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Abstract

This paper focuses on correcting a camera image that

has been improperly white-balanced. This situation oc-

curs when a camera’s auto white balance fails or when the

wrong manual white-balance setting is used. Even after

decades of computational color constancy research, there

are no effective solutions to this problem. The challenge

lies not in identifying what the correct white balance should

have been, but in the fact that the in-camera white-balance

procedure is followed by several camera-specific nonlin-

ear color manipulations that make it challenging to cor-

rect the image’s colors in post-processing. This paper in-

troduces the first method to explicitly address this problem.

Our method is enabled by a dataset of over 65,000 pairs

of incorrectly white-balanced images and their correspond-

ing correctly white-balanced images. Using this dataset,

we introduce a k-nearest neighbor strategy that is able to

compute a nonlinear color mapping function to correct the

image’s colors. We show our method is highly effective and

generalizes well to camera models not in the training set.

1. Introduction

When taking a photograph, we expect our images to be

correctly white-balanced. Computer vision algorithms im-

plicitly assume a correct white balance (WB) by expecting

their input image colors to be correct. What happens when

the WB is not correct? In such cases, the images have the

familiar bluish/reddish color casts that not only are undesir-

able from a photography standpoint but also can adversely

affect the performance of vision algorithms.

Correcting improperly white-balanced images is poorly

understood. Sources such as Matlab [1] purports misleading

solutions that suggest the problem is a matter of identifying

what the correct WB should have been and then applying

this as a post-correction. However, this solution is not ef-

fective and does not consider WB within the full context of

the in-camera processing pipeline.

Images with 
incorrect WB applied

Correction using 
diagonal 

correction

Correction using 
“linearization” and 
diagonal correction

Our results Ground truth
(correct camera WB)

WB: Shade

WB: Fluorescent 

Figure 1. Two incorrectly white-balanced images produced by dif-

ferent cameras and attempts to correct them using (1) a linear WB

correction, (2) correction by first applying a gamma linearization

( [3,17]), and (3) our results. Also shown is the ground truth image

produced by the camera using the correct WB.

WB is applied on board cameras to remove the color

cast in images caused by the scene’s illumination. WB falls

into the research area of computational color constancy that

aims to mimic the human visual system’s ability to perceive

scene colors similarly even when observed under different

illuminations [21]. WB correction is performed with a sim-

ple linear diagonal 3×3 matrix. The WB transform is ap-

plied to the camera’s raw-RGB image and is often one of the

first steps in the in-camera processing pipeline. After WB

is applied, several additional transforms are applied to con-

vert the image values from a sensor-specific raw-RGB color

space to an output-referred color space–namely standard

RGB (sRGB). These additional transforms include camera-

specific nonlinear color manipulations that make up a cam-

era’s photo-finishing routines (for more details, see [26]).

A simple model for the in-camera color manipulation from
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sensor raw-RGB to sRGB can be expressed as:

IsRGB = fXYZ→sRGB(Traw→XYZDWBIraw), (1)

where IsRGB and Iraw are 3×N matrices containing the image

values in the sRGB and raw-RGB spaces respectively, N is

the total number of pixels, D represents the 3×3 diagonal

WB matrix, T is a 3×3 linear transform that maps from

white-balanced raw-RGB to a device-independent color

space, such as CIE-XYZ (or one of its derivatives), and f(·)
is a nonlinear function that compounds various operations,

including color enhancement, tone-manipulation, and a fi-

nal sRGB gamma encoding. We can think of f(·) as the

collective in-camera color rendering operation performed

on the camera after WB. Prior works [11,27,29] have shown

that f(·) not only is specific to camera models but also de-

pends on the camera settings used during image capture.

From Eq. 1, it is clear that because WB is applied early in

the processing chain, attempting to correct it using a diago-

nal matrix will not work. Matlab suggests using an optional

pre-linearization step using a 2.2 gamma [3, 17]. However,

it has long been known that a 2.2 gamma does not reflect the

true nature of the f(·) function [15]. Fig. 1 shows examples.

Contribution We propose a data-driven approach to cor-

rect images that have been improperly white-balanced. As

part of this effort, we have generated a new dataset of over

65,000 images from different cameras that have been ren-

dered to sRGB images using each camera’s pre-defined WB

settings and picture styles. Each incorrect white-balanced

image in the dataset has a corresponding correct white-

balanced sRGB image rendered to a standard picture style.

Given an improperly white-balanced camera image, we out-

line a k-nearest neighbor strategy that is able to find simi-

lar incorrectly white-balanced images in the dataset. Based

on these similar example images, we describe how to con-

struct a nonlinear color correction transform that is used to

remove the color cast. Our approach gives good results and

generalizes well to camera makes and models not found in

the training data. In addition, our solution requires a small

memory overhead (less than 24 MB) and is computationally

fast.

2. Related Work

As far as we are aware, this paper is the first to directly

address the problem of correcting colors in an incorrectly

white-balanced image. The problem is related to three ar-

eas in computer vision: (i) computational color constancy,

(ii) radiometric calibration, and (iii) general color manipula-

tion. These are discussed within the context of our problem.

Computational Color Constancy WB is performed to

mimic our visual system’s ability to perceive objects as hav-

(A) sRGB rendered image with incorrect 
white balance

R      G       B
170   201   254
76    115   185

Color chart reference white

Scene (bridge) 
reference white

(D) Auto-color correction
(Adobe Photoshop)

R      G       B
232   229   227
112   116   159

Scene white is correct.
Color chart white is incorrect.

(F) sRGB rendered image with correct 
white balance (ground truth image)

R      G       B
213   213   213
121   121   121

Scene and color chart white 
are both correct.

(C) Diagonal correction of (A) using the 
scene (bridge) as a white reference

R      G       B
201  201    201
90   115    146

Scene white is correct.
Color chart white is incorrect.

(B) Diagonal correction of (A) using the 
color chart's patch as a white reference  

R      G       B
255  201   158
115  115    115

Color chart white is correct.
Scene white is incorrect.

(E) Our result

R      G       B
208  212   214
120  121   119

Scene white and color chart 
white are both improved

Figure 2. (A) A camera sRGB image with a wrong white balance

applied. (B) and (C) show traditional white balance correction

applied to the image using different reference white points manu-

ally selected from the image (note: this would represent the best

solution for an automatic illumination estimation algorithm). (D)

shows the result of auto-color correction from Adobe Photoshop.

(E) Result from our approach. (F) The ground truth camera image

with the correct white balance applied.

ing the same color even when viewed under different illu-

minations. WB requires the camera’s sensor response to

the scene’s illumination. Once the color of the illumination

is known, a 3×3 diagonal matrix is used to normalize the

illumination’s colors by mapping them to the achromatic

line in the camera’s raw-RGB color space (i.e., the raw-

RGB values corresponding to the the scene’s illumination

are mapped to lie on the R=G=B “white” line). The vast

majority of computational color constancy research is fo-

cused on illumination estimation. Representative examples

include [5, 6, 8, 10, 12, 20–22, 25, 35]. Illumination estima-

tion is computed in the camera’s raw-RGB color space and

makes up the camera’s auto WB mechanism.

Note that none of the aforementioned illumination esti-

mation methods are intended to be applied to sRGB images.

Even if an illumination estimation method could be used to

determine the color of an achromatic region in a sRGB im-

age, this information is still insufficient to correct an incor-

rectly white-balanced image. To stress this point, we pro-

vide an example in Fig. 2. Fig. 2-(A) shows a camera image

rendered through a camera pipeline to an sRGB output with

the incorrect WB. Two achromatic regions in the scene are

highlighted: (i) a patch from a white bridge and (ii) a neutral

patch from the color chart. The same scene is rendered with

the correct WB in Fig. 2-(F). Because the WB was applied

correctly in Fig. 2-(F), both the scene achromatic regions lie

on the white line (i.e., R=G=B). Fig. 2-(B) and (C) show

attempts at using standard diagonal WB correction using
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Training data (for each training image, we pre-calculate its mapping function M (j), its histogram, and PCA feature vector) 
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(1) + 2 Ms

(2) … + k Ms
(k)

Camera: Canon 600D
WB: Incandescent
Style: Neutral
Correction map: Ms

(2)

Camera: Canon 1Ds Mark III
WB: Fluorescent
Style: Portrait
Correction map: Ms

(1)

Camera: Nikon D5200
WB: Incandescent
Style: Landscape
Correction map: Ms

(k)

Compute a weighted mapping function M from 
the k similar training examples Ms

(i)

RGB-uv histogram

PCA feature

Find k similar images 
based on PCA feature

CA feat
v(Iin)

h(Iin)

…

Figure 3. An overview diagram of our overall procedure. For the input sRGB image and our training data, we first extract the histogram

feature of the input image, followed by generating a compact PCA feature to find the most similar k nearest neighbors to the input image

in terms of colors. Based on the retrieved similar images, a color transform M is computed to correct the input image.

the color chart’s patch and bridge scene region as reference

white, respectively. We can see that in both cases, only the

selected reference white region is corrected, while the other

region remains incorrect.

Radiometric Calibration Radiometric calibration is the

process of parameterizing a camera’s nonlinear color ma-

nipulation in order to reverse it. Radiometric calibration

essentially attempts to approximate f−1 from Eq. 1. There

have been a number of methods addressing radiometric cali-

bration (e.g., [11,23,27–31,38]). Radiometric calibration is

performed to linearize the photo-finished camera sRGB im-

ages in order to aid low-level computer vision tasks that re-

quire a linear response to scene irradiance (e.g., photomet-

ric stereo, image deblurring, HDR imaging) [33,34]. When

radiometric calibration data is available, it can be used to

undo the photo-finishing in an sRGB image in order to cor-

rect WB, as demonstrated by [27]. However, performing

radiometric calibration requires a tedious calibration pro-

cedure. The radiometric metadata needs to be stored and

associated with each captured image [34]. As a result, ra-

diometric calibration data is rarely available for most users.

Color Transformations Another topic related to our

work is color transformations that are used to map an

input image’s color space to some desired target color

space. These methods are typically used for the purpose

of colorimetric calibration. Representative examples in-

clude [2, 7, 16, 18, 19, 24]. Most of these methods rely on

explicit color correspondences between the input and target

color spaces. The most effective methods are those based on

polynomial color correction [19, 24] and recent root poly-

nomial color correction [19]. These approaches use kernel

functions that project the original color data from the three-

channel RGB color space to a higher-dimensional space.

Additional ad hoc methods include routines in software

such as Adobe Photoshop that perform auto-color and auto-

tone manipulation [14]. Fig. 2-(D) shows correction based

on Adobe Photoshop’s auto-color. Similar to Fig. 2-(B) and

(C), this can correct one of the regions, but not the other.

To date, there are no effective methods for correcting in-

correctly white-balanced camera images and often images

like Fig. 2-(A) are simply discarded.

3. Proposed Method

We begin with an overview of our approach followed by

specific implementation details. Our method is designed

with the additional constraints of fast execution and a small

memory overhead to make it suitable for incorporation as

a mobile app or as a software plugin. Alternative designs

and additional evaluation of parameters are provided in the

supplemental material.

3.1. Method Overview

Fig. 3 provides an overviews our framework. Given an

incorrectly white-balanced sRGB image, denoted as Iin, our

goal is to compute a mapping M that can transform the in-

put image’s colors to appear as if the WB was correctly ap-

plied.

Our method relies on a large set of n training images ex-

pressed as It = {I
(1)
t , ..., I

(n)
t } that have been generated

using the incorrect WB settings. Each training image has

a corresponding correct white-balanced image (or ground

truth image), denoted as I
(i)
gt . Note that multiple training

images may share the same target ground truth image. Sec-

tion 3.2 details how we generated this dataset.

For each pair of training image I
(i)
t and its ground truth

image I
(i)
gt , we compute a nonlinear color correction ma-

trix M
(i) that maps the incorrect image’s colors to its target
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Captured  raw-RGB image + camera 
render settings

sRGB rendered images
(different white-balance settings and picture styles)

…

Ground truth

WB: Cloudy
Style: Landscape

WB: Incandescent
Style: Landscape

WB: Manual
(Color chart white is reference)

Style: Adobe Standard

…

WB: Cloudy
Style: Portrait 

WB: Incandescent
Style: Portrait 

…

…

White balance settings:

Picture styles:
Landscape, Vivid,  … Portrait

Auto 
white balance

Cloudy Shade Incandescent
…

Figure 4. Example of rendering sRGB training images. Working

directly from the raw-RGB camera image, we render sRGB output

images using the camera’s pre-defined white balance settings and

different picture styles. A target white balance sRGB image is also

rendered using the color rendition chart in the scene to provide the

ground truth.

ground truth image’s colors. The details of this mapping are

discussed in Section 3.3.

Given an input image, we search the training set to find

images with similar color distributions. This image search

is performed using compact features derived from input and

training image histograms as described in Section 3.4. Fi-

nally, we obtain a color correction matrix M for our input

image by blending the associated color correction matrices

of the similar training image color distributions, denoted as

Ms. This is described in Section 3.5.

3.2. Dataset Generation

Our training images are generated from two pub-

licly available illumination estimation datasets: the NUS

dataset [12] and the Gehler dataset [20]. Images in

these datasets were captured using digital single-lens re-

flex (DSLR) cameras with a color rendition chart placed in

the scene that provides ground truth reference for illumina-

tion estimation. Since these datasets are intended for use

in illumination estimation, they were captured in raw-RGB

format. Because the images are in the camera’s raw-RGB

format, we can convert them to sRGB output emulating dif-

ferent WB settings and picture styles on the camera. To

do this, we use the Adobe Camera Raw feature in Photo-

shop to render different sRGB images using different WB

presets in the camera. In addition, each incorrect WB can

be rendered with different camera picture styles (e.g., Vivid,

Standard, Neutral, Landscape). Depending on the make and

model of the camera, a single raw-RGB image can be ren-

dered to more than 25 different camera-specific sRGB im-

ages. These images make up our training images {I
(1)
t , ...,

I
(n)
t }.

To produce the correct target image, we manually select

the “ground truth” white from the middle gray patches in

the color rendition chart, followed by applying a camera-

independent rendering style—namely, Adobe Standard.

This provides the target ground truth sRGB image Igt. Fig.

4 illustrates an example of a raw-RGB image from the NUS

dataset and the corresponding sRGB images rendered with

different WB settings and picture styles. In the end, we

generated 62,535 images from these datasets (there is an

additional set generated for cross-dataset validation using

the same approach; more details are given in Sec. 4.1).

3.3. Color Correction Transform

After generating our training images, we have n pairs of

images representing an incorrect WB image I
(i)
t and its cor-

rect WB image I
(i)
gt . These are represented as 3×N matrices,

where N is the total number of pixels in the image and the

three rows represent the red, green, and blue values in the

camera’s output sRGB color space.

We can compute a color correction matrix M
(i), which

maps I
(i)
t to I

(i)
gt , by minimizing the following equation:

argmin
M(i)

∥

∥

∥
M

(i) Φ
(

I
(i)
t

)

− I
(i)
gt

∥

∥

∥

F
, (2)

where ‖.‖F is the Frobenius norm and Φ is a kernel function

that projects the sRGB triplet to a high-dimensional space.

We have examined several different color transformation

mappings and found the polynomial kernel function pro-

posed by Hong et al. [24] provided the best results for our

task (additional details are given in the supplemental mate-

rials). Based on [24], Φ:[R, G, B]T → [R, G, B, RG, RB,

GB, R2, G2, B2, RGB, 1]T and M
(i) is represented as a

3×11 matrix. Note that spatial information is not consid-

ered when estimating the M
(i).

3.4. Image Search

Since our color correction matrix is related to the image’s

color distribution, our criteria for finding similar images are

based on the color distribution. We also seek compact repre-

sentation as these features represent the bulk of information

that will need to be stored in memory.

Inspired by prior work [5, 6], we construct a histogram

feature from the log-chrominance space, which represents

the color distribution of an image I as an m×m×3 tensor

that is parameterized by uv. We refer to this as an RGB-uv
histogram. This histogram is generated by the function h(I)
described by the following equations:

Iy(i) =
√

I2
R(i) + I2

G(i) + I2
B(i),

Iu1(i) = log
(

IR(i)

)

− log
(

IG(i)

)

,

Iv1(i) = log
(

IR(i)

)

− log
(

IB(i)

)

,

Iu2 = −Iu1 , Iv2 = −Iu1 + Iv1,

Iu3 = −Iv1 , Iv3 = −Iv1 + Iu1.

(3)

H (I)(u,v,C) =
∑

i Iy(i)

[∣

∣IuC(i) − u
∣

∣ 6
ε
2 ∧

∣

∣IvC(i) − v
∣

∣ 6
ε
2

]

, (4)
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Input image e Iin

Training imageses It

…

Similar    training 
images

Figure 5. Visualization of the training images based on their corre-

sponding PCA feature vectors. In this figure t-SNE [32] is used to

aid visualization of the training space. Shown is an example input

image and several of the nearest images retrieved using the PCA

feature.

h(I)(u,v,C) =

√

H (I)(u,v,C)
∑

u
′

∑

v
′ H (I)(u′

,v
′
,C)

, (5)

where i = {1, ..., N}, R,G,B represent the color channels

in I, C ∈ {1, 2, 3} represents each color channel in the

histogram, and ε is the histogram bin’s width. Taking the

square root after normalizing H increases the discrimina-

tory ability of our projected histogram feature [4, 5].

For the sake of efficiency, we apply a dimensionality re-

duction step in order to extract a compact feature represent-

ing each RGB-uv histogram. We found that the linear trans-

formation is adequate for our task to map the vectorized his-

togram vec(h (I)) ∈ R
m×m×3 to a new lower-dimensional

space. The principal component analysis (PCA) feature

vector is computed as follows:

v(I) = W
T (vec (h (I))− b) , (6)

where v (I) ∈ R
c is the PCA feature vector containing c

principal component (PC) coefficients, c ≪ m×m× 3,

W = [w1,w2, ...,wc],w ∈ R
m×m×3 is the PC coefficient

matrix computed by the singular value decomposition, and

b ∈ R
m×m×3 is the mean histogram vector. As a result, each

training image I
(i)
t can be represented by a small number of

PC coefficients v
(

I
(i)
t

)

. The input image is finally repre-

sented by v(Iin). The L2 distance is used to measure the

similarity between the PCA feature vectors. Fig. 5 visual-

izes the training images based on their corresponding PCA

features.

3.5. Final Color Correction

Given a new input image, we compute its PCA feature

and search the training dataset for images with similar fea-

tures. We extract the set of color correction matrices Ms

associated with the k similar PCA features. The final cor-

rection matrix M is then computed as a weighted linear

combination of the correction matrices Ms as follows:

M =

k
∑

j=1

αjM
(j)
s , (7)

where α is a weighting vector represented as a radial basis

function:

αj =
exp

(

−d
2
j/2σ

2
)

∑k

k
′=1 exp

(

−d2
k
′ /2σ2

) , j ∈ [1, ..., k], (8)

where σ is the radial fall-off factor and d represents a vector

containing the L2 distance between the given input feature

and the similar k training features.

As shown in Fig. 3, the final color transformation is

generated based on correction transformations associated

with training images taken from different cameras and ren-

der styles (see supplemental materials for a study of the ef-

fect of having different picture styles on the results). By

blending the mapping functions from images produced by

a wide range of different cameras and their different photo-

finishing styles, we can interpret M correction as mapping

the input image to a meta-camera’s output composed from

the most similar images to the input.

Lastly, the corrected image Icorr is produced by the fol-

lowing equation:

Icorr = M Φ (Iin) . (9)

Since our training data includes examples of WB set-

tings that are close to the manual ground truth, our method

implicitly can also deal with test images that were rendered

with the correct WB settings (see supplemental materials

for examples).

3.6. Implementation Details

Our Matlab implementation requires approximately 0.54

seconds to compute the histogram feature. Once the PCA

histogram feature is computed, the correction process takes

an average of 0.73 seconds; this process includes the PCA

feature extraction, the brute-force search of the k nearest

neighbors, blending the correction matrix, and the final im-

age correction. All the reported runtimes were computed

on an Intelr Xeonr E5-1607 @ 3.10 GHz machine and

for a 12 mega-pixel image. The accelerated GPU imple-

mentation runs on average in 0.12 seconds to correct a 12

mega-pixel image using GTX 1080 GPU.
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Our method requires 23.3 MB to store 62,535 feature

vectors, mapping matrices, the PCA coefficient matrix, and

the mean histogram vector using single-precision floating-

point representation without affecting the accuracy.

In our implementation, each PCA feature vector was rep-

resented by 55 PC scores (i.e., c = 55), the PC coefficient

matrix W was represented as a (60×60× 3)×55 matrix

(i.e., m = 60), and the mean vector b ∈ R
60×60×3. We used

a fall-off factor σ = 0.25 and k = 25. Comparisons us-

ing different parameter values are given in the supplemental

materials.

4. Experimental Results

Our method is compared with common approaches that

are currently used to correct an improperly white-balanced

sRGB image. We first describe the data used to test our

method (Sec. 4.1). Afterwards, we show both quantitative

(Sec. 4.2) and qualitative results (Sec. 4.3).

4.1. Dataset

As described in Sec. 3.2, we have generated a dataset of

62,535 images that contains pairs of incorrect and correct

(ground truth) images. An additional set has been gener-

ated using the same procedure containing 2,881 images.

Intrinsic set (Set 1): consists of 62,535 images generated

from the raw-RGB images provided in the NUS dataset

[12], its extension [13], and the Gehler dataset [20].

Extrinsic set (Set 2): is generated for cross-dataset valida-

tion, where it consists of 2,881 sRGB images rendered from

four mobile phones (iPhone 7, Google Pixel, LG G4, and

Galaxy S6 Edge) and one of the DSLR cameras (Olympus)

from the NUS dataset that was excluded from Set 1. Set 2

does not contain any cameras from Set 1. There are 1,874

DSLR images and 1,007 mobile phone images (468 of them

rendered from raw-RGB images provided by Karaimer and

Brown [9]).

We use Set 1 for training and evaluation, using three-fold

validation, such that the three folds are disjointed in regards

to the imaged scenes, meaning if the scene (i.e., original

raw-RGB image) appears in a fold, it is excluded from the

other folds. The color rendition chart is masked out in the

image and ignored during training and testing. For evalua-

tion on Set 2, we use the entire training from Set 1 of ∼62K.

4.2. Quantitative Results

We compared our results against a diagonal WB correc-

tion that is computed using the center gray patch in the color

checker chart placed in the scene. We refer to this as the ex-

act achromatic reference point, as it represents a true neu-

tral point found in the scene. This exact white point repre-

sents the best results that an illumination estimation algo-

rithm could achieve when applied to our input in order to

determine the diagonal WB matrix. This is equivalent to

the example in Fig. 2-(B).

For the sake of completeness, we also compared our

results against a “linearized” diagonal correction that ap-

plies an inverse gamma operation [3, 17], then performed

WB using the exact reference point, and then reapplied the

gamma to produce the result in the sRGB color space. We

also include results using Adobe Photoshop corrections—

specifically, the auto-color function (AC) and auto-tone

function (AT).

We adopted three commonly used error metrics for the

evaluation, which are: (i) mean squared error (MSE), (ii)

mean angular error (MAE), and (iii) △E, which is widely

used to measure changes in visual perception between two

colors. There are different versions of △E; we report the

results of △E 2000 [37] (results of using △E 76 [36] are

also reported in the supplemental materials). In Table 1,

the mean, lower quartile (Q1), median (Q2), and the upper

quartile (Q3) of the error between the corrected images and

the corresponding ground truth images are reported.

Table 1 shows that our proposed method consistently

outperforms the other approaches in all metrics.

4.3. Qualitative Results and User Study

As mentioned in Sec. 2, the inverse of the nonlinear

photo-finishing in an sRGB image can be performed by ap-

plying a full radiometric calibration [27] or from radiomet-

ric metadata that has been embedded in the sRGB rendered

image to restore the original raw-RGB image [34]. Fig. 6

shows a comparison between our result and applying diag-

onal WB correction to the reconstructed raw-RGB image

proposed in [34]. We are able to achieve comparable results

without the need for radiometric calibration.

Qualitative visual results for Set 1 and Set 2 are shown

in Fig. 7. It is arguable that our results are the most vi-

sually similar to the ground truth images. To confirm this

independently, we have conducted a user study of 35 partic-

ipants (18 males and 17 females), ranging in age from 21 to

46. Each one was asked to choose the most visually simi-

lar image to the ground truth image between the results of

our method and the diagonal correction with the exact ref-

erence point. Experiments were carried out in a controlled

environment. The monitor was calibrated using a Spyder5

colorimeter. Participants were asked to compare 24 pairs

of images, such that for each quartile, based on the MSE

of each method, 4 images were randomly picked from Set

1 and Set 2. That means the selected images represent the

best, median, and worst results of each method and for each

set. On average, 93.69% of our results were chosen as the

most similar to the ground truth images. Fig. 8 illustrates

that the results of this study are statistically significant with

p-value < 0.01.

We note that our algorithm does fail on certain types of
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(A) Input image (B) Diagonal correction using the 
sRGB image

(D) Ours (E) Ground truth

E= 10.82 E= 5.92

(C) Diagonal correction using the 
reconstructed raw-RGB

E= 6.52

Figure 6. Comparison of our results against applying white balance to the reconstructed raw-RGB image as proposed by [34]. The work

in [34] is able to reconstruct the raw-RGB image by embedding radiometric calibration metadata in the sRGB data. By reversing back

to the raw-RGB, they can re-apply white balance correctly and then re-render the sRGB image. (A) Input sRGB image. (B) Result of

diagonal correction on sRGB color space. (C) Result of diagonal correction on the reconstructed raw-RGB image [34]. (D) Our result. (E)

Ground truth image. (A)-(C) and (E) are adapted from [34].

(A) Input image (B) Ps correction (C) Diagonal correction (D) Ours (E) Ground truth

Set1/DSLR E= 21.92AC LRGB E= 9.33 E= 3.58

Set1/DSLR E= 15.04AC LRGB E= 6.04 E= 2.27

Set1/DSLR E= 17.36AT sRGB E= 7.66 E= 3.18

E= 13.57AT LRGB E= 7.09 E= 3.87Set2 /DSLR

E= 13.78AC LRGB E= 11.56 E= 5.68Set2/Mobile

E= 6.59AC LRGB E= 5.98 E= 3.55Set1/DSLR

Figure 7. Comparisons between the proposed approach and other techniques on Set 1 (first four rows) and Set 2 (last two rows). (A)

Input image in sRGB. (B) Results of Adobe Photoshop (Ps) color correction functions. (C) Results of diagonal correction using the exact

reference point obtained directly from the color chart. (D) Our results. (E) Ground truth images. In (B) and (C), we pick the best result

between the auto-color (AC) and auto-tone (AT) functions and between the sRGB (sRGB) and “linearized” sRGB (LRGB) [3, 17] based

on △E values, respectively.
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Table 1. Comparisons between our method with existing solutions for white balancing sRGB images. We compare our results against the

diagonal white balance correction using an exact achromatic reference point obtained from the color chart in the image. The diagonal

correction is applied directly to the sRGB images, denoted as (sRGB) and on the “linearized” sRGB [3, 17], denoted as (LRGB). Also,

we compare our results against the Adobe Photoshop functions: auto-color (AC) and auto-tone (AT). The terms Q1, Q2, and Q3 denote

the first, second (median), and third quartile, respectively. The terms MSE and MAE stand for mean square error and mean angular error,

respectively. The top results are indicated with yellow and bold.

MSE MAE △E
Method

Mean Q1 Q2 Q3 Mean Q1 Q2 Q3 Mean Q1 Q2 Q3

Intrinsic set (Set 1): DSLR multiple cameras (62,535 images)

Photoshop-AC 780.52 157.39 430.96 991.28 7.96° 3.43° 5.59° 10.58° 10.06 5.75 8.92 13.30

Photoshop-AT 1002.93 238.33 606.74 1245.51 7.56° 3.08° 5.75° 10.83° 11.12 6.55 10.54 14.68

Diagonal WB (sRGB) 135.77 20.20 71.74 196.15 4.63° 1.99° 3.56° 6.14° 4.69 2.25 4.00 6.68

Diagonal WB (LRGB) 130.01 19.73 68.54 183.65 4.29° 1.85° 3.35° 5.70° 4.59 2.24 3.89 6.51

Ours 77.79 13.74 39.62 94.01 3.06° 1.74° 2.54° 3.76° 3.58 2.07 3.09 4.55

Extrinsic set (Set 2): DSLR and mobile phone cameras (2,881 images)

Photoshop-AC 745.49 240.58 514.33 968.27 10.19° 5.25° 8.60° 14.13° 11.71 7.56 11.41 15.00

Photoshop-AT 953.85 386.7 743.84 1256.94 11.91° 7.01° 10.70° 15.92° 13.12 9.63 13.18 16.5

Diagonal WB (sRGB) 422.31 110.70 257.76 526.16 7.99° 4.36° 7.11° 10.57° 8.53 5.52 8.38 11.11

Diagonal WB (LRGB) 385.23 99.05 230.86 475.72 7.22° 3.80° 6.34° 9.54° 8.15 5.07 7.88 10.68

Ours 171.09 37.04 87.04 190.88 4.48° 2.26° 3.64° 5.95° 5.60 3.43 4.90 7.06

(A) Overall results (B) Results of 3-quartiles
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Figure 8. The results of a user study with 35 people in which users are asked which output is most visually similar to the ground truth

image. An equal number of images are selected randomly from the different quartiles. The outcome of the user study is shown via interval

plots, with error bars shown at a 99% confidence interval. (A) shows the overall user preference of all results, while (B) shows the results

categorized by Q1, Q2, and Q3.

inputs. These are generally images with strong color casts

that have a large number of saturated colors (see Fig. 9).

5. Concluding Remarks

White balance is a critical low-level computer vision

step that is often taken for granted. Most computer vi-

sion datasets, especially those composed of images crawled

from the web, are implicitly biased towards correctly white-

balanced images as improperly white-balanced images are

rarely uploaded in the first place. As discussed in this pa-

per, correcting an sRGB image that has been rendered by a

camera with the wrong WB setting is challenging.

This paper has proposed a data-driven method to correct

improperly white-balanced images. Extensive quantitative

and qualitative experiments, including a user study, demon-

strate the effectiveness of this approach. More importantly,

our approach is practical, requiring less than 24 MB of data

and less than 1.5 seconds to correct a full-resolution image.

In addition, our approach generalizes well to images not

contained within our training set. We believe this dataset,

the only one of its kind, will serve as a useful resource for

future work on this and related topics.
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(A) Input image (B) Diagonal WB 
correction

(C) Ours

E= 14.49 E= 18.83

(D) Ground truth

Figure 9. Failure example of the proposed method. (A) Input

sRGB image. (B) Results using a diagonal white balance correc-

tion based on the exact achromatic reference obtained from the

color chart. (C) Our result. (D) Ground truth image.
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