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Abstract

We address the problem of phrase grounding by learn-
ing a multi-level common semantic space shared by the tex-
tual and visual modalities. We exploit multiple levels of
feature maps of a Deep Convolutional Neural Network, as
well as contextualized word and sentence embeddings ex-
tracted from a character-based language model. Following
dedicated non-linear mappings for visual features at each
level, word, and sentence embeddings, we obtain multiple
instantiations of our common semantic space in which com-
parisons between any target text and the visual content is
performed with cosine similarity. We guide the model by
a multi-level multimodal attention mechanism which out-
puts attended visual features at each level. The best level
is chosen to be compared with text content for maximizing
the pertinence scores of image-sentence pairs of the ground
truth. Experiments conducted on three publicly available
datasets show significant performance gains (20%-60% rel-
ative) over the state-of-the-art in phrase localization and set
a new performance record on those datasets. We provide a
detailed ablation study to show the contribution of each el-
ement of our approach and release our code on GitHub'.

1. Introduction

Phrase grounding [39, 32] is the task of localizing within
an image a given natural language input phrase, as illus-
trated in Figure 1. This ability to link text and image con-
tent is a key component of many visual semantic tasks such
as image captioning [10, 21, 18], visual question answer-
ing [2, 30, 48, 52, 11], text-based image retrieval [12, 40],
and robotic navigation [44]. It is especially challenging as it
requires a good representation of both the visual and textual
domain and an effective way of linking them.

On the visual side, most of the works exploit Deep Con-
volutional Neural Networks but often rely on bounding box

Thttps://github.com/hassanhub/MultiGrounding

A crowd of onlookers on a tractor ride watch a farmer hard at work in the field

Figure 1. The phrase grounding task in the pointing game setting.
Given the sentence on top and the image on the left, the goal is
to point (illustrated by the stars here) to the correct location of
each natural language query (colored text). Actual example of our
method results on Flickr30k.

proposals [39, 42, 15] or use a global feature of the im-
age [10], limiting the localization ability and freedom of
the method. On the textual side, methods rely on a closed
vocabulary or try to train their own language model using
small image-caption pairs datasets [17, 59, 53, 9]. Finally,
the mapping between the two modalities is often performed
with a weak linear strategy [39, 51]. We argue that ap-
proaches in the literature have not fully leveraged the po-
tential of the more powerful visual and textual model de-
veloped recently, and there is room for developing more so-
phisticated representations and mapping approaches.

In this work, we propose to explicitly learn a non-linear
mapping of the visual and textual modalities into a com-
mon space, and do so at different granularity for each do-
main. Indeed, different layers of a deep network encode
each region of the image with gradually increasing levels of
discriminativeness and context awareness, similarly single
words and whole sentences contain increasing levels of se-
mantic meaning and context. This common space mapping
is trained with weak supervision and exploited at test-time
with a multi-level multimodal attention mechanism, where
a natural formalism for computing attention heatmaps at
each level, attended features and pertinence scoring, en-
ables us to solve the phrase grounding task elegantly and
effectively. We evaluate our model on three commonly used
datasets in the literature of textual grounding and show that
it sets a new state-of-the-art performance by a large margin.
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Our contributions in this paper are as follows:

e We learn, with weak-supervision, a non-linear map-
ping of visual and textual features to a common region-
word-sentence semantic space, where comparison be-
tween any two semantic representations can be per-
formed with a simple cosine similarity;

* We propose a multi-level multimodal attention mecha-
nism, producing either word-level or sentence-level at-
tention maps at different semantic levels, enabling us
to choose the most representative attended visual fea-
ture among different semantic levels;

* We set new state-of-the-art performance on three com-
monly used datasets, and give detailed ablation results
showing how each part of our method contributes to
the final performance.

2. Related works

In this section, we give an overview of related works in
the literature and discuss how our method differs from them.

2.1. Grounding natural language in images

The earliest works on solving textual grounding [39, 42,

] tried to tackle the problem by finding the right bound-
ing box out of a set of proposals, usually obtained from pre-
specified models [62, 45]. The ranking of these proposals,
for each text query, can be performed using scores estimated
from a reconstruction [42] or sentence generation [ 5] pro-
cedure, or using distances in a common space [39]. How-
ever, relying on a fixed set of pre-defined concepts and pro-
posals may not be optimal and the quality of the bounding
boxes defines an upper bound [15, 46] of the performance
that can be achieved. Therefore, several methods [6, 61]
have integrated the proposal step in their framework to im-
prove the bounding box quality. These works often operate
in a fully supervised setting [5, 53, 57, 11, 6], where the
mapping between sentences and bounding boxes has to be
provided at training time which is not always available and
is costly to gather. Furthermore, methods based on bound-
ing boxes often extract features separately for each bound-
ing box [15, 4, 46], inducing a high computational cost.

Therefore, some works [41, 17, 59, 47, 54] choose not to
rely on bounding boxes and propose to formalize the local-
ization problem as finding a spatial heatmap for the refer-
ring expression. This setting is mostly weakly-supervised,
where at training time only the image and the text (de-
scribing either the whole image or some parts of it) are
provided but not the corresponding bounding box or seg-
mentation mask for each description. This is the more gen-
eral setting we are addressing in this paper. The top-down
approaches [41, 59] and the attention-based approach [17]
learn to produce a heatmap for each word of a vocabulary.

At test time, all these methods produce the final heatmap by
averaging the heatmaps of all the words in the query that ex-
istin the vocabulary. Several grounding works have also ex-
plored the use of additional knowledge, such as image [46]
and linguistic [47, 38] structures, phrase context [5] and ex-
ploiting pre-trained visual models predictions [4, 54].

In contrast to many works in the literature, we don’t
use a pre-defined set of image concepts or words in our
method. We instead rely on visual feature maps and a
character-based language model with contextualized em-
beddings which could handle any unseen word considering
the context in the sentence.

2.2. Mapping to common space

It is a common approach to extract visual and language
features independently and fuse them before the predic-
tion [9, 4, 6]. Current works usually apply a multi-layer
perceptron (MLP) [6, 4], element-wise multiplication [14],
or cosine similarity [9] to combine representations from dif-
ferent modalities. Other methods have used the Canoni-
cal Correlation Analysis (CCA) [38, 39], which finds linear
projections that maximize the correlation between projected
vectors from the two views of heterogeneous data. [11]
introduced the Multimodal Compact Bilinear (MCB) pool-
ing method that uses a compressed feature from the outer
product of two vectors of visual and language features to
fuse them. Attention methods [51, 34] can also measure the
matching of an image-sentence feature pair.

We use non-linear mappings of both visual features (in
multiple semantic levels) and textual embeddings (both
contextualized word and sentence embeddings) separately
and use multi-level attention with multimodal loss to learn
those mapping weights.

2.3. Attention mechanisms

Attention has proved its effectiveness in many visual and
language tasks [23, 1, 7, 52, 50], it is designed to capture a
better representation of image-sentence pairs based on their
interactions. The Accumulated Attention method [8] pro-
pose to estimate attention on sentences, objects and visual
feature maps in an iterative fashion, where at each iteration
the attention of the other two modalities is exploited as guid-
ance. A dense co-attention mechanism is explored in [34] to
solve the Visual Question Answering task by using a fully
symmetric architecture between visual and language repre-
sentations. In their attention mechanism, they add a dummy
location in attention map when no region or word the model
should attend along with a softmax. In AttnGAN [51], a
deep attention multimodal similarity model is proposed to
compute a fine-grained image-text matching loss.

In contrast to these works, we remove the softmax on
top of the attention maps to let the model decide which
word-region could be related to each other by the guide of
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Figure 2. Overview of our method: the textual input is processed
with a pre-trained text model followed by a non-linear mapping
to the common semantic space. Similarly for the image input, we
use a pre-trained visual model to extract visual features maps at
multiple levels and learn a non-linear mapping for each of them to
the common semantic space. A multi-level attention mechanism
followed by a feature level selection produces the pertinence score
between the image and the sentence. We train our model using
only the weak supervision of image-sentence pairs.

the multimodal loss. Since we map the visual features to
a multi-level visual representation, we give the model the
freedom to choose any location at any level for either sen-
tence or word. In other words, each word or sentence can
choose which level of representation (and which region in
that representation) to attend to. We directly calculate the
attention map by cosine similarity in our common seman-
tic space. We show that this approach significantly outper-
forms all the state of the art approaches on three commonly
used datasets and set a new state of the art performance.

3. Method

In this section, we describe our method (illustrated in
Figure 2) for addressing the textual grounding task and elab-
orate on each part with details. In Section 3.1, we explain
how we extract multi-level visual features from an image
and word/sentence embeddings from the text, and then de-
scribe how we map them to a common space. In Sec-
tion 3.2 we describe how we calculate multi-level multi-
modal attention map and attended visual feature for each
word/sentence. Then, in Section 3.3 we describe how we
choose the most representative visual feature level for the
given text. Finally, in Section 3.4 we define a multimodal
loss to train the whole model with weak supervision.

3.1. Feature Extraction and Common Space

Visual Feature Extraction: In contrast to many vision
tasks where the last layer of a pre-trained CNN is being
used as visual representation of an image, we use feature
maps from different layers and map them separately to a
common space to obtain a multi-level set of feature maps
to be compared with text. Intuitively, using different levels

of visual representations would be necessary for covering
a wide range of visual concepts and patterns [26, 55, 58].
Thus, we extract L. = 4 sets of feature maps from L differ-
ent levels of a visual network, upsample them by a bi-linear
interpolation® to a fixed resolution M x M for all the L
levels, and then apply 3 layers of 1x1 convolution (with
LeakyRelu [31]) with D filters to map them into equal-
sized feature maps. Finally, we stack these feature maps
and space-flatten them to have an overall image representa-
tion tensor V € RYXLXD with N = M x M. This tensor
is finally normalized by the l5-norm of its last dimension.
An overview of the feature extraction and common space
mapping for image can be seen in the left part of Figure 3.

In this work, we use VGG [43] as a baseline for fair com-
parison with other works [10, 47, 17], and the state of the
art CNN, PNASNet-5 [29], to study the ability of our model
to exploit this more powerful visual model.

Textual Feature Extraction: State-of-the-art works in
grounding use a variety of approaches for textual feature
extraction. Some use pre-trained LSTM or BiLSTMs on
big datasets (e.g. Google 1 Billion [3]) based on ei-
ther word2vec [33] or GloVe [36] representations. Some
train BiLSTM solely on image-caption datasets (mostly
MSCOCO) and argue it is necessary to train them from
scratch to distinguish between visual concepts which may
not be distinguishable in language (e.g. red and green are
different in vision but similar in language as they are both
colors) [34,51,17,47,9, 14,61, 39, 57, 8]. These works ei-
ther use the recurrent network outputs at each state as word-
level representations or their last output (on each direction
for BiILSTM) as sentence-level or a combination of both.
In this paper, however we use ELMo [37], a 3-layer net-
work pre-trained on 5.5B tokens which calculates word rep-
resentations on the fly (based on CNN on characters, similar
to [19, 60]) and then feed them to 2 layers of BiLSTMs
which produce contextualized representations. Thus, for
a given sentence the model outputs three representations
for each token (splitted by white space). We take a lin-
ear combination of the three representations and feed them
to 2 fully connected layers (with shared weights among
words), each with D nodes with LeakyRelu as non-linearity
between each layer, to obtain each word representation s,
(green pathway in the right part of Figure 3). The resulting
word-based text representation for an entire sentence would
be a tensor S € R7*P built from the stacking of each word
representation s;. The sentence-level text representation is
calculated by concatenation of last output of the BILSTMs
at each direction. Similarly, we apply a linear combination
on the two sentence-level representations and map it to the
common space by feeding it to 2 fully connected layers of

2as transposed convolution produces checkerboard artifacts [35]
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Figure 3. Left: we choose feature maps of different convolutional blocks of a CNN model, resize them to the same spatial dimensions
using bi-linear interpolation, and map them to feature maps of the same size. Right: word and sentences embedding to the common space
from the pre-trained ELMo [37] model. The green pathway is for word embedding, the red pathway for sentence embedding. All the
orange boxes (1 x 1 convolutional layers of the visual mapping, linear combination and the two sets of fully connected layers of the textual
mapping) are the trainable parameters of our projection to the common space.

D nodes, producing the sentence representation s (red path-
way in the right part of Figure 3). The word tensor and
the sentence vector are normalized by their last dimension
l2-norm before being fed to the multimodal attention block.

3.2. Multi-Level Multimodal Attention Mechanism

Given the image and sentence, our task is to estimate the
correspondences between spatial regions (n) in the image at
different levels (), and words in the sentence at different po-
sitions (t). We seek to estimate a correspondence measure,
H,, +;, between each word and each region at each level.
We define this correspondence by the cosine similarity be-
tween word and image region representations at different
levels in common space:

Hn,t,l = maX(O, <St7 Vn,l>)' 6]

Thus, H € RVYXTXL represents a multi-level multi-modal
attention map which could be simply used for calculating
either visual or textual attended representation. We apply
ReLU to the attention map to zero-out dissimilar word-
visual region pairs, and simply avoid applying softmax on
any dimension of the heatmap tensor. Note that this choice
is very different in spirit from the commonly used approach
of applying softmax to attention maps [50, 49, 8, 34, 17,51,
41]. Indeed for irrelevant image-sentence pairs, the atten-
tion maps would be almost all zeros while the softmax pro-
cess would always force attention to be a distribution over
the image/words summing to 1. Furthermore, a group of
words shaping a phrase could have the same attention area
which is again hard to achieve considering the competition
among regions/words in the case of applying softmax on
the heatmap. We will analyze the influence of this choice
experimentally in our ablation study.

Given the heatmap tensor, we calculate the attended vi-
sual feature for the [-th level and ¢-th word as

N
anl Ht,n,lvn,l
)
,

HZT]:; Ht,n,lvn,l

which is basically a weighted average over the visual repre-
sentations of the [-th level with the attention heatmap values
as weights. In other words, a; ; is a vector in the hyperplane
spanned by a subset of visual representations in the com-
mon space, this subset being selected based on the heatmap
tensor. An overview of our multi-level multimodal atten-
tion mechanism for calculating attended visual feature can
be seen in Figure 4. In the sequel, we describe how we use
this attended feature to choose the most representative hy-
perplane, and calculate a multimodal loss to be minimized
by weak supervision of image-sentence relevance labels.

ag |

2

3.3. Feature Level Selection

Once we find the attended visual feature, we calculate
the word-image pertinence score at level [ using cosine sim-
ilarity for each word and the attended visual feature as

Rt,l = <at,l7 St>~ 3

Intuitively, each visual feature map level could carry differ-
ent semantic information, thus for each word we propose to
apply a hard level-attention to get the score from the level
contributing the most as

R, = mlax R ;. 4)

This procedure can be seen as finding projection of the tex-
tual embeddings on hyperplanes spanned by visual features
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the level that maximizes similarity between the attended visual
feature and the textual feature in the common space to produce
the pertinence score R;. This is equivalent to finding the hyper-

plane (spanned by each level visual feature vectors in the common
space) that best matches the textual feature.

Visual
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from different levels and choosing the one that maximizes
this projection. Intuitively, that chosen hyperplane can be
a better representation for visual feature space attended by
word ¢. This can be seen in the top central part of Figure 2,
where selecting the maximum pertinence score over levels
is equivalent to selecting the hyperplane with the smallest
angle with the ¢-th word representation (or the highest sim-
ilarity between attended visual feature and textual feature).
Thus, selecting the most representative hyperplane (or vi-
sual feature level).

Once we find the best word-image pertinence score, sim-
ilar to [51] and inspired by the minimum classification er-
ror [20], we find the overall (word-based) sentence-image
pertinence score as follows:

1

chaz>:1m;((gfexp«h39)"1). (5)
t=0

Similarly, for the sentence we can repeat the same pro-
cedure (except that we no more need Eq. (5)) for finding the
attention map, attended visual feature and sentence-image
pertinence score as follows, respectively:

il = max(0, (8, V1)) (6a)
N

aj = Hj v (6b)
n=1

R, = (a],8) (6¢)

Rs(S,1) = max R, (6d)

3.4. Multimodal Loss

In this paper, we only use a weak supervision in the form
of binary image-caption relevance. Thus, similar to [10, 16,

] we train the network on a batch of image-caption pairs,
{(Sw, I) }£_, and force it to have high sentence-image per-
tinence score for related pairs and low score for unrelated
pairs. Thus, considering a pertinence score R, (either R,
or R), we calculate the posterior probability of the sentence
Sp being matched with image I, by applying competition
among all sentences in the batch using:

exp(v2 Rz (Sp, In))
S exp(12Ra (Sy, 1))

Similarly, the posterior probability of I, being matched with
Sp could be calculated using:
exp (2R (Sb, 1v))

Py (Ip|Sy) = 8
l5t) >y exp(12 Ry (Sh, I)) ®

Then, similarly to [10, 51], we can define the loss using
the negative log posterior probability over relevant image-
sentence pairs as follows:

P.(Sp|Ip) =

)

B
15 = =3 (log Pa(Syl1y) + log P (1)S1)) - (9)
b=1

As we want to train a common semantic space for both
words and sentences, we combine the loss L* (that can be
computed based on the word relevance R,,) and the sen-
tence loss L® (obtained using Ry) to define our final loss L
as

L=1L"+I°. (10)

This loss is minimized over a batch of B images along with
their related sentences. We found in preliminary experi-
ments on held-out validation data, that the values v; = 5,
~v2 = 10 work well and we keep them fixed for our exper-
iments. In the next section, we will evaluate our proposed
model on different datasets and will have an ablation study
to show the reason for our choices in our model.

4. Experiments

In this section, we first present the datasets used in our
experimental setup. We then evaluate our approach com-
paring with the state-of-the-art, and further present ablation
studies showing the influence of each step of our method.

4.1. Datasets

MSCOCO 2014 [27] consists of 82,783 training images
and 40,504 validation images. Each image is associated
with five captions describing the image. We use the train
split of this dataset for training our model.
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Test Accuracy
Method Settings Training VG | Flickr30k | ReferIt
Baseline Random - 11.15 27.24 24.30
Baseline Center - 20.55 49.20 30.40
TD [59] Inception-2 VG 19.31 42.40 31.97
SSS[17] VGG VG 30.03 49.10 39.98
Ours BiLSTM+VGG VG 50.18 57.91 62.76
Ours ELMo+VGG VG 48.76 60.08 60.01
Ours ELMo+PNASNet VG 55.16 67.60 61.89
CGVS [41] Inception-3 MSR-VTT - 50.10 -
FCVC[10] VGG MSCOCO | 14.03 29.03 33.52
VGLS [47] VGG MSCOCO | 24.40 - -
Ours BiILSTM+VGG | MSCOCO | 46.99 53.29 47.89
Ours ELMo+VGG MSCOCO | 47.94 61.66 47.52
Ours ELMo+PNASNet | MSCOCO | 52.33 69.19 48.42

Table 1. Phrase localization accuracy (pointing game) on
Flickr30k, Referlt and VisualGenome (VG) compared to state of
the art methods.

Flickr30k Entities [39] contains 224k phrases describ-
ing localized bounding boxes in ~31k images each de-
scribed by 5 captions. Images and captions come from
Flickr30k [56]. We use 1k images from the test split of this
dataset for evaluation.

VisualGenome [25] contains 77,398 images in the training
set, and a validation and test set of 5000 images each. Each
image consists of multiple bounding box annotations and a
region description associated with each bounding box. We
use the train split of this dataset to train our models and use
its test split for evaluation.

Referlt consists of 20,000 images from the IAPR TC-12
dataset [13] along with 99,535 segmented image regions
from the SAIAPR-12 dataset [6]. Images are associated
with descriptions for the entire image as well as localized
image regions collected in a two-player game [22] provid-
ing approximately 130k isolated entity descriptions. In our
work, we only use the unique descriptions associated with
each region. We use a split similar to [15] which contains
9k training, 1k validation, and 10k test images. We use the
test split of this dataset to evaluate our models.

4.2. Experimental Setup

We use a batch size of B = 32, where for a batch of
image-caption pairs each image (caption) is only related
to one caption (image). Image-caption pairs are sampled
randomly with a uniform distribution. We train the net-
work for 20 epochs with the Adam optimizer [24] with
Ir = 0.001 where the learning rate is divided by 2 once
at the 10-th epoch and again at the 15-th epoch. We use
D = 1024 for common space mapping dimension and
a = 0.25 for LeakyReLU in the non-linear mappings. We
regularize weights of the mappings with [, regularization
with reg_value = 0.0005. For VGG, we take outputs from
{conv4_1, conv4_3, conv5_1, conv5_3} and map to semantic
feature maps with dimension 18 x 18 x 1024, and for PNAS-
Net we take outputs from {Cell 5, Cell 7, Cell 9, Cell 11}

pointing game accuracy attention correctness
[41] Ours Ours [41] Ours Ours
Class Inc.3 | VGG | PNAS | Inc.3 | VGG | PNAS
bodyparts | 0.194 | 0.408 | 0.449 | 0.155 | 0.299 | 0.373
animals | 0.690 | 0.867 | 0.876 | 0.657 | 0.701 | 0.826
people 0.601 | 0.673 | 0.756 | 0.570 | 0.562 | 0.724
instrument | 0.458 | 0.286 | 0.575 | 0.502 | 0.297 | 0.555
vehicles | 0.645 | 0.781 | 0.838 | 0.615 | 0.554 | 0.738
scene 0.667 | 0.685 | 0.682 | 0.582 | 0.596 | 0.639
other 0.427 | 0.502 | 0.598 | 0.348 | 0.424 | 0.535
clothing | 0.360 | 0.472 | 0.583 | 0.345 | 0.330 | 0.473
| average [ 0.501 [ 0.617 [ 0.692 | 0.473 [ 0.508 [ 0.639 |
Table 2. Category-wise pointing game accuracy and attention cor-
rectness on Flickr30k Entities.

and map to features with dimension 19 x 19 x 1024. Both
visual and textual networks weights are fixed during train-
ing and only common space mapping weights are trainable.
In the ablation study, we use 10 epochs without dividing
learning rate, while the rest of settings remain the same. We
follow the same procedure as in [17, 18, 39, 47] for cleaning
and pre-processing the datasets and use the same train/test
splits for fair comparison in our evaluations.

4.3. Phrase Localization Evaluation

As stated in Section 4.1, we train our model on the train
split of MSCOCO and Visual Genome (VG), and evaluate it
on the test splits of Flickr30k, Referlt, and VG. In test time,
for Flickr30k we feed a complete sentence to the model
and take weighted average of attention heatmaps of words
for each query with the word-image pertinence scores from
Eq. (4) as weights. For ReferIt and Visual Genome, we treat
each query as a single sentence and take its sentence-level
attention heatmap as the final query pointing heatmap. Once
the pointing heatmaps are calculated, we find the max loca-
tion (as pointing location for the given query) and evaluate
the model by the pointing game accuracy: %

Pointing game accuracy results can be found in Table |
for Flickr30k, Referlt and Visual Genome datasets. The
results show that our method significantly outperforms all
state-of-the-art methods in all conditions and all datasets.
For fair comparison with [17, 10, 47], we used a VGG16
visual model and replaced the pre-trained BiLSTM lay-
ers of ELMo with a single trainable BiLSTM. This model
(BILSTM+VGGQG) still gives a pointing game accuracy ab-
solute improvement of 20.15% for VisualGenome, 7.81%
for Flickr30k, and 23.28% for Referlt, while giving rela-
tive improvement of 67.09%, 15.59%, and 56.98%, respec-
tively. Results with the more recent PNASNet model are
even better, especially for Flickr30k and VisualGenome.

To get a deeper understanding of our model, we first re-
port in Table 2 category-wise pointing game accuracy and
attention correctness [28] (percentage of the heatmap falling
into the ground truth bounding box) and compare with the
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Figure 5. Image-sentence pair from Flickr30k with four queries (colored text) and corresponding heatmaps and selected max value (stars).

Selection Rate (%)
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3/Cell9 | 859 | 484 | 64.6 | 88.6 | 68.3 | 49.5 | 70.9 | 86.1 || 66.5 || 86.51
4/Cell11 | 11.4 [ 392 237 | 105 | 279 | 42.6 | 22.8 | 83 | 247 || 127

Table 3. Level selection rate for different layers 6f PNASNet on
different categories in Flickr30k

state-of-the-art method [4 1] on Flickr30k. We observe that
our method obtains a higher performance on almost all cat-
egories even when VGGI16 is used as the visual backbone.
The model based on PNASNet consistently outperforms the
state-of-the-art on all categories on both metrics. We further
perform a test on level selection rate for different types of
queries and report them in Table 3. It shows that the 3rd
level dominates the selection while the 4th level is also im-
portant for several categories such as scene and animals.
The 1st level is exploited mostly for the animals and people
categories. The full sentence selection relies mostly on the
3rd level as well, while for some sentences the 4th model
has been selected. This demonstrates the power of the pro-
posed method in selecting the right level of representation.

4.4. Ablation Study

In this section, we trained on MSCOCO multiple config-
urations of our approach, with a PNASNet visual model, to
better understand which aspects of our method affects pos-
itively or negatively the performance. We report evaluation
results on Flickr30k in Table 4. Results are sorted by per-
formance to show the most successful combinations.

We first evaluated the efficacy of using multi-level fea-
ture maps (ML) with level selection compared to a fixed
choice of visual layer (M: middle layer, L: last layer) for
comparison to word and sentence embeddings (WL and
SL). Specifically, we used Cell 7 as middle layer, and
Cell 11 as last layer, to be compared with word and sentence
embedding in Eq. (1) and Eq. (6a), respectively. The re-
sults in rows 1, 2 show that using level-attention mechanism
based on multi-level feature maps significantly improves the
performance over single visual-textual feature comparison.

A man in red pushes his motocross bike up a rock

SA | ELMo | NLT | NLV | WL | SL | Acc.
v ML | 67.73
v 62.67
61.13
58.40
56.92
56.42
54.75
v 47.20
91 v 4483
Table 4. Ablation study results on Flickr30k using PNASNet. SA:
Softmax Attention; NLT: Non-Linear Text mapping; NLV: Non-
Linear Visual mapping; WL: Word-Layer; SL: Sentence-Layer;
Acc.: pointing game accuracy.
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We then study the affect of non-linear mapping into the
common space for the text and visual features (NLT and
NLV). By comparing rows 2,4, 5, 7, we see that non-linear
mapping in our model is really important, and replacing any
mapping with a linear one significantly degrades the per-
formance. We can also see that non-linear mapping seems
more important on the visual side, but best results are ob-
tained with both text and visual non-linear mappings.

We further study the use of ELMo for text embedding
or the commonly used approach of training a Bi-LSTM.
Specifically, we simply replaced the pre-trained BiLSTMs
of ELMo model with a trainable BiLSTM (on top of word
embeddings of ELMo), and directly feed the BiLSTM out-
puts to the attention model. The results in rows 1, 3 and 2, 6
show the importance of using a strong contextualized text
embedding as the performance drops significantly.

We also study the use of softmax on the heatmaps, com-
paring rows 2,8, we see that applying softmax leads to a
very negative effect on the performance. This makes sense,
as elaborated in Section 3.2, since this commonly used ap-
proach forces unnecessarily the heatmap to have a distri-
bution on either words or regions. Results in row 9 corre-
sponds to a simple baseline on par with the state-of-the-art,
showing how much improvement can be gained by not us-
ing softmax, the use of our multi-level non-linear common
space representation and attention mechanism, and a pow-
erful contextualized textual embedding.
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Older lady wearing glasses and working on rolling out a dough like substance

o o

A cute young boy waving an american flag outside

Figure 6. Some image-sentence pairs from Flickr30k, with two
queries (colored text) and corresponding heatmaps and selected
max value (stars).

4.5. Qualitative results

We give in Figure 5, 6, and 7 some examples of heat
maps generated for some queries of the Flickr30k dataset.
Specifically, we upsample the heatmaps from their origi-
nal size of 18 x 18 (as we use the VGG backbone for
these visualizations) by bilinear interpolation to the orig-
inal image size. We can observe that the max (pointing)
location in heatmaps point to correct location in the im-
age and the heatmaps often capture relevant part of the im-
age for each query. It can deal with persons, context and
objects even if they are described with some very specific

An elderly woman_with white hair and glasses is next to a
window and in frontQf an open cash register drawer

Figure 7. Some failure cases of our model. The model makes some
semantically reasonable mistakes in pointing to regions.

words (e.g. “bronco”), which shows the power of using
a character-based contextualized text embedding. Finally,
Figure 7 shows some localization failures involving con-
cepts that are semantically close, and in challenging capture
conditions. For example, the frames are mistakenly pointed
for the query ”window” which is overexposed.

5. Conclusion

In this paper, we present a weakly supervised method
for phrase localization which relies on multi-level attention
mechanism on top of multi-level visual semantic features
and contextualized text embeddings. We non-linearly map
both contextualized text embeddings and multi-level visual
semantic features to a common space and calculate a multi-
level attention map for choosing the best representative vi-
sual semantic level for the text and each word in it. We
show that such combination sets a new state of the art per-
formance and provide quantitative numbers to show the im-
portance of 1. using correct common space mapping, 2.
strong contextualized text embeddings, 3. freedom of each
word to choose correct visual semantic level. Future works
lies in studying other applications such as Visual Question
Answering, Image Captioning, etc.
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