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Abstract

Blind deconvolution problems are heavily ill-posed

where the specific blurring kernel is not known. Recover-

ing these images typically requires estimates of the kernel.

In this paper, we present a method called Dr-Net, which

does not require any such estimate and is further able to

invert the effects of the blurring in blind image recovery

tasks. These image recovery problems typically have two

terms, the data fidelity term (for faithful reconstruction) and

the image prior (for realistic looking reconstructions). We

use the Douglas-Rachford iterations to solve this problem

since it is a more generally applicable optimization proce-

dure than methods such as the proximal gradient descent

algorithm. Two proximal operators originate from these it-

erations, one for the data fidelity term and the second for

the image prior. It is non-trivial to design a hand-crafted

function to represent these proximal operators which would

work with real-world image distributions. We therefore ap-

proximate both these proximal operators using deep net-

works. This provides a sound motivation for the final ar-

chitecture for Dr-Net which we find outperforms the state-

of-the-art on two mainstream blind deconvolution bench-

marks. While doing so, we also find that Dr-Net is one of

the fastest algorithms according to wall-clock times.

1. Introduction

The Blind Deconvolution Problem. Blind deconvo-

lution problems are interesting inverse problems in image

processing. A large part of their challenge is the fact that

the kernel that caused the corruption is unknown. Assume a

corrupted image y can be generated via convolving a clear

image x with a kernel k. This can be written as:

y = k ∗ x+ ǫ (1)

where ǫ is an additive zero-mean white Gaussian noise

and ∗ is the convolution operation. The problem of recov-

ering the clean image is an ill-posed inverse problem. One

Figure 1. From the left to the right, blurry image [34], recovered

image by Kupyn et. al. [25] and recovered image by our proposed

Dr-Net. Dr-Net recovers sharper images with finer details.

approach to solve it is by assuming some prior (or a set of)

on the image space and k is provided or estimated. Thus,

the clean image can be approximated by solving the follow-

ing optimization problem:

x∗ = argmin
x

‖y − k ∗ x‖22 + g(x) (2)

where ‖y−k ∗x‖22 is the data fidelity term and g is an oper-

ator that defines some prior on the image space also called

the image prior (e.g l1 norm is used to promote sparsity).

A good prior is important to recover a feasible and high-

quality solution. Image priors are common in signal and im-

age processing tasks such as inverse problems [30, 21] and

these communities have spent considerable effort in hand

designing suitable priors for signals [1, 42, 47]. However,

the optimization problem in Eq. 2 is useful only if good es-

timates are available for both the image prior and the blur-

ring kernel. Indeed, it has been shown that image recovery

algorithms (based on the optimization problem in Eq. 2) fail

when the solution space invoked by the assumed prior does

not contain good approximations of the real data [13]. This

also happens when the estimated kernel is not accurate [6].

Addressing the need for knowing the blurring kernel.
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The data fidelity term in Eq. 2 in general can be denoted by

f(y, x, k) to emphasize its dependence on k. In accordance

with the blind deconvolution problem, k is not known which

makes f(y, x, k) difficult to estimate let alone optimize. A

reasonable and at times useful assumption addressing this

is to assume that k is a random variable as in [4]. Now, the

data fidelity term can be computed via marginalizing over

the random variable k which makes it as a function of y and

x exclusively. This eliminates the need of knowing k. The

term f(x, y) now only measures how likely it is to obtain

the corrupted image y given a clean image x independent

of k, which makes it a good candidate as an objective to

be maximized. This approach however, presents a major is-

sue as it requires that the prior density function of k to be

known. This issue is one of the problems that our study

addresses. Nonetheless, in the general case, the overall op-

timization problem including an image prior term can be

written as the following:

x∗ = argmin
x̂

f(y, x) + g(x) (3)

The need for learning both the data fidelity and prior

functions. There are two main challenges in utilizing the

previous optimization formulation for deblurring and image

recovery in general. 1) It is not trivial to correctly model the

image prior using a hand-crafted function. Expressivity of

the prior is critical in effective recovery of the image. In-

deed, a number of previous works have proposed learning

the image prior and found significant benefits. If the prior

is incorrect or not expressive enough, the image recovered

can potentially have major artifacts [55]. 2) A lesser ad-

dressed problem is that of modelling the prior distribution

of the blurring kernel (e.g de-focusing kernels have distri-

bution that is different from motion kernels) along with the

exact noise distribution. This in turn leads to difficulties

in modelling the data fidelity function itself. Current ap-

proaches assume useful functions as data fidelity terms de-

spite limited expressivity. Some approaches represent the

kernel distribution with the Laplacian distribution [7] since

the kernel is assumed to have a sparse representation (e.g

motion kernels). Nonetheless, a clean image will not be re-

covered correctly when the assumed prior over the blurring

kernels is not expressive enough. Even in cases where the

prior distribution of the kernel is known, it can get diffi-

cult to find a closed form of f(y, x). For instance, in cases

when the prior distribution is not a conjugate prior of the

likelihood distribution. This makes hand-crafting a good

objective for data fidelity a difficult task.

Our approach to learn the data fidelity and image

prior. In this paper, we address these two problems simulta-

neously by modelling the proximal operators resulting from

the data fidelity term and the image prior term with deep

networks. To the best of our knowledge, this is the first

study to model both the image prior and the data fidelity

Figure 2. From the left to the right, blurry image [34], recovered

image by Kupyn et. al. [25] and recovered image by our proposed

Dr-Net. Dr-Net recovers sharper images with finer details.

terms with deep networks making this one of the main con-

tributions of this study. Learning the parameters of those

networks lets us learn the data fidelity and the image prior

functions indirectly.

The case for Douglas-Rachford iterations. In the usual

case, it is difficult to find a closed form solution of Eq. 3.

Iterative approaches such as gradient decent methods and

proximal decent methods are usually used to solve these

problems. However, both gradient decent based and proxi-

mal decent based methods require some conditions (e.g one

or both the prior term and the data fidelity term need to be

differentiable) for the optimization problem in Eq. 3. Im-

portantly, most of these conditions are not required for the

Douglas-Rachford algorithm making it a more generally ap-

plicable optimization procedure. This is our primary mo-

tivation to use Douglas-Rachford iterations to solve these

problems. The Douglas-Rachford iterations applied to Eq. 3

lead to proximal operators for both the prior term and the

data fidelity term. As discussed, for real-world data, it is dif-

ficult to know the exact form of both these terms. Our main

contribution is to therefore use deep networks to model both

proximal operators while having a straight-forward infer-

ence mechanism (a simple forward pass). We are motivated

by the universal approximation theory [8] which states that

the neural networks can model a very large class of func-

tions. The final architecture learns both the prior and data

fidelity terms in Eq. 3 from the corrupted data only with-

out making any assumption about the prior distribution of

the images or the blurring kernel. This framework leads to

a large network whose overall architecture is inspired from

and motivated by the Douglas-Rachford iterations. Indeed,

as we find in our ablation studies, correct and sufficient net-

work design following these iterations is critical to high-

performing architectures.

Contributions. We make three main contributions. 1)

We propose a network architecture for blind deconvolu-

tion inspired from the Douglas-Rachford optimization al-
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gorithm called Dr-Net. 2) We replace the proximal op-

erator in both the data fidelity term and the prior term in

Douglas-Rachford algorithm with two different networks

which firmly satisfy the non-expansive condition. This con-

dition helps the network to be stable during the training and

improve the performance during the testing. A phenomenon

we confirm in our experiments. Further and unlike previous

work, we motivate the use of multi-channel deep networks

as solving the DR iterations while assuming the image as a

non-linear weighted sum of an image basis. We show that

this provides more theoretical backing to modelling opti-

mization iterations with multi-channeled networks, which

was previously lacking. 3) We evaluate the proposed model

on the benchmark datasets and show that Dr-Net obtains

state-of-the art results in blind deblurring while being the

fastest according to our benchmarked wall-clock times.

2. Related Work
Image Priors. Several methods have been proposed to

using hand-designed image priors. Some of these methods

assume that the image prior can represented by Gaussian

distribution or a heavy tailed distribution like the Laplacian

with respect to a linear transformation [20, 3]. A few other

approaches have been proposed to compute the prior from

the data such as Principle Component Analysis (PCA) [54]

and dictionary learning [42]. However, these data driven

approaches are built by making some assumptions on the

prior. For instance, low-rank PCA projection assumes that

original image is low rank and transforms the image non-

linearly into that space. Dictionary learning techniques as-

sume a similar but slightly more expressive prior. However,

such priors may not be applied for blind image deconvolu-

tion as they might produce a trivial solution without high-

frequency details being intact.

Iterative Blind De-convolution. A few approaches have

been proposed to recover images assuming that the kernel is

unknown and therefore estimating it first [43, 14, 35]. These

approaches add additional terms to the optimization prob-

lem in Eq. 2 which usually represents a prior on the kernel.

Following this, the new optimization problem is solved with

respect to both the recovered image and the estimated blur-

ring kernel in an iterative fashion [24]. However, Eq. 2 be-

comes non convex if it is optimized for both the estimated

image and kernel simultaneously [6]. Further, inaccurate

estimation of the blurring kernels causes artifacts in the re-

covered images. Additionally, it is not trivial to assume an

accurate prior distribution of the blurring kernel without any

explicit knowledge. Nonetheless, images will not be recov-

ered faithfully when the assumed prior is not correct which

highlights the significance of accurate kernel modeling.

Image Priors via Deep Learning. There have been sev-

eral recent approaches that employ deep networks to learn

or model the image prior. In [52], the authors used a Con-

vNet trained on a large dataset. Recently, [40] used ADMM

Figure 3. (a) shows the graphical representation of Γg while (b)

shows Γf . These networks model the proximal operators in the

Douglas-Rachford iterations for the prior term and the data fidelity

term in Eq. 3. They form the main components of the proposed

Dr-Block.

in an iterative fashion to solve Eq. 3 where the proximal

operator of the prior term is replaced with a deep network

trained using the GAN loss. The authors in [32] combined

the idea of replacing the proximal operator with a denois-

ing framework [19] and denoising convolutional neural net-

works [59]. However, all these approaches are not designed

for blind deconvolution, since it takes the blurring kernel as

an input in order to recover deblurred images. Our work on

the other hand, focuses on the case when the blurring kernel

is not known apriori.

Learning the Data Fidelity Term. In [10], they use

Gaussian mixture model (GMM) to learn the data term for

image denoising. In this approach, they assume that the

GMM can approximate the data fidelity function when the

noise cause is unknown. However as a major limitation, the

blurring kernel is needed as an input besides the corrupted

image. Here the prior on the image is that it is sparse with

respect to the derivative, which is a hand crafted prior. On

the other hand, we learn both the data and the prior term via

deep networks, and importantly knowledge of the blurring

kernel is not needed.

Blind Deblurring via Deep learning. Recently, [25]

proposed DeblurGAN, which is based on the conditional

GAN and the content loss for blind motion deblurring. Fur-

thermore, the proposed approach in [34] removes these mo-

tion blurs from an image by using a multi-scale convolu-

tional neural network. Another method which deals with

motion blurring is [7], where a ConvNet was used to es-

timate the Fourier coefficients of the motion kernel and

sharper reconstructions in the frequency domain were re-

covered. However, the relation between the overall archi-

tectures in these approaches and the image recover opti-

mization problem in Eq. 3 is still unclear. In this work, the

overall network architecture is motivated based on the ap-

plication of the Douglas-Rachford iterations to solve Eq. 3.

3. Douglas-Rachford Networks for Inverse

Problems

In this section, we first briefly review the proximal opera-

tor and traditional Douglas-Rachford splitting for optimiza-
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tion. We then continue to present our proposed method for

blind image deconvolution.

3.1. Proximal Operators

Let h : Rn → R be a function. The proximal operator

of the function h with the parameter β is defined as

proxh,β(x) = argmin
z

β‖z − x‖22 + h(z) (4)

Proximal operators are useful in proximal algorithms

[37] such as alternating direction method of multipliers

(ADMM) [5], proximal gradient decent method [3] and the

Douglas-Rachford algorithm [12]. These algorithms are

considered special cases of fixed point algorithms [17]. It

is also interesting to note that proxh,β(x
∗) = x∗ if x∗ is a

minimizing value of h(x), which is another connection be-

tween fixed point algorithms and proximal algorithms. Fur-

ther, when proxh,β is applied repeatedly, it will find a fixed

point only if proxh,β is firmly non-expansive [2]. proxh,β

is said to be firmly non-expansive when the following holds

∀x, y

‖proxh,β(x)− proxh,β(y)‖
2
2 ≤ ‖x− y‖22 (5)

This condition is also related to the Lipschitz continuity

condition for the proximal operator with the Lipschitz con-

stant being 1 under the Euclidean distance metric. We will

take this feature into our consideration when we design Dr-

Net Framework in the coming sections.

3.2. Douglas­Rachford Splitting

The Douglas-Rachford algorithm is an iterative scheme

to minimize optimization problems where the objective

function is split as the sum of two functions as in Eq. 3

[12]. It is also a generalization of the famous proximal gra-

dient descent method (PGDM) [3]. However, PGDM re-

quires that one of the functions in Eq. 3 to be differentiable,

while this condition in not required in Douglas-Rachford

splitting.

Douglas-Rachford spltting has been applied to solve

nonlinear convex problems [27] before it was improved to

deal with non-smooth convex problems [9]. Moreover, [49]

show that Douglas-Rachford algorithms have a global con-

vergence rate for specific classes of structured non-convex

optimization problems. Analyzing the convergence rates

of Douglas-Rachford (DR) based algorithms is beyond the

scope of this paper. Nonetheless, [28] do present some re-

sults on convergence for the interested reader. Applying DR

to Eq. 3 leads to the following update steps:

qk = proxf,β(x
k)

zk = proxg,β(2q
k − xk)

xk+1 = xk + λk(z
k − qk)

(6)

Figure 4. The graphical representation of the proposed Dr-Block

which is inspired from the Douglas-Rachford iterations. The net-

works Γf and Γg represent the proximal operators in the iterations.

Each block computes one iteration of the updates. When multiple

of these are cascaded, they form the proposed Dr-Net. Also, the

numbers in the blue brackets correspond to the nearest skip con-

nection. The significance of these connections are investigated in

the ablation study.

where λk is the step size and β > 0. If λk = 2 for all it-

erations, this approach is known as the Peaceman-Rachford

splitting [39].

3.3. Dr­Net Framework

Our goal is to map the previous Douglas-Rachford up-

date steps to a deep network architecture that consists of

a fixed number of iteration (layers). We aim to utilize the

power of deep network based image recovery combined

with the Douglas-Rachford splitting method. This allows

the network to perform well on a number of benchmarks as

we find in our experiments.

Dr-Net models both the image prior and the data fidelity

proximal operators using deep networks whose parameters

are learned from data. This results in improved performance

as compared to other hand-crafted approaches which solve

the Eq. 3 formulation. The architecture of the network is

based on the updating steps of Eq. 6. The deep networks

(specifically, a convolutional neural network) model the

prox operators and further satisfy the firmly non-expansive

condition. We use a ConvNet for our image based appli-

cation as the spacial reciprocity property of ConvNets have

been shown to be very useful, especially when dealing with

2D visual data [44]. Although the Douglas-Rachford algo-

rithm applies the same proximal operators (the same func-

tion) for all the iterations in Eq. 6, there is much to gain

from having different proximal operators for every iteration

as shown in studies utilizing deep networks for iterative al-

gorithms such as ADMM-Net [46], ISTA-Net [57]. Thus,

we define the proximal operators to be different for every

iteration as different sub-networks.

The Douglas-Rachford Block. The updating steps of

Eq. 6 show that two distinct proximal operators are needed.

The first one, proxf,β(x) relates to the data fidelity term
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Figure 5. The proposed Dr-Net coupled with the pre and post processing networks. The core components for recovery here are multiple

instances of the proposed Dr-Blocks.

while proxg,β(x) relates to the image prior term. Instead

of setting by hand the regularization terms of f and g we

use CNNs to learn their corresponding proximal operators.

Thus, we represent each proximal operator with a ConvNet,

namely Γf (x) and Γg(x). This network consists of two

convolutional layers separated by a ReLU. Importantly, the

kernel weights of the convolution layers are projected into

the unit ball (the length of the vectorized filter weight ≤
1). This ensures that the network satisfies the firmly non-

expansive condition as we show in the following subsec-

tion. Since the data fidelity proximal operator proxf,β(x)
is a function of both the corrupted image and the previous

update step, the network Γf (x) adds the corrupted image

after a layer of convolution to the output of the network as

shown in Fig. 3.

Non-expansive networks. The non-expansive condition

for a function h states that under the Eucledian metric,

‖h(x)− h(y)‖22 ≤ ‖x− y‖22 (7)

During the course of development of our networks, we

found that enforcing the non-expansive conditions onto

them improved the performance and stability of conver-

gence. Enforcing this condition for convolutional layers

only required the projection of each filter weight into the

unit norm ball i.e. the norm ≤ 1. We present the set of

following results demonstrating that an entire ConvNet is

firmly non-expansive under this constraint.

Lemma 3.1 If h(x) 1) is the vanilla rectified linear unit op-

eration (ReLU) function, or 2) be a function that convolves

x with a filter that has weights projected into the unit norm

ball or 3) be a function that adds a constant to x, then h(x)
is firmly non-expansive.

Lemma 3.2 Let both h(x) and g(x) be firmly non-

expansive, then h(g(x)) is firmly non-expansive.

Lemmas 3.1 and 3.2 together imply that ConvNets with

max unit norm filter weights are firmly non-expansive1. We

empirically find that non-expansive networks have more

stable training.

The Dr-Net framework. Since the proximal operators

are replaced with CNNs, the optimum weights of the convo-

lution layers must be found through an optimization frame-

work as in Eq. 8. Here the equality constraints would define

1We provide proofs in the supplementary.

the network skip connections. Fig. 4 shows a graphical rep-

resenting of the architecture in Eq. 8.

min
Θ,λ

L(xgt, x
S) s.t qk = Γk

f,θ(x
k)

zk = Γk
g,θ(2q

k − xk)

xk+1 = xk + λk(z
k − qk)

(8)

Here L is the loss function, xgt (ground-truth) is the clear

image , xS is the recovered image returned by the net-

work after S iterations(layers) and k = 0, . . . , S. Note

that the constraints in this optimization problem represent

the Douglas-Rachford iterations. More importantly, the it-

erations address only single channel networks which are not

expected to have satisfactory performance in practice. Mod-

ern neural networks on the other hand are multi-channeled.

We now address this gap between the theoretical motiva-

tion and the practical architecture which has largely been

ignored in prior arts [34, 25, 7].

Towards multi channel Dr-Net. We now extend the

DR iterations and motivate a multi-channel deep network.

Our approach towards this is to assume that the input im-

age is the non-linear sum of some elements in a basis i.e.

x = h(
∑

i αiwi) where wi is the i-th element of the basis,

h is an reasonable non-linearity and α is the weight vec-

tor. The assumption of an image being a combination of a

basis is one that has been widely used in PCA [54], dictio-

nary learning [42] and wavelet bases [11]. The optimization

problem in Eq. 3 can be solved in parallel for each element

i. Applying the Douglas-Rachford iterations to the new ex-

pression for x we arrive at parallel iterations and updates

one for each i. Each of these parallel updates can be ex-

plained by a distinct channel in a distinct convolution layer

in the deep network, whereas each iteration of all these up-

dates is modelled by each layer in the deep network. This

provides a coherent framework to theoretically motivate the

more practical multi-channel deep-networks. We provide

more details of this connection in the supplementary mate-

rial.

Pre-processing Network. A good initial image x0 helps

to improve the performance of the proposed approach. The

effect of the initial estimate is less apparent when the prob-

lem of interest is convex. However, due to the non-convex

nature of our problem (training neural networks is non-

convex) the initial estimate will have a more significant ef-

fect. We utilize another network that uses the corrupted im-
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# of Dr-Blocks PSNR (dB) Time (sec)

3 27.26 49.1

5 30.40 57.4

7 30.71 75.8

9 30.93 96.1
Table 1. Effect of number of Dr blocks on performance.

Figure 6. (a) Performance of our proposed Dr-Net and ablated net-

works without learning the image prior or data fidelity term. (b)

Performance of our proposed Dr-net and ablated networks after

eliminating one of the proximal operators. In both figures, the left

axis represents PSNR in dB while the right one is SSIM.

Pre-Net Post-Net PSNR (dB) Parameters (million)

X X 30.40 6.7

X 28.20 6.3

X 28.57 6.3

27.12 5.9
Table 2. Pre and post networks ablation study. Xmeans that the

correspond network is applied.

age y to provide the initial estimate x0 and found that this

solution works sufficiently well in practice. The proposed

initialization network has a pyramid structure and it is con-

sisted of three stages. Each stage consists of a convolution

layer with 3 × 3 filters followed by a batch normalization

layer and ReLU layer. The three layers have N
4

, N
2

, and N

filters respectively where N is 256 in our experiments.

Post-processing Network. Once the updating steps in

Eq. 8 are applied for S iterations, the output tensor size

is the same image spatial size however with N channels.

Thus, we need to add a sub-network which converts the

tensor into an image. We call this component the post pro-

cessing network. This sub-network is similar to the pre-

processing network with 3 × 3 filters, however with N
2

, N
4

and c channels (here c is either 1 or 3). Finally, the output

is regulated by a Tanh layer to force the output to between

1 and -1. The final architecture of the proposed network is

illustrated in Fig. 5.

3.4. The Loss Function

The loss function for Dr-Nets is formulated as a com-

bination of the classical l2 loss and GAN loss as shown in

9.

L(x, y) = ‖x− y‖22 + µLGAN (x, y) (9)

We find that µ = 0.01 works well in practice. The l2 error

is known to be a good metric for image recovery, however

Figure 7. From the left to the right, blurry image [34], recovered

image by our approach when MSE loss is used and recovered im-

age by our proposed Dr-Net when GAN loss is added. GAN loss

helps to recover sharper images.

the recovered images usually suffer from blurry artifacts.

Indeed, the l2 error tends to ignore high frequency compo-

nents in the image.

To remedy this, we propose adding the GAN loss [16]

to the loss function to more faithfully reconstruct high fre-

quency elements. GANs have been well studied and used

in practice to better model the space of real-world images

with the help of a discriminator network. This discrimi-

nator forces the generator to only operate in the space of

real-world images thereby better modelling it [26]. More-

over, GAN loss has been used in several images recovery

tasks such as image super-resolution [26] since GAN loss

forces the generator to recover photo-realistic textures from

corrupted images. Among several techniques [31, 33] that

are related to conditional GANs, we chose the Wasserstein-

GAN with its gradient penalty [18] owing to its more robust

tolerance towards the balance between the discrminator and

generator leading to more stable training. Finally, we apply

a discriminator network similar to [18]. Fig. 7 shows the

advantage of adding GAN loss to the MSE loss where the

blurry artifacts is reduced when GAN loss is used.

4. Ablation studies on Douglas-Rachford Nets

We begin the empirically evaluation of Dr-Nets through

an extensive ablation study. For this, we created a testing

data-set by convolving 68 filters that were generated by the

proposed approach in supplementary with 68 images from

[41]. The kernels used for training were generated ran-

domly and were distinct from the one used in testing.

Network Architecture. The configuration of the pro-

posed network is outlined in Fig. 5 with the number of Dr-

Blocks (iterations) set to 5. All convolutional layers use

filters of the size 3 × 3. Since we want to have the sizes

of all feature maps in the network to be similar to the input

image size, we perform sufficient zero-padding.

Training Details. For training, we use 800 images from
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(1) X X X X

(2) X X X X

(3) X X X X

PSNR (dB) 28.31 28.21 28.65 28.43 29.24 29.76 29.49 30.40

Table 3. Skip connection ablation study. Xmeans that the correspond skip connection in Fig. 4 is used.

Figure 8. From the left to the right, blurry image [34], recovered

image by Kupyn et. al. [25] and recovered image by our proposed

Dr-Net. Dr-Net recovers sharper images with finer details.

the DIV2K dataset [50] as our training data. For each batch,

we randomly sample 16 patches of the size 128× 128 from

16 images (one from each image). We augment the train-

ing data by scaling, rotation and flipping. In total, we gen-

erate about 300 thousands patches. The input to the net-

work were the blurred patches, and the ground truth output

was set to be the clean versions of the patches. Note that

there is no explicit kernel estimation in this process. The

blurry images are generated using our proposed method in

the supplementary. We utilize Pytorch [38] as our code

base. Training for all ablation studies was conducted for

30 epochs (as opposed to 300 epochs for benchmarking

on evaluation datasets) using Adam [22] on Pascal Titan-

X GPUs. Each model took about 51 hours for completion.

The learning rate was decayed exponentially from 1e-1 to

1e-4(the learning rate is multiplied by 1e-1 after one fourth

of the epochs number) for both generator and discriminator

for the 30 epochs.

4.1. Learning the prior and the data fidelity terms

In Dr-NetP, we replace the prior term with a standard

hyper-Laplacian prior as in [10]. This is a strong hand-

crafted prior since natural images are considered to be

sparse with respect to the both the horizontal and vertical

derivative. Thus, the proximal operator or Γg in Eq. 8 is

represented with a soft threshold operator [3] w.r.t the bases

in [10]. In Dr-NetD, we replace the data fidelity term with

‖y−Kx‖22 where K is estimated via [56]. This means that

the proximal operator or Γf in Eq. 8 is represented with

[KKT +βI]−1(Ky+βx) where β is a tunning parameters

and is found by grid search as in [32]. Also, we compared

against LPO [32] where the proximal operator of the prior

term is replaced with a denoising convolutional neural net-

works (DnCNN) and K is also estimated via [56]. Thus,

the proximal operator or Γg in Eq. 8 is represented with

DnCNN and Γf is similar to the one in Dr-NetD. The re-

sults of this study are shown in Fig. 6(a). It is clear that

learning both the prior and the data fidelity terms have im-

proved the performance in both PSNR and SSIM compared

with nets where one term is learned while the other is not.

4.2. Empirical Analysis of the Dr­Nets

Effect of Depth vs Performance. We explore the trade-

off between the performance and compute time as the num-

ber of Dr-Blocks is varied. Table. 1 presents the results and

suggests 5 Dr blocks is a reasonable choice for our study.

Effect of Pre and Post-Nets. We explore the advantage

of using both pre and post networks. The results are shown

in Table. 2. Although the number of parameters increases

slightly (compared to the actual size) when both pre and

post nets are employed, the performances improves signifi-

cantly.

Effect of eliminating one of the proximal operators.

Next, we explore the importance of exactly following the

Douglas-Rachford iterations. Specifically, we ask if indeed

we need both the proximal operators in Eq. 8 or we could

eliminate one of the them. To test this, we created two ab-

lated versions of Dr-Net. In the first one we replace Γg in

Eq. 8 with a short circuit (simply remove Γg from Eq. 8)

and call it Dr-Netg. We do the same with Γf and call it

Dr-Netf. The results are shown in Fig. 6(b).

Effect of eliminating skip connections defined by the

Douglas-Rachford iterations. Finally, we explore the im-

portance of the skip connections which comes from the up-

dating steps in Eq. 6 where there is three skip connections.

In this study we observe the effects of removing or adding

these connections as shown in Table. 3. Lowest reconstruc-

tion error is achieved when all the skip connections are ap-

plied as suggested by Eq. 6. We present additional ablation

studies investigating the number of channels and blur kernel

modeling in the supplementary.

5. Evaluation on Blind Deconvolution

To verify the efficacy of Dr-Net for blind image recov-

ery, we extensively evaluate the proposed methods on two

datasets, 1) GoPro test dataset [34] and 2) Kohler dataset

[23]. To test the efficacy of the non-expansive condition,

we trained another network where we replace projecting

the convolution filter weights into the unit ball (firmly non-
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Method Gong Whyte Xu Sun Pan Liu Nah Kupyn Zhang Tao Dr-Net(IN) Dr-Net

PSNR (dB) 26.06 24.53 20.30 25.31 23.52 25.75 28.49 28.7 29.19 30.26 28.20 30.35

SSIM 0.8632 0.8458 0.7407 0.8511 0.8336 0.8654 0.9165 0.958 0.9306 0.9342 0.902 0.961

Table 4. Peak signal-to-noise ratio (PSNR) and the structural similarity measure (SSIM) on the GoPro test dataset [34]. Dr-Net (our

proposed approach) outperforms other recent algorithms to obtain state-of-the-art on this test set both in terms of PSNR and SSIM. Best

and the second best performance indicated by bold and italics. Due to space constraints the citations are provided in GoPro test set

description in the experiments section.

Method Whyte Xu Sun Nah Kupyn Tao Dr-Net(IN) Dr-Net

PSNR (dB) 27.03 27.47 25.22 26.48 25.86 26.75 25.12 27.20

SSIM 0.809 0.811 0.773 0.807 0.802 0.837 0.792 0.865

Table 5. Peak signal-to-noise ratio (PSNR) and the structural similarity measure (SSIM) of the Kohler dataset [23] when our approach is

applied against the state of the art algorithms. Best and the second best performance indicated by bold and italics.

Method Gong Whyte Xu Sun Pan Nah Kupyn Zhang Tao Dr-Net(IN) Dr-Net

Time (sec) 1500 700 3800 1500 2500 15 2.9 1.4 1.6 1.9 1.2

Table 6. Wall-clock run times (in seconds) for all algorithms on recovering an image of size of 720× 1280 pixels. Our proposed method,

Dr-Net attains the fastest processing time compared to previous state-of-the-arts.

expansive condition) with layer called the instance normal-

ization layer [51]. This model, called Dr-Net(IN), is a useful

baseline against the non-expansive criteria. We follow the

same training producer for both models 2.

GoPro test dataset: The GoPro test dataset is generated

by taking the average of several frames from videos that

are captured with high frame rate cameras. Averaging these

frames creates blurry images due to the preexisting motion.

This procedure has the advantage of providing near perfect

ground truths where there is almost no blur, while the aver-

aging provides the motion (and sometimes optical) blurred

images. One important point to note is that since this is a

real-world dataset, the same blurring kernel in the averaged

blurry image is not applied homogeneously throughout the

image. In other words, some part of the image might have

more blur than the rest, thereby the blur is spatially hetero-

geneous. We compare our models with state of the art mod-

els, Gong [15], Whyte [53], Xu [55], Sun [45], Pan [36],

Liu [29], Nah [34], Kupyn [25], Zhang [58] and Tao [48].

Results. Table. 4 showcases the results of this exper-

iment. We find that our approach Dr-Net with the non-

expansive constraint out preforms all the other methods in

term of PSNR and SSIM. Further, we observe that the non-

expansive Dr-Net out-performs even Dr-Net(IN) (with in-

stance normalization) which provides even more justifica-

tion for incorporating the firmly non-expansive condition

apart from theoretical justification. Finally, Fig. 1, 2 and 8

show some visual results of our approach compared with the

recent work of [25] on this dataset. We provide additional

examples in the supplementary.

Kohler dataset: This dataset consists of 48 images that

are generated by convolving 12 kernels with 4 images. Im-

portantly, and in contrast to the GoPro test set, the convo-

lution of the blurring kernels with the entire image ensures

2We found that the models do not converge when neither of the weight

normalization or instance normalization is used.

equal and spatially homogeneous blur at all parts of the im-

age. In [23], they record and analyze real camera motion

and generate motion kernels which simulate that motion.

For this test we compare against Whyte [53], Xu [55], Sun

[45], Nah [34], Kupyn [25] and Tao [48].

Results. Table. 5 showcases the results of this experi-

ment. We find that Dr-Net attains a high PSNR but fails to

obtain state-of-the-art in terms of PSNR. Xu [55] obtains a

high 27.47 dB. Nonetheless, Dr-Net obtains state-of-the-art

in terms of SSIM with 0.865 with Xu [55] following closely

at 0.811. Note that Xu [55] obtains a low 20.29 dB on the

GoPro test set whereas Dr-Net obtains 29.21 dB. This is

probably because Xu [55] requires a single blur kernel esti-

mate for the entire image. For spatially homogeneous blur

such as the blur in the Kohler test set, this is well-suited.

However, GoPro is a real-world test set with spatially het-

erogeneous blur, thereby forcing a single kernel estimate for

the entire image is not the ideal approach. This leads to the

poor performance of Xu [55] on GoPro. This also helps

demonstrates that Dr-Net does not suffer from this problem

and can deal with spatially heterogeneous blur well (it ob-

tains state-of-the-art on the GoPRo test set). Further, we

better understand the limitations of other approaches when

we incorporate wall-clock run times into account. Table. 6

shows the wall-clock run times of all methods. Clearly, Dr-

Net attains the fastest processing time of just 1.2 secs for

a 720 × 1280 image, compared to about 3,800 secs for Xu

[55] which retains state-of-the-art in terms of PSNR for the

Kohler dataset.

6. Conclusion
We find that Douglas-Rachford iterations within Dr-Net

can solve blind image deconvolution problems. We intro-

duce novel aspects such as modelling both data fidelity and

image prior proximal operators with ConvNets. Dr-Net

obtains SOTA results according to SSIM while being the

fastest according to wall clock times. DR iterations appli-

cations to other areas within deep learning seem promising.
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