks.

2. Related Work

Goal-oriented dialogue Dialogue generation [22, 23, 29,

3] has been studied for many years in the NLP literature,

and has many applications. Dialogue generation is typi-

cally viewed as a Seq2Seq problem, or formulated as a sta-

tistical machine translation problem [26, 29, 2]. Recently,

dialogue systems have been extended to the visual domain.

For example, Das et al. [11] proposed a visual dialogue task

that allows a machine to chat with a human about the con-

tent of a given image. Goal-oriented dialogue requires the

agent understand a user request and complete a related task

with a clear goal within a limited number of turns. Early

goal-oriented dialogue systems [38, 41] model conversation

as partially observable Markov Decision Processes (MDP)

with many hand-crafted features for the state and action

space representations, which restrict their usage to narrow

domains. Bordes et al. [8] propose a goal-oriented dialogue
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Figure 2. The framework in two applications in this paper: we develop a generic information-seeking decoder for dialogue systems. Our

decoder selects each word optimistically with an upper bound on the reward to maximise the information obtained (details in Sec. 3.2).

Samples from the reward posterior is taken by applying dropout to the context variable of the RNN which provably performs variational

inference (see Eq. 1 and the Supplements for details).

test-bed that requires a user chat with a bot to book a table

at a restaurant. In visual goal-oriented dialogue De Vries et

al. [14] propose a guess-what game style dataset, where one

person asks questions about an image to guess which object

has been selected, and the second person answers questions

as yes/no/NA.

RL in dialogue generation Reinforcement learning (RL)

has been applied in many dialogue settings. Li et al. [22]

simulate two virtual agents and hand-craft three rewards to

train the response generation model. Recently, some works

[6, 32] make an effort to integrate the Seq2Seq model and

RL. RL has also been widely used to improve dialogue man-

agers, which manage transitions between dialogue states

[25, 28]. In visual dialogue, Das et al. [11] use reinforce-

ment learning to improve cooperative bot-bot dialogues,

and Wu et al. [40] combine reinforcement learning and

generative adversarial networks (GANs) to generate more

human-like visual dialogues. In [12], Das et al. introduce a

reinforcement learning mechanism for visual dialogue gen-

eration. They establish two RL agents corresponding to

question and answer generation respectively, to finally lo-

cate an unseen image from a set of images. The question

agent predicts the feature representation of the image and

the reward function is given by measuring how close the

representation is compared to the true feature.

Uncertainty There are typically two sources of uncer-

tainty to be considered: Aleatoric and Epistemic [19]. The

former addresses the noise inherent in the observation while

the later captures our ignorance about which model gener-

ated our data. Both sources can be captured with Bayesian

deep learning approaches, where a prior distribution over

the model weights is considered. However, performing

Bayesian inference on a deep neural network is challeng-

ing and computationally expensive. One simple technique

that has recently gained attention is to use Monte Carlo [1]

dropout sampling which places a Bernoulli distribution over

network weights [16, 17, 5, 4].

Most recently, Lipton et al. [24] proposed a Bayes-by-

Backprop Q-network (BBQ-network) to approximate the

Q-function and the uncertainty in its approximation. It en-

courages a dialogue agent to explore state-action regions

in which the agent is relatively uncertain in its action se-

lection. However, the BBQ-network only uses Thompson

sampling to model the distribution of rewards for the words

in a Bayesian manner and ignores the uncertainty in the es-

timators. This can lead to very uncertain decisions about

confident actions or vice versa. Our method, on the other

hand, models both the uncertainty in the actions (i.e. word

choices), and the estimators, by directly incorporating the

variance in the sampling procedure. We also provide a the-

oretical justification for the selection which is guaranteed to

minimise regret.

3. Goal-oriented Dialogue Systems

We ground our goal-oriented dialogue problem as an in-

teractive game between two agents for a collection of items.

The items are either 1) multiple objects in an image for one

agent to identify by asking the other questions, or 2) ob-

jects for the agents to split by negotiation. Conditioned on

this game, once enough information is gathered, a Guesser

takes the dialogue history and predicts the goal. The game

is a success when the goal is achieved. The game between

these two agents effectively simulates real natural language

based conversation to achieve a particular goal, e.g. uncov-

ering an unknown object, or an agreed split.

Each game is defined as a tuple (I,D,O, o∗), where I

is the observed collection, D is the dialogue with Tdialogue

rounds of conversation pairs (Wj ,W
′
j)

Tdialogue

j=1 and Wj =
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(w(t))
Mj

t=1 is a sequence of Mj tokens w(t) with a a prede-

fined vocabulary V , and W ′
j is the response. O = (on)

No

n=1

is the list of objects, where No is the number of candidate

objects in the collection. o∗ is the target or a list of targets.

In the GuessWhat game [14], o∗ is a target object that the

dialogue refers to. In the Deal or No Deal [21], it is a list of

target objects that the negotiator agent is interested in.

Given an input collection I , an initial statement W1 is

generated by sampling from the model until the stop to-

ken is encountered. Then the counterpart agent receives

the statement W1, and generates the answer W ′
1, the pair

(W1,W
′
1) is appended to the dialogue history. We repeat

this loop until the end of dialogue token is sampled, or the

number of questions reaches the maximum. Finally, the

Guesser takes the whole dialogue D and the object list O

as inputs to predict the goal. We consider the goal reached

if o∗ is selected.

3.1. RL for Dialogue Generation

We model dialogue generation as a Markov Decision

Process (MDP) to be solved by using a reinforcement learn-

ing (RL) agent [35]. The agent interacts with the environ-

ment over a sequence of discrete steps in which we have

the dialogue generated based on the collection I at time

step t in round T , the state of agent with the history of

conversation pairs and the tokens of current question gen-

erated so far: St =
(

I, (Wj ,W
′
j)

T−1
j=1 , (w

(t)
T )mt=1

)

, where

t =
∑T−1

k=1 Mk + m. The action of agent is to choose the

subsequent token w
(t+1)
T from the vocabulary V (we drop

T for brevity). Depending on the action the agent takes, the

transition between two states falls into one of the following:

1) wt+1 = end of statement: The current statement is

finished, it is the other agent’s turn.

2) wt+1 = end of dialogue: The dialogue is finished, the

Guesser selects the output from list O.

3) Otherwise, the newly generated token wt+1 is ap-

pended to the current statement, the next state St+1 =
(

I, (Wj ,W
′
j)

T−1
j=1 , (w

(t)
T )m+1

T=1

)

.

The maximum length of a statement Wj is Mmax, and

the maximum number of rounds in a dialogue is Tdialogue.

Therefore, the number of time steps t of any dialogue are

t ≤ Mmax∗Tdialogue. We use the stochastic policy πθ(w|S),
where θ represents the parameters of the deep neural net-

work that produces the probability distributions for each

state. The goal of the policy learning is to estimate the pa-

rameter θ. At the end of the dialogue, a decision about the

unknown goal is made for which a reward is given by the

environment. RL seeks to maximise the expected reward.

After a complete dialogue is generated, we update the

RL agent’s parameters based on the outcome of the dia-

logue. Let rw(t) be the reward for achieving the goal after

completing the dialogue, γ be a discount factor, and b be

a bias function estimating the running average of the com-

pleted dialogue rewards so far1. Let future reward R for an

action w(t) be R(w(t)) = E
[
∑∞

i=0 γ
i(rwt+i − b(wt+i))

]

where expectation is with respect to the policy π. The pa-

rameters of this model comprising of the policy and the

bias function are then optimised using gradient policy the-

orem [36] and REINFORCE [39]. The policy determines

how a statement is made in a dialogue system. Note that

at each step there is an estimation of the reward (which is

never directly observed) for each word in the RL and the

observable reward is only given to the complete dialogue.

Upon receiving the reward for the complete dialogue the

parameters are accordingly updated. Utilising this estima-

tion of the reward at each stage and a particular choice of

the word strategy, a sequence of words is generated.

In the subsequent section we discuss a particular strategy

that utilises the uncertainty in the policy (model) and seeks

to provide a better approach for exploration of the space

of possible dialogues. Moreover, since REINFORCE is a

Monte Carlo estimate that is known to have a high variance,

there is an additional source of uncertainty in evaluation of

the expected rewards. As such, it is essential to consider

uncertainty in policies manifesting in word choices.

3.2. Information­seeking Decoder

The decoder’s objective is, given the dialogue thus far, to

choose the subsequent word such that the resulting response

is most “informative”. To that end, we assume there is an

underlying reward for each word rw(t) at step t that we seek

to uncover by exploring the space of actions (tokens in the

vocabulary). A common practice is to model this value as

the output of a deterministic function fθ(w
(t)) : V → R

parameterised by θ such as a neural network for sequential

problems (e.g. LSTMs [18] or GRUs [9]). To select the

subsequent action using this function one can greedily se-

lect the action with highest value or sample from a softmax

(categorical distribution) built from this function.
However, this approach does not account for the uncer-

tainty in the prediction of the reward rw(t) . This uncertainty
has two main sources, (1) model uncertainty which is due
to the imperfections in the parameters and (2) prediction
uncertainty which is due to the lack of information about
each action and its consequence. We choose a prior for the
parameters and update them with the likelihood of the dia-
logue observations to obtain the posterior distribution in a
Bayesian manner. The posterior at round T is:

p(θ|Rt, Dt, I) =
1

Z

∏

t

p(w(t)|(Wj ,W
′

j)
T−1
j=1 ,Rt, I, fθ)p(θ)

(1)

where Z is the normaliser and p(θ) is a prior for the pa-

rameters. Here, Rt = rw(1) , . . . , rw(t) is the set of rewards

collected up to step t in the dialogue. This formulation has a

1This bias function reduces the variance of the estimator.
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self-regularising behaviour that, unlike likelihood maximi-

sation, is less susceptible to a local optima and performs

better in practice. The predictive distribution of rewards

from which each word is chosen becomes2:

p(rw(t+1) |w(t+1),Rt, Dt, I)

=

∫

p(rw(t+1) |w(t+1), fθ)p(θ|Rt, Dt, I)dθ (2)

≈
1

N

N
∑

i=1

p(rw(t+1) |w(t+1), f
(i)
θ

), f
(i)
θ

∼ p(θ|Rt, Dt, I)

where N is the number of samples for the Monte Carlo

estimation of the integral and

p(rw(t+1) |w(t+1), fθ) = softmax(fθ(w
(t+1)
1 ), . . . , w

(t+1)
|V | )

(3)
where |V | is the size of the dictionary. However, the poste-
rior p(θ|Rt, Dt, I) in Eq.1 does not have a closed-form so-
lution. Thus, we resort to variational inference [15], the de-
tails of which is provided in the Supplements. In a nutshell,
inspired by [16, 17] we show that the posterior is approx-
imated by a particular mixture model which is equivalent
to performing typical MAP with dropout regularisation for
dialogue generation. Further, the Monte Carlo estimate in
Eq.2 is efficiently computed by applying dropout N times
in the RNN network (note we take N context variables in
Fig. 2). Hence, the mean and variance of the rewards com-
puted from the posterior are:

µ̂(w(t)) =
1

N

N
∑

i=1

f
(i)
θ

(w(t)) (4)

σ̂
2(w(t)) =

1

N

N
∑

i=1

(

f
(i)
θ

(w(t))− µ(w(t))
)2

+ τ
−1

(5)

where τ is the precision parameter. Using Chebyshev’s
inequality, we have:

p
(

∣

∣fθ(w
(t))− µ̂(w(t))

∣

∣ < βtσ̂(w
(t))

)

≥ 1−
1

β2
t

(6)

which means for βt > 0, with high probability we have
∣

∣fθ(w
(t)) − µ̂(w(t))

∣

∣ < βtσ̂(w
(t)) for a random function

fθ(w
(t)). Hence we have an upper bound on the random

function fθ with high probability:

fθ(w
(t)) < µ̂(w(t)) + βtσ̂(w

(t)) (7)

Selecting an action (word) with this upper bound both

accounts for the estimation of the high–reward values by

µ̂(w(t)) and the uncertainty in this estimation for the given

word σ̂(w(t)). In this bound, βt controls how much the un-

certainty is taken into account for selecting a word. Fur-

thermore, it is clear that with βt → 0 this upper bound

2An alternative view is that we model fθ as a stochastic function and

choose words accounting for their uncertainty. fθ is fully realised by its

parameters θ, hence we use the uncertainty in the functional and the pa-

rameters interchangeably.

approaches greedy selection. In the reinforcement learning

context, this approach mediates the exploration-exploitation

dilemma by changing βt.

This upper-bound is inspired by the Upper Confidence

Bound (UCB) which is popular in multi-armed bandit prob-

lems [10]. A similar upper bound for Gaussian processes

was proposed in [30]. However, this bound for neural net-

works, in particular for dialogues systems, is novel.

Expected Regret and Information For a dialogue agent,

a metric for evaluating performance is cumulative regret,

that is the loss due to not knowing the best word to choose

at a given time. Suppose the best action at round t is w
(t)
∗

for our choice w(t) , we incur instantaneous expected regret,

ρt = Efθ

[

fθ(w
(t)
∗ ) − fθ(w

(t))
]

. The cumulative regret ρ′T
after T rounds is the sum of instantaneous expected regrets:

ρ′T =
∑T

t=1 ρt. Note that neither ρt nor ρ′T are ever re-

vealed during dialogues generation. Our expected regret at

each round is bounded as

ρt < Efθ

[

µ̂(w(t)) + βtσ̂(w
(t))− fθ(w

(t))
]

< 2βtσ̂(w
(t))
(8)

where the first inequality is due to fθ(w
(t)
∗ ) < µ̂(w(t)) +

βtσ̂(w
(t)) and the second one is because

∣

∣fθ(w
(t)) −

µ̂(w(t))
∣

∣ < βtσ̂(w
(t)), then −fθ(w

(t)) < −µ̂(w(t)) +

βtσ̂(w
(t)). Therefore, we have

ρ
′

T < 2
∑

t

βtσ̂(w
(t)) (9)

As such, the expected regret for each word selected is

bounded by the standard deviation of the predicted reward.

When we choose words with high standard deviation, we

actively seek to gain more information about the uncertain

words to effectively reduce our expected regret.

Further, let’s assume the predictive distribution is near

Gaussian with mean and variance µ̂(w(t)), σ̂2(w(t)) (which

considering the central limit theorem is natural). The en-

tropy is then 1
2 log(2πeσ̂

2(w(t))). Hence, selecting ac-

tions with higher uncertainty is also justified from an

information-theoretic perspective as means of selecting in-

formative words. In a dialogue system, when uttering a sen-

tence with length T the information we can obtain is at most

(using the union bound) 1
2

∑T

t log(2πeσ̂2(w(t))). An alter-

native to using the approach in Eq. 7 is to choose the words

with highest entropy (the most informative words). How-

ever, that is an extreme case that will lead the RL algorithm

to continuously explore the dialogue space.

3.3. Stopping Dialogue
One of the key challenges in a goal-oriented dialogue

system is to identify the point at which the agent has suffi-

cient information to make the required decision. We speci-

fied above that the probability of the unknown goal given

the dialogue thus far is p(ot+1|Dt). The uncertainty in
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Algorithm 1 Training information-seeking dialogues

1: for Each update do

2: # Generate trajectories

3: for k = 1 to K do ⊲ Select K of the objects/items

4: Pick target objects o∗
k
∈ Ok

5: Set Dt to initial input collection

6: for j = 1 to Tdialogue do ⊲ Generate (Wj ,W
′

j) pairs

7: while w(t+1) not <stop> do

8: Sample f
(n)
θ

∼ p(fθ |Wj ,Rt), n = 1, . . . , N

9: Set µ̂(w(t)), σ̂(w(t)) from f
(n)
θ

10: w(t+1) = argmaxw µ̂(w) + βtσ̂
2(w)

11: end while

12: W ′

j = SuperviseAgent(Wj , Dt)

13: if <stop> ∈ Wj or H(ot+1|Dt) ≤ η then ⊲ Sec. 3.3

14: delete (Wj ,W
′

j) and break;

15: else

16: append w(t+1) to Wj

17: end if

18: append (Wj ,W
′

j) to Dt

19: end for

20: ok = argmaxo p(o|Dt) ⊲ Predict the goal

21: reward =

{

1 If ok = o∗
k

0 Otherwise

22: end for

23: Evaluate policy and update parameters θ

24: end for

this measure reflects the agent’s confidence in its prediction,

and thus provides a natural measure for the stopping crite-

ria of the conversation. Intuitively, the agent stops when it

feels confident in its prediction of the goal. Hence, we have

H(ot+1|Dt) ≤ η where H is the entropy and η is an appro-

priately chosen hyper-parameter for the confidence. When

η is larger, we allow for less confident predictions leading

to shorter dialogues. See Alg. 1 for the full algorithm.

4. Experiments
To evaluate the performance of the proposed approach

we conducted experiments on two different goal-oriented

dialogue tasks: GuessWhat [14] and Deal or No Deal [21].

Our approach outperforms the baseline in both cases. In

both experiments we pre-train the networks using the su-

pervised model and refine using reinforcement learning.

To that end, we employ a two stage algorithm in which

we learn to imitate the human dialogue behaviour in a su-

pervised learning task and subsequently fine-tune for bet-

ter generalisation and goal discovery using reinforcement

learning. In both experiments, our decoder takes the his-

tory of the dialogue in addition to input collection (e.g. an

image) and, guided by the uncertainty of each word, pro-

duces a question. Similar two-stage approaches are taken

in [13, 14, 21]. Without using supervised learning first, the

dialogue model may diverge from human language.

4.1. GuessWhat
In GuessWhat [14] a visually rich image with several ob-

jects is shown to two players. One player selects an object

New Object

Sampling Greedy Beam Search Avg. Ques

Supervised [14] 41.6 43.5 47.1 5

RL [31] 58.5 60.3 60.2 5

TPG [43] 62.6 - - 5

Ours 61.4 62.1 63.6 5

Ours (η = 0.05) 58.5 59.5 59.6 4.2

Ours (η = 0.01) 59.8 59.3 60.4 4.5

Ours+MN 68.3 69.2 - 5

New Image

Supervised [14] 39.2 40.8 44.6 5

RL [31] 56.5 58.4 58.4 5

Ours 59.0 59.82 60.6 5

Ours (η = 0.05) 56.7 56.5 57.3 4.3

Ours (η = 0.01) 58.0 57.5 58.5 4.5

Ours+MN 66.3 67.1 - 5

Table 1. Accuracy in identifying the goal object in the GuessWhat

dataset (higher is better). The numbers in parentheses is the thresh-

old used in questions for guessing the object in the image. Average

number of questions is shown at the last column (lower is better).

from the image. The task of the other player, the ques-

tioner, is to locate the unknown object by asking a series

of yes/no questions. After enough information is gathered

by the questioner, it then guesses what the selected object

was. If the questioner guesses the correct object the game

is successfully concluded. It is desirable for the questioner

to guess the correct answer in as few rounds of question-

ing as possible. The dataset includes 155, 281 dialogues

of 821, 955 pairs of question/answers with vocabulary size

11, 465 on 66, 537 unique images and 134, 074 objects.

Implementation Details We follow the same experimen-

tal setup as [14] in which three main components are built:

a yes/no answering agent, a guesser and a questioner. The

questioner is a recurrent neural network (RNN) that pro-

duces a sequence of state vectors for a given input sequence

by applying long-short term memory (LSTM) as a transition

function. The output of this LSTM network is the internal

estimate of the reward with size 1024. To obtain a distribu-

tion over tokens, a softmax is applied to this output.

The samples of the reward estimate in the questioner are

taken utilising dropout with parameter 0.5. Subsequently,

the upper bound in Eq. 7 is calculated to choose words. For

this experiment we set βt = 13.

Once the questioner is trained using our information

seeking decoder in RL, we take three approaches to evaluat-

ing the performance of the questioner: (1) sampling where

the subsequent word is sampled from the multinomial dis-

tribution in the vocabulary, (2) greedy where the word with

maximum probability is selected and (3) beam search keep-

ing the K-most promising candidate sequences at each time

step (we choose K = 20 in all experiments). During train-

ing the baseline uses the greedy approach to select the se-

3We observed marginal performance improvement by using a larger β

on Guesswhat, despite the additional training overhead.
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is it a person? Yes

M
an

in
O

ra
n

g
eis he wearing a brown coat? No

is he wearing a white shirt? No

is he wearing a blue shirt? No

are they sitting down? No

is it the guy in the orange shirt

to the left?

Yes

Figure 3. Sample dialogue from the GuessWhat dataset. The agent

asks about a brown coat and then changes it to orange in anticipa-

tion of wrong identification.

quence of words as in [14].

Overall Results We compare two cases, labelled New

Object and New Image. In the former the object sought is

new, but the image has been seen previously. In the latter

the image is also previously unseen. We report the predic-

tion accuracy for the guessed objects. It is clear that the

accuracies are generally higher for the new objects as they

are obtained from the already seen images.

The results are summarised in Tab. 1. As shown, simply

applying REINFORCE improves the output of the system

significantly, in particular in the new image case where the

generalisation is tested. This improvement is because the

question generator has the chance to better explore possible

questions. Additionally, the greedy approach outperforms

others in the RL baseline in [31]. This illustrates that the

distribution of the words obtained from the softmax in the

question generator is not very peaked and the difference be-

tween the best and second best word is often small. This

indicates that the prediction at test time is very uncertain

and supports our approach.

Since our approach seeks uncertain words, those words

are exploited at training time, which leads to lower vari-

ance (a more peaked distribution) and better performance

of the greedy selection. Beam search significantly increases

performance when we carry out 5 rounds (as in [14, 31])

of question-answering. This is because the most informa-

tive words are selected by our approach which, combined

with the beam-search’s mechanism for forward exploration,

leads to better performance.

Note that our approach is generic enough that can be

used in combination with other architectures (e.g. [20, 42]).

For instance, in Tab. 1 “Ours+MN” uses the Memory Net-

work [33] and Attention mechanism [7] in the Guesser (sim-

ilar to that of [43]) which leads to better question genera-

tion. Fig. 3 shows one example produced by our dialogue

generator. More examples can be found in the supplements.

Ablation Study on Early Stopping In goal-oriented dia-

logue systems, it is desirable to make a decision as soon as

possible. In this experiment, we control the dialogue length

by changing the threshold η (see Sec. 3.3 for more details).

When η is larger, we accept less confident predictions lead-

ing to shorter dialogues. As shown in the Tab. 1, our mod-

els achieve a comparable performance to the baseline even

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5

Baseline RL Ours

Figure 4. The proportion of dialogues successful in identifying the

goal object at each round in GuessWhat.

using shorter rounds of question answering. The Fig. 4

shows the proportion of dialogues successful in identifying

the goal object at each round. Our model achieves higher

accuracy even in the earlier rounds, e.g. at the round three.

Human Study To evaluate how well humans can guess

the target object based on the questions generated by our

models, we conduct a human study. Following [42], we

show human subjects 50 images with generated question-

answer pairs from our model, and let them guess the objects.

We ask three human subjects to play on the same split and

the game is recognised as successful if at least two of them

give the right answer. In our experiment, the average perfor-

mance of humans was 79% compared to 52% and 70% for

the supervised [14] and RL [31] models. We are even better

than a model proposed in [42] (76%), which has three com-

plex hand-crafted rewards. These results indicate that our

agent can provide more useful information that can benefit

a human in achieving the final goal.

4.2. Deal or No Deal
Here two agents receive a collection of items, and are

instructed to divide them so that each item is assigned to one

agent. This problem is, unlike the GuessWhat game, semi-

cooperative game in that the goals are adversarial. Each

agent’s goal is to maximise its own rewards which may be

in direct contradiction with its opponents goals.

Each item has a different random non-negative value for

each agent. These random values are constrained so that:

Score % Agreed % Selection

B
as

el
in

e Supervised [21] 5.4 vs. 5.5 87.9 50.78 vs 49.23

RL [21] 7.1 vs. 4.2 89.9 55.81 vs 44.19

RL+Rollouts [21] 8.3 vs. 4.2 94.4 60.02 vs 39.98

βt = 1 8.09 vs 4.08 92.02 77.13 vs 22.87

O
u
rs βt = 10 8.27 vs 4.23 94.79 88.56 vs 11.44

βt = 1000 8.21 vs 4.33 94.65 87.05 vs 12.95

βt = 10+Rollouts 8.58 vs 4.13 95.75 93.62 vs 6.38

Table 2. Prioritising words with greater uncertainty leads to better

performance in negotiations.‘% Selection’ represents the percent-

age of trials in which the final decision is made by each agent.
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(1) the sum of values for all items for each agent is 10;

(2) each item has a non-zero value for at least one agent;

and (3) there are items with non-zero value for both agents.

These constraints are to ensure both agents cannot receive

a maximum score, and that no item is worthless to both

agents. After 10 turns, agents are given the option to com-

plete the negotiation with no agreement, which is worth 0

points to each. There are 3 item types (books, hats, balls) in

the dataset and between 5 and 7 total items in the collection.

Implementation Details The supervised learning model

comprises 4 recurrent neural networks implemented as

GRUs. The agent’s input goal is encoded as the hidden

state of a GRU with size 64. The tokens are generated

by sampling from the distribution of tokens. Simple max-

imum likelihood often leads to accepting an offer because

it is more often than proposing a counter offer. To rem-

edy this problem, similar to the previous GuessWhat exper-

iment, we perform goal-oriented reinforcement learning to

fine-tune the model. In addition, following [21] we exper-

imented with rollouts. That is, considering the future ex-

pected reward in the subsequent dialogue, which is similar

to the beam search in the previous experiment.

Results & Ablation Analysis Results are shown in

Tab. 2. We report the average reward for each agent and

the percentage of agreed upon negotiations. We see that our

approach significantly outperforms the baseline RL. This is

due to the information-seeking behaviour of our approach

that leads to the agent learning to perform better negotia-

tions and achieve agreements when the deals are acceptable.

We also evaluate the influence of βt (in Eq. 7), which

controls how much the uncertainty is taken into account in

selecting a word, in turn controling the extent of exploration

in dialogue generation. Increasing βt leads to more explo-

ration and more confidence in the actions at the expense of

later convergence. From Tab. 2, we can see that a larger βt

leads to better performance. We also observed that if βt is

too high, say 1000, it diminishes performance as the agent

continues exploring (by uttering risky statements that may

lead to better understanding of the agent’s counterpart at the

cost of losing the deal) rather than exploiting its knowledge

about the best word choices at each step of the negotiation.

Tab. 3 shows examples of the negotiations generated us-

ing our model. The baseline model sometimes refuses an

option that could lead to a desirable deal. She learns to be

forceful in some cases, and consistent. This is because our

model uncovers that by taking this risk, the counterpart may

change his strategy. This is in part due to the fact that the

supervised case the agent is willing to compromise quickly

and our approach exploits that. This is achieved by repeat-

ing the same proposition by our model. Furthermore, our

model learns to give her counterpart an option to give him

a false sense of control over the negotiation, thus deceiv-

ing him. While she seems to have given-up in favour of the

Alice : book=(2, 0) hat=(2, 5) ball=(1, 0)

Bob : book=(2, 2) hat=(2, 2) ball=(1, 2)

Our Approach vs Baseline Baseline vs Baseline

Alice: i would like the hats

and the books.

Bob: i need the hats and the

books.

Alice: you can have the ball if

i can have the rest

Bob: ok deal

Alice: i’d like the hats and the ball.

Bob: you can have the ball , but i

need the hats and the books .

Alice: i need the hats and a book .

Bob: no deal . i can give you the ball

and both books

Alice: 10 , Bob: 2 points Alice: 0 , Bob: 4 points

Alice : book=(1, 0) hat=(1, 7) ball=(3, 1)

Bob : book=(1, 9) hat=(1, 1) ball=(3, 0)

Bob: i would like the book and

the hat .

Alice : you can have the book

if i can have the rest

Bob: ok , deal

Bob: i want the book and 2 balls

Alice: i need the hat and the balls

Bob: i need the book and one ball

Alice: how about i take the hat and 1

ball?

Bob: sorry i cant make a deal without

the book

Alice: then we will need the hat and

the book

Alice: 10, Bob: 9 points Alice: 0 (7)∗, Bob: 0 points

Table 3. Samples from the negotiation experiments: Our approach

is Alice and Bob is the baseline. ∗ is the potential reward.

other’s benefit, she enforces her choice and is consistent.

5. Conclusion

One of the primary limitations of current goal-directed

dialogue systems is their limited ability to identify the infor-

mation required to achieve their goal, and the steps required

to obtain it. This limitation inherent in any reinforcement

learning-based system that needs to learn to acquire the in-

formation required to achieve a goal. We have described a

simple extension to reinforcement learning that overcomes

this limitation, and enables an agent to select the action that

is most likely to provide the information required to meet

their objective. The selection process is simple, and con-

trollable, and minimises the expected regret. It also enables

a principled approach to identifying the appropriate point at

which to stop seeking more information, and act.

The approach we propose is based on a principled

Bayesian formulation of the uncertainty in both the inter-

nal state of the model, and the process used to select actions

using this state information. We have demonstrated the per-

formance of the approach when applied to generating goal-

oriented dialogue, which is one of the more complex prob-

lems in its class due to the generality of the actions involved

(natural language), and the need to adapt to the unknown

intentions of the other participant. The proposed approach

none the less outperforms the comparable benchmarks.
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