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Abstract

This paper presents a novel approach for learning in-

stance segmentation with image-level class labels as super-

vision. Our approach generates pseudo instance segmenta-

tion labels of training images, which are used to train a fully

supervised model. For generating the pseudo labels, we first

identify confident seed areas of object classes from attention

maps of an image classification model, and propagate them

to discover the entire instance areas with accurate bound-

aries. To this end, we propose IRNet, which estimates rough

areas of individual instances and detects boundaries be-

tween different object classes. It thus enables to assign in-

stance labels to the seeds and to propagate them within the

boundaries so that the entire areas of instances can be esti-

mated accurately. Furthermroe, IRNet is trained with inter-

pixel relations on the attention maps, thus no extra super-

vision is required. Our method with IRNet achieves an out-

standing performance on the PASCAL VOC 2012 dataset,

surpassing not only previous state-of-the-art trained with

the same level of supervision, but also some of previous

models relying on stronger supervision.

1. Introduction

Instance segmentation is a task that jointly estimates

class labels and segmentation masks of individual objects.

As in other visual recognition tasks, supervised learning of

Convolutional Neural Networks (CNNs) has driven recent

advances in instance segmentation [7, 9, 10, 16, 17, 23, 30,

35]. Due to the data-hungry nature of deep CNNs, this ap-

proach demands an enormous number of training images

with groundtruth labels, which are given by hand in gen-

eral. However, manual annotation of instance-wise segmen-

tation masks is prohibitively time-consuming, which results

in existing datasets limited in terms of both class diversity

and the amount of annotated data. It is thus not straightfor-

ward to learn instance segmentation models that can handle

diverse object classes in the real world.

∗Co-corresponding authors.

One way to alleviate this issue is weakly supervised

learning that adopts weaker and less expensive labels than

instance-wise segmentation masks as supervision. Thanks

to low annotation costs of weak labels, approaches in this

category can utilize more training images of diverse objects,

although they have to compensate for missing information

in weak labels. For instance segmentation, bounding boxes

have been widely used as weak labels since they provide

every property of objects except shape [22, 41]. However, it

is still costly to obtain box labels for a variety of classes in

a large number of images as they are manually annotated.

To further reduce the annotation cost, one may utilize

image-level class labels for learning instance segmentation

since such labels are readily available in large-scale image

classification datasets, e.g., ImageNet [42]. Furthermore,

although image-level class labels indicate only the exis-

tence of object classes, they can be used to derive strong

cues for instance segmentation, called Class Attention Maps

(CAMs) [37, 43, 45, 49]. A CAM roughly estimates areas

of each class by investigating the contribution of local im-

age regions to the classification score of the class. How-

ever, CAMs cannot be directly utilized as supervision for

instance segmentation since they have limited resolution,

often highlight only partial areas of objects, and most im-

portantly, cannot distinguish different instances of the same

class. To resolve this issue, a recent approach [50] incor-

porates CAMs with an off-the-shelf segmentation proposal

technique [2], which however has to be trained separately

on an external dataset with additional supervision.

In this paper, we present a novel approach for learning

instance segmentation using image-level class labels, which

outperforms the previous state-of-the-art trained with the

same level of supervision [50] and even some of approaches

relying on stronger supervision [16, 22]. Moreover, it re-

quires neither additional supervision nor any segmentation

proposals unlike the previous approaches [16, 50]. Our

method generates pseudo instance segmentation labels of

training images given their image-level labels and trains a

known CNN model with the pseudo labels. For generating

the pseudo labels, it utilizes CAMs, but as mentioned ear-

lier, they can neither distinguish different instances nor find
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Figure 1. Overview of our framework for generating pseudo instance segmentation labels.

entire instance areas with accurate boundaries.

To overcome these limitations of CAMs, we introduce

Inter-pixel Relation Network (IRNet) that is used to esti-

mate two types of additional information complementary

to CAMs: a class-agnostic instance map and pairwise se-

mantic affinities. A class-agnostic instance map is a rough

instance segmentation mask without class labels nor ac-

curate boundaries. On the other hand, the semantic affin-

ity between a pair of pixels is a confidence score for

class equivalence between them. By incorporating instance-

agnostic CAMs with a class-agnostic instance map, we ob-

tain instance-wise CAMs, which are in turn enhanced by

propagating their attention scores to relevant areas based on

the semantic affinities between neighboring pixels. After the

enhancement, a pseudo instance segmentation label is gen-

erated by selecting the instance label with the highest at-

tention score in the instance-wise CAMS at each pixel. The

entire procedure for label synthesis is illustrated in Fig. 1.

IRNet has two branches estimating an instance map and

semantic affinities, respectively. The first branch predicts a

displacement vector field where a 2D vector at each pixel

indicates the centroid of the instance the pixel belongs to.

The displacement field is converted to an instance map by

assigning the same instance label to pixels whose displace-

ment vectors point at the same location. The second branch

detects boundaries between different object classes. Pair-

wise semantic affinities are then computed from the de-

tected boundaries in such a way that two pixels separated

by a strong boundary are considered as a pair with a low se-

mantic affinity. Furthermore, we found that IRNet can be

trained effectively with inter-pixel relations derived from

CAMs. Specifically, we collect pixels with high attention

scores and train IRNet with the displacements and class

equivalence between the collected pixels. Thus, no super-

vision in addition to image-level class labels is required.

The contribution of this paper is three-fold:

• We propose a new approach to identify and localize

instances with image-level supervision through class-

agnostic instance maps. This enables instance segmen-

tation without off-the-shelf segmentation proposals.

• We propose a new way to learn and predict semantic

affinities between pixels with image-level supervision

through class boundary detection, which is more effec-

tive and efficient than previous work [1].

• On the PASCAL VOC 2012 dataset [12], our model

substantially outperforms the previous state-of-the-art

trained with the same level of supervision [50]. Also,

it even surpasses previous models based on stronger su-

pervision like SDI [22] that uses bounding box labels

and SDS [16], an early model that uses full supervision.

2. Related Work

This section reviews semantic and instance segmentation

models closely related to our method. We first introduce

weakly supervised approaches for the two tasks, and discuss

models that are based on ideas similar with the displacement

field and pairwise semantic affinity of our framework.

Weakly Supervised Semantic Segmentation: For weak

supervision of semantic segmentation, various types of

weak labels such as bounding boxes [8, 38], scribbles [27,

44], and points [3] have been utilized. In particular, image-

level class labels have been widely used as weak labels

since they require minimal or no effort for annotation [1,

11, 19, 20, 36, 39, 40, 45, 50]. Most approaches using the

image-level supervision are based on CAMs [37, 43, 49]

that roughly localize object areas by drawing attentions

on discriminative parts of object classes. However, CAMs

often fail to reveal the entire object areas with accurate

boundaries. To address this issue, extra data or supervi-

sion have been exploited to obtain additional evidences

like saliency [20, 36], motion in videos [19, 39] and class-

agnostic object proposals [40]. Recent approaches tackle

the issue without external information by mining comple-
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mentary attentions iteratively [20, 45] or propagating CAMs

based on semantic affinities between pixels [1].

Weakly Supervised Instance Segmentation: For instance

segmentation, bounding boxes have been widely used as

weak labels. Since a bounding box informs the exact lo-

cation and scale of an object, weakly supervised models

using box labels focus mainly on estimating object shapes.

For example, in [22], GraphCut is incorporated with generic

boundary detection [48] to better estimate object shapes by

considering boundaries. Also, in [41], an object shape esti-

mator is trained by adversarial learning [14] so that a pseudo

image generated by cutting and pasting the estimated object

area to a random background looks realistic. Meanwhile,

weakly supervised instance segmentation with image-level

class labels has been rarely studied since this is a signif-

icantly ill-posed problem where supervision does not pro-

vide any instance-specific information. To tackle this chal-

lenging problem, a recent approach [50] detects peaks of

class attentions to identify individual instances and com-

bines them with high-quality segmentation proposals [2] to

reveal entire instance areas. However, the performance of

the method heavily depends on that of the segmentation pro-

posals, which have to be trained with extra data with high-

level supervision. In contrast, our approach requires neither

off-the-shelf proposals nor additional supervision and it sur-

passes the previous work [50] by a substantial margin.

Pixel-wise Prediction of Instance Location: Pixel-wise

prediction of instance location has been proven to be effec-

tive for instance segmentation in literature. In [26] the co-

ordinates of the instance bounding box each pixel belongs

to are predicted in a pixel-wise manner so that pixels with

similar box coordinates are clustered as a single instance

mask. This idea is further explored in [21, 35], which pre-

dict instance centroids instead of box coordinates. Our ap-

proach based on the displacement field share the same idea

with [21, 35], but it requires only image-level supervision

while the previous approaches are trained with instance-

wise segmentation labels.

Semantic Affinities Between Pixels: Pairwise semantic

affinities between pixels have been used to enhance the

quality of semantic segmentation. In [4, 6], CNNs for se-

mantic segmentation are incorporated with a differentiable

module computing a semantic affinity matrix of pixels, and

trained in an end-to-end manner with full supervision. In

[4], a predicted affinity matrix is used as a transition proba-

bility matrix for random walk, while in [6], it is embedded

into a convolutional decoder [34] to encourage local pix-

els to have the same labels during inference. Recently, a

weakly supervised model has been proposed to learn pair-

wise semantic affinities with image-level class labels [1].

This model predicts a high-dimensional embedding vector

for each pixel, and the affinity between a pair of pixels is

defined as the similarity between their embedding vectors.
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Figure 2. Overall architecture of IRNet.

Our approach shares the same motivation with [1], but our

IRNet can learn and predict affinities more effectively and

efficiently by detecting class boundaries.

3. Class Attention Maps

CAMs play two essential roles in our framework. First,

they are used to define seed areas of instances, which are

propagated later to recover the entire instance areas as

in [1, 24]. Second, they are a source of supervision for learn-

ing IRNet; by exploiting CAMs carefully, we extract reli-

able inter-pixel relations, from which IRNet is trained. To

generate CAMs for training images, we adopt the method

of [49] using an image classification CNN with global av-

erage pooling followed by a classification layer. Given an

image, the CAM of a groundtruth class c is computed by

Mc(x) =
φ⊤
c f(x)

maxx φ⊤
c f(x)

, (1)

where f is a feature map from the last convolution layer of

the CNN, x is a 2D coordinate on f , and φc is the classi-

fication weights of the class c. Also, CAMs for irrelevant

classes are fixed to a zero matrix. We adopt ResNet50 [18]

as the classification network, and reduce the stride of its last

downsampling layer from 2 to 1 to prevent CAMs from fur-

ther resolution drop. As a result, the width and height of

CAMs are 1/16 of those of the input image.

4. Inter-pixel Relation Network

IRNet aims to provide two types of information: a dis-

placement vector field and a class boundary map, both of

which are in turn used to estimate pseudo instance masks

from CAMs. This section describes the IRNet architecture
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and the strategy for learning the model using CAMs as su-

pervision. How to use IRNet for pseudo label generation

will be illustrated in Sec. 5.

4.1. IRNet Architecture

IRNet has two output branches that predict a displace-

ment vector field and a class boundary map, respectively.

Its architecture is illustrated in Fig. 2. The two branches

share the same ResNet50 backbone, which is identical to

that of the classification network in Sec. 3. As inputs, both

branches take feature maps from all the five levels1 of the

backbone. All the convolution layers of both branches are

followed by group normalization [47] and ReLU except the

last layer. Details of both branches are described below.

Displacement Field Prediction Branch: A 1×1 convolu-

tion layer is first applied to each input feature map, and the

number of channels is reduced to 256 if it is larger than

that. On top of them, we append a top-down path way [28]

to merge all the feature maps iteratively in such a way that

low resolution feature maps are upsampled twice, concate-

nated with those of the same resolution, and processed by a

1×1 convolution layer. Finally, from the last concatenated

feature map, a displacement field is decoded through three

1×1 convolution layers, whose output has two channels.

Boundary Detection Branch: We first apply 1×1 convolu-

tion to each input feature map for dimensionality reduction.

Then the results are resized, concatenated, and fed into the

last 1×1 convolution layer, which produces a class bound-

ary map from the concatenated features.

4.2. Inter­pixel Relation Mining from CAMs

Inter-pixel relations are the only supervision for training

IRNet, thus it is important to collect them reliably. We de-

fine two kinds of relations between a pair of pixels: the dis-

placement between their coordinates and their class equiva-

lence. The displacement can be easily computed by a simple

subtraction, but the class equivalence is not since pixel-wise

class labels are not given in our weakly supervised setting.

Thus, we carefully exploit CAMs to predict pixel-wise

pseudo class labels and obtain reliable class equivalence

relations from them. The overall procedure of our method

is illustrated in Fig. 3. Since CAMs are blurry and of-

ten inaccurate, we first identify areas with confident fore-

ground/background attention scores. Specifically, we col-

lect pixels with attention scores larger than 0.3 as fore-

ground pixels, and smaller than 0.05 as background pixels.

Note that we do not care pixels outside of confident areas

during the process. Each confident area is then refined by

dense CRF [25] to better estimate object shapes. After that,

we construct a pseudo class map M̂ by choosing the class

1A level means a group of residual units sharing the same output size

in [18]. However, in our backbone, the output sizes of level4 and level5 are

identical since the stride of the last downsampling layer is reduced to 1.

Horse

Person

BG

Unknown

(a)

Positive

Negative

Ignore

(c)

(b)

(d)

Figure 3. Visualization of our inter-pixel relation mining process.

(a) CAMs. (b) Confident areas of object classes. (c) Pseudo class

label map within a local neighborhood. (d) Class equivalence rela-

tions between the center and the others.

with the best score for each pixel. Finally, we sample pairs

of neighboring pixels from the refined confident areas, and

categorize them into two sets P+ and P− according to their

class equivalence by

P =
{

(i, j) | ‖xi − xj‖2 < γ, ∀i 6= j
}

, (2)

P+ =
{

(i, j) | M̂(xi) = M̂(xj), (i, j) ∈ P
}

, (3)

P− =
{

(i, j) | M̂(xi) 6= M̂(xj), (i, j) ∈ P
}

, (4)

where γ is a radius limiting the maximum distance of a pair.

We further divide P+ into P+
fg and P+

bg, a set of foreground

pairs and that of background pairs, respectively.

4.3. Loss for Displacement Field Prediction

The first branch of IRNet predicts a displacement vec-

tor field D ∈ R
w×h×2, where each 2D vector points at the

centroid of the associated instance. Although ground truth

centroids are not given in our setting, we argue that D can

be learned implicitly with displacements between pixels of

the same class. There are two conditions for D to be a dis-

placement field. First, for a pair of pixel locations xi and

xj belonging to the same instance, their estimated centroids

must be identical, i.e., xi+D(xi) = xj+D(xj). Second, by

the definition of centroid,
∑

x
D(x) = 0 for each instance.

To satisfy the first condition, we first assume that a pair

of nearby pixels (i, j) ∈ P+ is likely to be of the same in-

stance since they are sampled within a small radius γ. Then,

given such a pair (i, j), our goal is to approximate their im-

age coordinate displacement δ̂(i, j) = xj − xi with their

difference in D denoted by δ(i, j) = D(xi) − D(xj). In

the ideal case where δ = δ̂, it will hold that xi + D(xi) =
xj +D(xj) for all (i, j) of the same instance. This implies

that D(x) is the displacement vector indicating the corre-

sponding centroid. For learning D with the inter-pixel re-

lations obtained in Sec. 4.2, we minimize L1 loss between
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δ(i, j) and δ̂(i, j):

LD
fg =

1

|P+
fg |

∑

(i,j)∈P
+

fg

∣

∣

∣
δ(i, j)− δ̂(i, j)

∣

∣

∣
. (5)

The second condition, on the other hand, is not explicitly

encouraged by Eq. (5). However, we argue that IRNet can

still learn to predict displacement vectors pointing to rough

centroids of instances due to the randomness of initial net-

work parameters. Intuitively speaking, initial random dis-

placement vectors are already likely to satisfy the second

condition, and the training of IRNet converges to a local

minimum that still satisfies the condition. A similar phe-

nomenon is observed in [35]. Displacement vectors are then

further refined by subtracting the mean of D from D.

Also, we eliminate trivial centroid estimation from back-

ground pixels since the centroid of background is indefinite

and may interfere with the above process. For the purpose,

we minimize the following loss for background pixels:

LD
bg =

1

|P+
bg|

∑

(i,j)∈P
+

bg

|δ(i, j)|. (6)

4.4. Loss for Class Boundary Detection

Given an image, the second branch of IRNet detects

boundaries between different classes, and the output is de-

noted by B ∈ [0, 1]w×h. Although no ground truth labels

for class boundaries are given in our setting, we can train the

second branch with class equivalence relations between pix-

els through a Multiple Instance Learning (MIL) objective.

The key assumption is that a class boundary exists some-

where between a pair of pixels with different pseudo class

labels.

To implement this idea, we express the semantic affin-

ity between two pixels in terms of the existence of a class

boundary. For a pair of pixels xi and xj , we define their

semantic affinity aij as:

aij = 1− max
k∈Πij

B(xk) (7)

where Πij is a set of pixels on the line between xi and

xj . We utilize class equivalence relations between pixels as

supervision for learning aij . Specifically, the class equiv-

alence between two pixels is represented as a binary label

whose value is 1 if their pseudo class labels are the same

and 0 otherwise. The affinity is then learned by minimiz-

ing cross-entropy between the one-hot vector of the binary

affinity label and the predicted affinity in Eq. (7):

LB =−
∑

(i,j)∈P
+

fg

log aij

2|P+
fg |

−
∑

(i,j)∈P
+

bg

log aij

2|P+
bg|

−
∑

(i,j)∈P−

log(1− aij)

|P−|
(8)

(a) (b) (c)
Figure 4. Deriving pairwise semantic affinities from a class bound-

ary map. (left) Input Image. (center) A class boundary map. (right)

Label propagation from the center after random walks.

centroid

(a) (b) (c)
Figure 5. Detecting instance centroids. (left) Input image. (center)

An initial displacement field. (right) A refined displacement field

and detected centroids.

where three separate losses are aggregated after normaliza-

tion since populations of P+
fg , P+

bg, and P− are significantly

imbalanced in general. Through the loss in Eq. (8), we can

learn B implicitly with inter-pixel class equivalence rela-

tions. In this aspect, Eq. (8) can be regarded as a MIL ob-

jective where Πij is a bag of potential boundary pixels.

4.5. Joint Learning of the Two Branches

The two branches of IRNet are jointly trained by mini-

mizing all the losses we defined previously at the same time:

L = LD
fg + LD

bg + LB. (9)

Note that the above loss is class-agnostic since P+ and P−

only consider class equivalence between pixels rather than

their individual class labels. This allows our approach to uti-

lize more inter-pixel relations per class and helps to improve

the generalization ability of IRNet.

5. Label Synthesis Using IRNet

To synthesize pseudo instance labels, the two outputs D
and B of IRNet are converted to a class-agnostic instance

map and pairwise affinities, respectively. Among them, se-

mantic affinities can be directly derived from B by Eq. (7)

as illustrated in Fig. 4, while the conversion of D is not

straightforward due to its inaccurate estimation. This sec-

tion first describes how D is converted to an instance map,

then how to generate pseudo instance segmentation labels

with the instance map and semantic affinities.

5.1. Generating Class­agnostic Instance Map

A class-agnostic instance map I is a w × h 2D map,

each element of which is the instance label associated with

the element. If D is estimated with perfect accuracy, I can

be obtained simply by grouping pixels whose displacement

vectors point at the same centroid. However, D often fails to
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Figure 6. Examples of pseudo instance segmentation labels on the

PASCAL VOC 2012 train set. (a) Input image. (b) CAMs. (c) Dis-

placement field. (d) Class boundary map. (e) Pseudo labels.

predict the exact offsets to centroids since IRNet is trained

with incomplete supervision derived from CAMs. To ad-

dress this issue, D is refined iteratively by

Du+1(x) = Du(x) +D (x+Du(x)) ∀x, (10)

where u is an iteration index and D0 is the initial displace-

ment field given by IRNet. Each displacement vector is re-

fined iteratively by adding the displacement vector at the

currently estimated centroid location. As displacement vec-

tors near centroids tend to be almost zero in magnitude, the

refinement converges within a finite number of iterations.

The effect of the refinement is demonstrated in Fig. 5.

Since centroids estimated via the refined D are still scat-

tered in general, we consider a small group of neighbor-

ing pixels, instead of a single coordinate, as a centroid. To

this end, we first identify pixels whose displacement vectors

in D have small magnitudes, and regard them as candidate

centroids since pixels around a true centroid will have near

zero displacement vectors. Then each connected component

of the candidates is considered as a centroid. Note that the

candidates tend to be well grouped into a few connected

components since displacement vectors change smoothly

within a local neighborhood as can be seen in Fig. 5.

5.2. Synthesizing Instance Segmentation Labels

For generating pseudo instance masks, we first combine

CAMs with a class-agnostic instance map as follows:

M̄ck(x) =

{

Mc(x) if I(x) = k,

0 otherwise,
(11)

where M̄ck is the instance-wise CAMs of class c and in-

stance k. Each instance-wise CAM is refined individually

by propagating its attention scores to relevant areas. Specif-

ically, the propagation is done by random walk, whose tran-

sition probability matrix is derived from the semantic affin-

ity matrix A = [aij ] ∈ R
wh×wh as follows:

T = S−1A◦β , where Sii =
∑

j

aβij (12)

and A◦β is A to the Hadamard power of β and S is a diag-

onal matrix for row-normalization of A◦β . Also, β > 1 is a

hyper-parameter for smoothing out affinity values in A. The

random walk propagation with T is then conducted by

vec(M̄∗
ck) = T t · vec(M̄ck ⊙ (1− B)), (13)

where t denotes the number of iterations, ⊙ is the Hadamard

product, and vec(·) means vectorization. We penalize scores

of boundary pixels by multiplying (1 − B) since those iso-

lated pixels do not propagate their scores to neighbors and

have overly high scores compared to the others in conse-

quence. Then an instance segmentation label is generated

by choosing the combination of c and k that maximizes

M̄∗
ck(x) for each pixel x. If the maximum score is less than

bottom 25%, the pixel is regarded as background.

6. Experiments

The effectiveness of our framework is demonstrated on

the PASCAL VOC 2012 dataset [13], where our framework

generates pseudo labels for training images and trains a

fully supervised model with the images and their pseudo la-

bels. We evaluate the quality of our pseudo labels as well as

the performance of the model trained with them. The eval-

uation is done for both instance segmentation and semantic

segmentation since our pseudo labels can be used to train

semantic segmentation models as well.

6.1. Experimental Setting

Dataset: We train and evaluate our framework on the PAS-

CAL VOC 2012 [12] dataset. Although the dataset contains

labels for semantic segmentation and instance segmenta-

tion, we only exploit image-level class labels. Following the

common practice, the training set is expanded by adding im-

age set proposed in [15]. In total, 10,582 images are used for

training, and 1,449 images are kept for validation.
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Method mIoU

CAM 8.6

CAM + Class Boundary 34.1

CAM + Displacement Field + Class Boundary (Ours) 37.7

Table 1. Quality of our pseudo instance segmentation labels in

APr

50, evaluated on the PASCAL VOC 2012 train set.

CAM Prop. w/ AffinityNet [1] Prop. w/ IRNet (Ours)

48.3 59.3 66.5

Table 2. Quality of pseudo semantic segmentation labels in mIoU,

evaluated on the PASCAL VOC 2012 train set. “Prop” means the

semantic propagation using predicted affinities.

Hyperparameter Settings: The radius that limits the

search space of pairs γ in Eq. (2) is set to 10 when training,

and reduced to 5 at inference for conservative propagation.

The number of random walk iterations t in Eq. (13) is fixed

to 256. The hyperparameter β in Eq. (12) is set to 10. The

iterative update of D in Eq. (10) is done 100 times.

Network Parameter Optimization: We adopt the stochas-

tic gradient descent for network optimization. Learning rate

is initially set to 0.1, and decreases at every iteration with

polynomial decay [32]. The backbone of IRNet is frozen

during training, and gradients that displacement field branch

receives are amplified by a factor of 10.

Comparison to AffinityNet: For a fair comparison, we

modified AffinityNet [1] by replacing its backbone with

ResNet50 as in our IRNet. Then we compare IRNet with

the modified AffinityNet in terms of the accuracy of

pseudo segmentation labels (Table 2) and performance of

DeepLab [5] trained with these pseudo labels (Table 4).

6.2. Analysis of Pseudo Labels

Instance Segmentation labels: A few qualitative exam-

ples of pseudo instance segmentation labels are presented

in Fig. 6, and the contribution of each branch of IRNet

to the quality of the labels is analyzed in Table 1. In the

case of “CAM” in Table 1, we directly utilize raw CAMs to

generate pseudo labels by thresholding their scores and ap-

plying connected component analysis while assuming that

there are no instances of the same class attached to each

other. In the case of “CAM + Class Boundary” in Table 1,

pseudo labels are obtained in the same manner, but we en-

hance CAMs by the semantic propagation based on the class

boundary map before generating pseudo labels. We evalu-

ated the performance of each method in terms of average

precision (AP). For evaluating APs, the score of each de-

tected instance is given as the maximum class score within

its mask. As shown in the table, exploiting a class bound-

ary map effectively improves the quality of pseudo labels

by more than 25% as it helps to recover the entire areas of

objects missing in CAMs. Exploiting a displacement field

further improves the performance by 3.6% as it helps to dis-

tinguish different instances of the same class.

Method Sup. Extra data / Information APr

50 APr

70

PRM [50] I MCG [2] 26.8 -

SDI [22] B BSDS [33] 44.8 -

SDS [16] F MCG [2] 43.8 21.3

MRCNN [17] F MS-COCO [29] 69.0 -

Ours-ResNet50 I - 46.7 23.5

Table 3. Instance segmentation performance on the PASCAL VOC

2012 val set. The supervision types (Sup.) indicate: I–image-level

label, B–bounding box, and F–segmentation label.

Method Sup. Extra Data / Information val test

SEC [24] I - 50.7 51.7

AffinityNet [1] I - 58.7 -

PRM [50] I MCG [2] 53.4 -

CrawlSeg [19] I YouTube Videos 58.1 58.7

MDC [46] I Ground-truth Backgrounds 60.4 60.8

DSRG [20] I MSRA-B [31] 61.4 63.2

ScribbleSup [27] S - 63.1 -

BoxSup [8] B - 62.0 64.6

SDI [22] B BSDS [33] 65.7 67.5

Upperbound F - 72.3 72.5

Ours-ResNet50 I - 63.5 64.8

Table 4. Semantic segmentation performance on the PASCAL

VOC 2012 val and test sets. The supervision type (Sup.) indi-

cates: I–image-level label, B–bounding box, S–scribble, and F–

segmentation label.

Semantic Segmentation Labels: A reduced version of our

framework, which skips the instance-wise CAM generation

step, produces pseudo labels for semantic segmentation. In

this aspect, we compare our framework with the previous

state-of-the-art in semantic segmentation label synthesis,

AffinityNet [1], in terms of mean Intersection-over-Union

(mIoU). Similar to ours, AffinityNet also conducts the se-

mantic propagation to enhance CAMs using predicted pair-

wise semantic affinities. Table 2 compares the quality of our

pseudo segmentation labels to that of AffinityNet [1]. The

accuracy of our pseudo labels is substantially higher than

that of AffinityNet thanks to the superior quality of pairwise

semantic affinities predicted by IRNet.

6.3. Mask R­CNN for Instance Segmentation

We evaluate the performance of an instance segmenta-

tion network trained with pseudo labels generated by our

framework. For evaluation, we adopt Mask R-CNN [17],

which is one of the state-of-the-art instance segmentation

networks, with ResNet-50-FPN [28] as its backbone. Fig. 7

shows qualitative results of the Mask-RCNN trained with

our pseudo labels, and Table 3 compares its performance

to those of previous approaches in APr2 [16]. As shown in

Table 3, ours largely outperforms PRM [50], which is the

state-of-the-art that also uses image-level supervision. Our

approach even outperforms SDI [22], which uses bounding

box supervision, by 1.9%, and SDS [16], which uses full

supervision, by 2.9% in APr
50.

2APr means average precision of masks at different IoU thresholds.
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Figure 7. Qualitative results of our instance segmentation model on the PASCAL VOC 2012 val set.

Figure 8. Qualitative results of smenatic segmentation on the PASCAL VOC 2012 val set. (top) Input images. (middle) Groundtruth

semantic segmentaton. (bottom) Results of Ours-ResNet50.

6.4. DeepLab for Semantic Segmentation

We further explore the effectiveness of our framework by

training DeepLab v2-ResNet50 [5] with our pseudo seman-

tic segmentation labels. Fig. 8 visualizes semantic segmen-

tation results obtained by our approach and Table 4 com-

pares ours with other weakly supervised approaches. Our

approach outperforms previous arts relying on the same

level of supervision, and is even competitive with Box-

Sup [8], which utilizes stronger bounding box supervision.

Also it recovers 88% of its fully supervised counterpart, the

upper bound that it can achieve.

7. Conclusion

Weakly supervised instance segmentation with image-

level supervision is a significantly ill-posed problem due

to the lack of instance-specific information. To tackle this

challenging problem, we propose IRNet, a novel CNN ar-

chitecture that identifies individual instances and estimates

their rough boundaries. Thanks to the evidences provided

by IRNet, simple class attentions can be significantly im-

proved and used to train fully supervised instance segmen-

tation models. On the Pascal VOC 2012 dataset, models

trained with our pseudo labels achieve the state-of-the-art

performance in both instance and semantic segmentation.
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