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Abstract

Methods proposed in the literature towards continual

deep learning typically operate in a task-based sequential

learning setup. A sequence of tasks is learned, one at a time,

with all data of current task available but not of previous or

future tasks. Task boundaries and identities are known at all

times. This setup, however, is rarely encountered in practi-

cal applications. Therefore we investigate how to transform

continual learning to an online setup. We develop a sys-

tem that keeps on learning over time in a streaming fash-

ion, with data distributions gradually changing and with-

out the notion of separate tasks. To this end, we build on

the work on Memory Aware Synapses, and show how this

method can be made online by providing a protocol to de-

cide i) when to update the importance weights, ii) which

data to use to update them, and iii) how to accumulate the

importance weights at each update step. Experimental re-

sults show the validity of the approach in the context of two

applications: (self-)supervised learning of a face recogni-

tion model by watching soap series and learning a robot to

avoid collisions.

1. Introduction

In machine learning, one of the most basic paradigms is

to clearly distinguish between a training and testing phase.

Once a model is trained and validated, it switches to a test

mode: the model gets frozen and deployed for inference

on previously unseen data, without ever making changes to

the model parameters again. This setup assumes a static

world, with no distribution shifts over time. Further, it as-

sumes a static task specification, so no new requirements in

terms of output (e.g. novel category labels) or new tasks

added over time. Such strong division between training and

testing makes it easier to develop novel machine learning

algorithms, yet is also very restrictive.

Inspired by biological systems, the field of incremental

learning, also referred to as continual learning or lifelong
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learning [24, 34, 37], aims at breaking this strong barrier

between the training and testing phase. The goal is to de-

velop algorithms that do not stop learning, but rather keep

updating the model parameters over time. This holds the

promise of a system that gradually accumulates knowledge,

reaching increasingly better accuracy and better coverage as

time passes. However, it is practically not possible to store

all previous data - be it due to storage constraints or for pri-

vacy reasons. Yet updating parameters based only on recent

data introduces a bias towards that data and a phenomenon

known as catastrophic interference, in other words degrad-

ing performance on older data [8, 30].

To make progress in this direction, several works have

opted for a specific experimental setup, consisting of a se-

quence of distinct tasks, learned one after the other. Each

time, only the data for the ‘current’ task is available for

training. We refer to this as task-based sequential learning.

Training a shared model one task at a time has led to signif-

icant progress and new insights towards continual learning,

such as different strategies for preserving the knowledge of

previous tasks [19, 13, 1, 17]. However, the methods de-

veloped in this specific setup all too often depend on know-

ing the task boundaries. These boundaries indicate good

moments to consolidate knowledge, namely after learning a

task. Moreover, data can be shuffled within a task so as to

guarantee i.i.d. data. In an online setting, on the other hand,

data needs to be processed in a streaming fashion and data

distributions might change gradually.

In this work, we aim at overcoming this requirement

of hard task boundaries. In particular, we investigate how

methods proposed for task-based sequential learning can be

generalized to an online setting. This requires a protocol to

determine when to consolidate knowledge. Moreover, we

investigate the effect of keeping a small buffer with difficult

samples. For the latter, we take inspiration from the field

of reinforcement learning, namely experience replay [22],

although using much smaller replay buffers, unlike very re-

cent work of Rolnick et al. [31].

Task-based sequential learning has mostly been studied

for image classification [19, 2, 17, 39, 28]. Whenever the

learner arrives at a new task, that is when learning on the
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previous task has converged, a standard procedure is to ex-

tend the output layer of the network with additional ‘heads’

for each of the new task’s categories. Instead, the output

of our network is fixed. In our first application, learning

to recognize faces, we cope with a varying number of cate-

gories by using an embedding rather than class predictions.

In our second application, learning a lightweight robot to

navigate without collisions, it is not the output labels that

change over time but rather the environment. For both ap-

plications, data is processed in a streaming fashion. This

is challenging, since the data is not i.i.d. causing samples

within one batch to be unbalanced.

The contributions of this paper are as follows: i) We

are the first to extend task-based sequential learning to free

and unknown task boundaries in an online continual learn-

ing scenario; ii) We develop protocols to integrate an im-

portance weight regularizer, MAS, in this online continual

learning setting; iii) Our experiments on face recognition

from TV series and on monocular collision avoidance prove

the effectiveness of our method in handling the distribu-

tion changes in the streaming data and stabilizing the on-

line learning behaviour, resulting in knowledge accumula-

tion rather than catastrophic interference and improved per-

formance in all the test cases.

In the following we discuss related work (section 2). We

then describe our online continual learning approach in sec-

tion 3. We validate our system in the experimental section 4

and end with discussion and conclusion in section 5.

2. Related Work

Online Learning: Whereas in traditional offline learning,

the entire training data has to be made available prior to

learning the task, on the contrary online learning studies

learning algorithms that learn to optimize predictive mod-

els over a stream of data instances sequentially. We refer

to [5, 33] for surveys and overviews on the topic.

A first set of online learning algorithms consists of dif-

ferent techniques designed to learn a linear model [9, 6, 36,

12]. Online learning with kernels [14] extends this line of

work to non-linear models, but the models remain shallow

and their performance lags behind the modern deep neu-

ral networks. Unfortunately, attempts towards online learn-

ing of neural networks suffer from issues like convergence,

catastrophic interference and more. Some recent works in-

clude [32, 27], who both start from a small network and then

adapt the capacity by adding more neurons as new samples

arrive, while for online deep metric learning, [18] proposed

a method based on stacking multiple metric layers.

In terms of applications, the work of Pernici et al. [26,

25] is similar to our first application scenario. They learn

face identities in a self-supervised fashion via temporal con-

sistency. They start from the VGG face detector and de-

scriptor, and use a memory of detected faces. In contrast,

we start from a much weaker pretrained model (not face-

specific), and update the model parameters over time while

they do not.

A joint problem in continual and online learning is

catastrophic interference [21, 8] which is the severe for-

getting of previous samples when learning new ones. This

phenomenon manifests itself at different scales: in online

learning it happens while learning samples with different

patterns than previous ones; in the traditional setting of

continual learning it happens over a sequence of tasks.

Continual Learning: In [11], Hsu et al. classify the

studied scenarios for continual learning into incremental

task learning, incremental domain learning and incremen-

tal class learning. They argue that more attention should go

to the last two - i.e. to methods that do not require to know

the task identity, since that is the case encountered in most

practical scenarios.

Yet as indicated before, most methods to date follow the

task-based sequential learning setup. This includes vari-

ous regularization-based methods, such as Elastic Weight

Consolidation [13], Synaptic Intelligence [39] and Memory

Aware Synapses [1]. These methods estimate importance

weights for each model parameter and penalize changes to

parameters deemed important for previous tasks. We will

discuss how to extend one of them to the online setting later.

Note that, while Synaptic Intelligence computes the impor-

tance weights in an online fashion, it still waits until the

end of a task before updating the losses, so like the other

methods it depends on knowing the task boundaries. Incre-

mental Moment Matching [17] builds on similar ideas, yet

stores different models for different tasks and merges them

only at the very end. As such, it is unclear how this could

be extended to an online, task-free setting. Also related is

the work on Dynamically Expandable Networks [38]. They

exploit the relatedness between the new task and previously

learned tasks to determine which neurons can be reused and

add new neurons to account for the new knowledge.

Next there are several data-driven methods such as

Learning without Forgetting [19] or Encoder-based Life-

long Learning [28]. With a separate knowledge distilla-

tion loss term for previous tasks, it’s again unclear how they

could be applied without knowing the task identity.

Other methods use an episodic memory, such as iCARL

(incremental Classifier and Representation Learning) [29]

and Memory Based Parameter Adaptation [35]. A special

mention here goes to Gradient Episodic Memory for Con-

tinual Learning [20], as it moves a step forward towards the

online setting: it assumes that the learner receives exam-

ples one by one but simplifies the scenario to locally i.i.d.

drawn samples from a task distribution. Moreover, it still

assumes that a task identifier is given. Like the buffer we

use, they use an episodic memory for each task consist-

ing of recently seen examples. A buffer from which recent
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data can be reused for training is similar to the concept of

a replay buffer often used in Deep Reinforcement Learning

(DRL). However a crucial difference is that in both old and

recent DRL works the replay buffer typically contains up to

1M samples corresponding to over 100 days of experience

[22, 10]. Here, we want to keep the algorithm more online

by using a buffer of up to 100 samples only.

A common DRL technique, known as “prioritized

sweeping”, is to sample experiences with a large error more

often than others [23]. In a similar fashion we propose “pri-

oritized keeping” where a hard buffer drops the easy sam-

ples first rather than the oldest.

3. Method

Our goal is to design a training method for task-free

online continual learning. Task-based sequential learning

methods assume that data comes in tasks, with tasks bound-

aries identified, so the training procedure can be divided in

consecutive phases. In between the training phases, when

training has stabilized, the continual learning method up-

dates its meta-knowledge on how to avoid forgetting previ-

ous tasks. However, in the case of online learning where

data is streaming and the distribution is shifting gradually,

it is unclear whether these methods can be applied and how.

After studying a couple of methods mentioned above, we

identified Memory Aware Synapses (MAS) [1] as the most

promising method in this respect. It enjoys the following

favorable characteristics. 1) Static storage requirement: it

only stores an importance weight for each parameter in the

network avoiding an increase of memory consumption over

time; 2) Task agnostic: it can be applied to any task and

is not limited to classification. In particular, we can use it

with an embedding as output, avoiding the need to add extra

‘heads’ for new outputs over time; 3) Fast: it only needs one

backward pass to update the importance weights. During

training, the gradients of the imposed penalty are simply the

change that occurs on each parameter weighted by its im-

portance. Therefore, the penalty gradients can be added lo-

cally and do not need a backpropagation step; 4) top perfor-

mance: MAS shows superior performance to other impor-

tance weight regularizers [1, 11]. In order to deploy MAS

in an online continual learning scenario, we need to deter-

mine i) when to update the importance weights, ii) which

data to use to update the importance weights, and iii) how

to accumulate the importance weights at each update step.

We first introduce the considered online continual learn-

ing setup, then explain MAS and our training procedure un-

der this setup.

Setup: We assume an infinite stream of data and a super-

visory or self-supervisory signal that is generated based on

few consecutive samples. At each time step s, the system

receives a few consecutive samples along with their gener-

ated labels {xk, yk} drawn non i.i.d from a current distri-

Figure 1: By detecting plateaus and peaks in the loss surface our method

decides when to update the importance weights, corresponding to the Big

Bang Theory experiment, see section 4.2; x-axis represents update steps

bution Dt. Moreover, the distribution Dt could itself expe-

rience sudden or gradual changes from Dt to Dt+1 at any

moment. The system is unaware of when these distribu-

tion changes are happening. The goal is to continually learn

and update a function F that minimizes the prediction er-

rors on previously seen and future samples. In other words,

it aims at continuously updating and accumulating knowl-

edge. Given an input model with parameters θ, the system

at each time step reduces the empirical risk based on the

recently received samples and a small buffer B composed

of updated hard samples XB . The learning objective of the

online system is:

min
θ

L(F (X; θ), Y ) + L(F (XB ; θ), YB) (1)

Due to the strong non-i.i.d conditions and the very low num-

ber of samples used for the gradient step, the system is vul-

nerable to catastrophic interference between recent samples

and previous samples and faces difficulty in accumulating

the knowledge over time.

Memory Aware Synapses (MAS) [1]: In a traditional task-

based sequential learning setting, MAS works as follows.

After each training phase (task), the method estimates an

importance weight for each network parameter indicating

the importance of this parameter to the previously learned

task. To estimate the importance, MAS computes the sensi-

tivity of the learned function to the parameters changes.

F (xk; θ + δ)− F (xk; θ) ≈
∑

i

gi(xk)δi (2)

Ωi =
1

N

N∑

k=1

|| gi(xk) || (3)

where {xk} are the N samples from the previous task, δi is

a small change to model parameter θi and gi(xk) =
∂F (xk)

∂θi
.

Ωi is the importance weight of parameter θi. When learning

a new task, changes to important parameters are penalized:

L(θ) = Ln(θ) +
λ

2

∑

i

Ωi(θi − θ∗i )
2 (4)

with θ∗ the parameters values at the time of importance

weight estimation, i.e. the optimal parameters for the pre-

vious task in the traditional sequential setup. Ln(θ) is the
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Algorithm 1 Online Continual Learning

1: Input:l th,std th,passes

2: Initialize: B={},{Ωi}=0, check plateau=False

3: Receive: {x, y} ⊲ K few consecutive samples

4: for pass in passes do

5: loss = 1
K

∑
k
L(F (xk; θ), yk)

6: Hloss = L(F (XB ; θ), YB)
7: Backprob(Hloss+ loss), Update(θ)
8: if pass = 0 then

9: Update Loss Window (Hloss+ loss)
10: end if

11: end for

12: Update Buffer ({x, y}, loss,Hloss)

13: if check plateau and µ(l window) < l th and

σ(l window) < std th then

14: Update(Ω, B)

15: l window = {} , check plateau=False

16: plt µ = µ(l window) , plt σ = σ(l window)
17: end if

18: if µ(l window) > plt µ+ plt σ then

19: check plateau=True

20: end if

loss for the new task. After each task the newly estimated

Ωi are accumulated to the previous estimates.

When to update importance weights: in the case of a task-

based sequential learning setting where tasks have prede-

fined boundaries, importance weights are updated after each

task, when learning has converged. In the online case, the

data is streaming without knowledge of a task’s start or end

(i.e. when distribution shifts occur). So we need a mecha-

nism to determine when to update the importance weights.

For this, we look at the surface of the loss function.

By observing the loss, we can derive some information

about the data presented to the system. When the loss

decreases, this indicates that the model has learned some

meaningful new knowledge from those seen samples. Yet

the loss does not systematically decrease all the time. When

new samples are received that are harder or contain differ-

ent objects or input patterns than what was presented to the

learner before, the loss may increase again. In those cases,

the model has to update its knowledge, while minimally in-

terfering with what has been learned previously.

We can conclude that plateaus in the loss function indi-

cate stable learning regimes, where the model is confidently

predicting the current labels, see Figure 1. Whenever the

model is in such a stable area, it’s a good time to consolidate

the knowledge by updating the importance weights. This

way, we identify the parameters that are important for the

currently acquired knowledge. When learning new, “differ-

ent” samples the model will then be encouraged to preserve

this knowledge. This should allow the model to accumulate

knowledge over time rather than replace previously learned

bits of knowledge.

Detecting plateaus in the loss surface: to detect these

plateaus in the loss surface, we use a sliding window over

consecutive losses during training. We monitor the mean

and the variance of the losses in this window and trigger

an importance weight update whenever they are both lower

than a given threshold. We do not keep re-estimating im-

portance weights: we only re-check for plateaus in the loss

surface after observing a peak. Peaks are detected when the

window loss mean becomes higher than 85% of a normal

distribution estimated on the loss window of the previous

plateau - that is when µ(l window) > plt µ+ plt σ where

plt µ and plt σ are the statistics of the previously detected

plateau. This accounts for the continuous fluctuations in the

loss function in the online learning and detects when signif-

icantly harder samples are observed.

A small buffer with hard samples: in a task-based sequen-

tial learning setup, importance weights are estimated on all

the training data of the previous task. This is not an option

for online learning, as storing all the previous data violates

the condition of our setup. On the other hand, using only

the most recent sequence of samples would lead to mislead-

ing estimates as these few consecutive samples might not be

representative and hence do not capture the acquired knowl-

edge correctly. To stabilize the online learning, we use a

small buffer of hard samples that is updated at each learn-

ing step by keeping the samples with highest loss among

the new samples and the current buffer. This is important

as previous samples cannot be revisited and hence gives the

system the advantage to re-process those hard samples and

adjust its parameters towards better predictions in addition

to getting a better estimate of the gradient step by averaging

over the recent and hard samples. Moreover, the hard buffer

represents a better estimate of the acquired knowledge than

the few very recent samples and hence allows for a better

identification of importance weights.

Accumulating importance weights: as we frequently up-

date the importance weights, simply adding the new esti-

mated importance values to the previous ones as suggested

in MAS [1] would lead to very high values and exploding

gradients. Instead, we maintain a cumulative moving aver-

age of the estimated importance weights. Note, one could

deploy a decaying factor that allows replacing old knowl-

edge in the long term. However, in our experiments a cu-

mulative moving average showed more stable results.

After updating the importance weights, the model con-

tinues the learning process while penalizing changes to pa-

rameters that have been identified as important so far. As

such our final learning objective is:

min
θ

L(F (X; θ), Y )+L(F (XB ; θ), YB)+
λ

2

∑

i

Ωi(θi−θ∗i )
2

(5)
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Figure 2: Synthetic experiment: Predictions on first quadrant after train-

ing second quadrant. Test accuracy on first quadrant (total test accuracy on

both quadrants) overlaid.

where θ∗ are the parameters values at the last importance

weight update step. Algorithm 1 summarizes the different

steps of the proposed continual learning system.

4. Experiments

As a proof-of-concept, we validate our proposed method

on a simple synthetic experiment. Later, we evaluate

the method on two applications with either weak or self-

supervision. First, we learn actor identities from watching

soap series. The second application is robot navigation. In

both cases, data is streaming and online continual learning

is a key factor.

4.1. Synthetic Experiment

We constructed a binary classification problem with

points in 4D in/out of the unit sphere. On a sequence of

two tasks where each task corresponds to a quadrant, we

test the performance of online with no hard buffer, online

and our full online continual method. Fig.2 depicts the pre-

dictions near the decision boundary in the first quadrant at

the end of training on data in the second quadrant. The hard

buffer results in better learning (higher total test accuracy),

while the full method also avoids forgetting.

4.2. Continual Learning by watching Soap Series

Here, we assume that an intelligent agent is watching

episodes from a tv series and learns to differentiate between

the faces of the different actors. The agent is equipped with

a face detector module that is detecting faces online and a

multi-object face tracker. In the case of weak supervision,

we assume there is an annotator telling the agent whether

two consecutive tracks are of the same identity or not. For

the self-supervised case, we use the fact that if two faces are

detected in the same image then their tracks must belong to

two different actors.

Setup: we start from an AlexNet [15] architecture with

the convolutional layers pre-trained on ImageNet [16] and

the fully connected layers initialized randomly. The output

layer is of size 100. Since the input consists of two tracks

of two different identities, we use the triplet margin loss [4]

which has been shown to work well in face recognition ap-

plications. This has the additional advantage that we don’t

need to know all the identities beforehand and new actors

can be added as more episodes are watched.

Dataset: we use the actor labelling dataset from [3], specifi-

cally 6 episodes of The Big Bang Theory (BBT), 4 episodes

of Breaking Bad (BB), and one episode of Mad Men

(MM)1. Note that for BB and MM, the episodes were fur-

ther split into a total of 22 and 5 chunks, respectively. For

each episode we use the frames, detected faces and tracks

along with track labels from [3]. Tracks are processed in

chronological order, imitating the setting where tracks are

extracted in an online fashion while watching the tv series.

As a result, the data is clearly non-i.i.d..

For the supervised setup, every tenth/fifth track is held

out as test data in BBT/BB respectively as the later has more

tracks, 339 tracks BBT compared to 3941 BB. All the other

tracks are used for training. As we only have one episode

for MM, we decided not to use it for the supervised setup.

For the self-supervised setup, BB turned out to be un-

suitable, given that it is an actor centric series with a large

majority of the scenes focusing on one actor. To still have

results on two series, we do report also on MM in this case,

in spite of it being only one episode. Further, the original

tracks provided by [3] were quite short (an average of 8/22

faces per track in BBT/MM). Since this is problematic for

the self-supervised setting, we use a simple heuristic based

on the distance between the faces embedding (based on

AlexNet pretrained on ImageNet) to merge adjacent tracks

belonging to the same actor.

Training: whenever two tracks are encountered belonging

to different actors, a training step is performed using the

detected faces (one face every 5 frames). If the two tracks

contain more than 100 faces, a random sampling step is per-

formed. We use a hard buffer size of 100 triplets and a fixed

loss window size of 5. A few gradient steps are performed at

each time step (2-3 for the supervised setting, 10-15 for the

self-supervised one). We use SGD optimizer with a learning

rate of 10−4. Hyperparameters were set based on the first

BBT episode, please refer to the supplementary material for

more details.

Test: to test the accuracy of the trained model on recog-

nizing the actors in the tv series, we use 5 templates of each

actor selected from different episodes. We then compute the

Euclidean distance of each test face to the templates, based

on the learned representation, and assign the input face to

the identity of the template that is closest.

Baselines: to estimate the benefit of our system, Online

Continual, we compare it against the following baselines:

1. Initial : the pretrained model, i.e. before training on

any of the episodes.

2. Online Baseline : a model trained in the explained on-

line setting but without the MAS importance weight

regularizer.
3. Online Joint Training : a model trained online, again

1Unfortunately, there was an issue with the labels for the other episodes

of Mad Men, which prevented us from using these.
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Figure 3: Accuracy on test data at the end of each episode for Big Bang Theory (a) and after chunks 1,5,9,13,17 and 21 of Breaking Bad (b). (c) a study

on the importance of the hard buffer and the cumulative Ω average versus a decaying Ω, figure shows the test accuracy after each episode of BBT.

without MAS regularization, but with shuffled tracks

across episodes to obtain i.i.d. drawn data.

4. Offline Joint Training : a model that differs from On-

line Joint Training by going multiple epochs over the

whole data. This stands as an upper bound.

4.2.1 Weak Supervision Results

Figure 3 (a) shows the actor recognition accuracy evalu-

ated on all the test data of BBT, at the end of each episode.

Initially, the Online Baseline (orange) obtains an increase

of 20% in accuracy compared to the initial model. Yet it

fails to continue accumulating knowledge and improving

the accuracy as training continues. After the third episode,

the overall accuracy starts to decay, probably because the

knowledge learned from these new episodes interferes with

what was learned previously. In contrast, our Online Con-

tinual Learning system (blue) continues to improve its per-

formance and achieves at the end of the 6 episodes an ac-

curacy that matches the accuracy of the model trained with

shuffled data under the i.i.d. condition (Online Joint Train-

ing, pink). Offline Joint Training (purple) with multiple

revisits to the shuffled data achieves the top performance.

Note that this is only 8% higher than our continual learning

system trained under the online and changing distribution

condition.

Figure 3 (b) shows the accuracy on all the test data of BB,

after each 4 chunks while learning the 4 episodes. Clearly

this tv series is much harder than BBT. Most of the shots are

outdoor and under varied lighting conditions, as also noted

in [3]. This corresponds to large distribution changes within

and between episodes. Here, the Online Baseline (orange)

fails to increase the performance after the first episode. Its

accuracy notably fluctuates, probably depending on how

(un)related the recently seen data is to the rest of the series.

Again, our Online Continual Learning system (blue) suc-

ceeds in improving and accumulating knowledge – up to a

100% improvement over the Online Baseline. Like the On-

line Baseline, its performance drops at times, yet the drops

are dampened significantly, allowing the model to keep on

learning over time. Surprisingly, it even outperforms the

Online Joint Training baseline (pink) and comes close to the

Offline Joint training upper bound (purple) that only reaches

this accuracy after ten revisits to the training data.

4.2.2 Self Supervision Results

Next we move to the case with self-supervision. This sce-

nario reflects the ideal case where continual learning be-

comes most interesting. Remember that, as a clue for self-

supervision, we use the fact that multiple tracks appearing

in the same image should have different identities. We use

the six episodes of BBT, although only the first and the sixth

episodes actually have a good number of tracks with two

persons appearing in one image. Figure 4 (a) shows the ac-

curacy on all the episodes after learning each episode. Note

how the Online Learning Baseline (orange) continues to im-

prove slightly as more episodes are watched. It’s only when

we get to the last episode, with a larger number of useful

tracks, that our Continual Online Learning (blue) starts to

outperform the Online Learning Baseline.

Figure 4 (b) shows the recognition accuracy on the first

episode of Mad Men after each chunk. Similar to the previ-

ous experiments our Online Continual learning (blue) suc-

ceeds in improving the performance and accumulating the

knowledge. We conclude that the ability of continual learn-

ing of stabilizing the online learning is clearly shown, both

for weak and self-supervised scenarios.

4.2.3 Ablation Study

Next we perform an ablation study to evaluate the impact

of two components of our system. The first factor is the

hard buffer used for stabilizing the online training and for

updating the importance weights. The second factor is the

mechanism for accumulating importance weights across up-

dates. In our system we use a cumulative moving average,

which gives all the estimated importance weights the same

weight. An alternative is to deploy a decaying average. This

reduces the impact of old importance weights in favor of the

newest ones. To this end, one can set Ωt = (Ωt−1 +Ω∗)/2
where Ω∗ are the currently estimated importance weights.

Figure 3(c) shows the accuracy on all the test data of BBT

after each episode achieved by the different variants. The

hard buffer clearly improves the performance of both the

Online Baseline and Online Continual learning. The buffer
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Figure 4: Self-supervised setting: accuracy on all faces of Big Bang Theory after each episode (a) and of Mad Men after each of the 5 chunks (b). (c) a

study on the actors recognition during the course of training, figure shows two main actors test accuracy after each chunk in BB.

Figure 5: Example views in the corridor sequence corresponding to en-

vironments A, B, C and D, depicted from left to right.

with hard samples, even if small, gives the learner a chance

to re-pass over hard samples and to adjust its gradients for a

better estimate of the parameters update step. Additionally,

it allows a better estimate of the importance weights used in

our Online Continual Learning. The decaying average for

the importance weights update, leads more fluctuations due

to the higher impact of more recent importance estimates.

This allows more forgetting and more bias towards the re-

cent estimate that could be unrepresentative to the overall

test data.

Relationship between samples and recognition perfor-

mance during training: to show how the predictions on

the seen actors change over the online training time, we

plotted the accuracies per actor after each chunk (for two

most frequent characters of BB, to avoid overloading the

figure), see Fig.4(c). Marker size indicates the actor’s fre-

quency in a chunk; no marker indicates zero appearance.

Low frequency in a chunk typically causes the accuracy of

the online baseline to drop while our method is more stable.

4.3. Monocular Collision Avoidance

Collision avoidance is the task in which a robot navi-

gates through the environment aimlessly while avoiding ob-

stacles. We train a neural network to perform this task, at

test time, based on single RGB images. Training is done

with self-supervision where a simple heuristic based on ex-

tra sensors, serves as an supervising expert. The deep neural

network learns to imitate the expert’s control, so cloning its

behavior. The task of collision avoidance is best demon-

strated in a variety of environments. However, hardware

or legal constraints might prevent storing all training data,

urging the need for an online learning setup. As the net-

work tends to forget what it has learned over time, the setup

is excellent for testing online continual learning.

Architecture: our model takes a 128x128 RGB frame as

input and outputs three discrete steering directions. The ar-

chitecture consists of 2 convolutional and 2 fully-connected

layers with ReLU-activations. The training starts with ran-

dom initialization of the weights and continues with gradi-

ent descent on a cross-entropy loss.

Simulation: the experiment is done in a Gazebo simulated

environment with the Hector Quadrotor model. The ex-

pert is a heuristic reading scans from a Laser Range Finder

mounted on the drone and turning towards the direction

with the furthest depth. The demonstration of the expert

follows a sequence of four different corridors, referred to as

A,B,C and D. The environments differ in texture, obstacles

and turns, as visible in figure 5.

Training: every 10 steps a backward pass occurs, minimiz-

ing the cross-entropy loss, shown in the lower right of figure

6. For each model, three networks are trained with different

seeds resulting in the error bars plotted.

Test: the models are evaluated on the entire data sequence

as reported in figure 6. The grey bars on the x-axis indicate

crossings to new environments. Besides the general online

with no continual learning baseline, the performance of fol-

lowing models are given: a scratch initialized model, an

online jointly trained model as well as offline. The online

joint model has seen all the data once but in an i.i.d. manner.

The accuracy of both the online with and without contin-

ual learning increases in environments where it is currently

learning. Online training without continual training, how-

ever, tends to forget the early environments like A, B and C

while training in new environments. Especially in environ-

ment B and D, the effect is outspoken. The cross-entropy

loss in environment D rises for all models, indicating a sig-

nificant change in the data.

4.4. Proof Of Concept in the Real World

In a final experiment, we apply online continual learning

on a turtlebot in a small arena in our lab, see figure 7.

The model is on-policy pretrained in a similar simulated

environment without continual learning. On-policy refers

to the model being in control during training instead of the

expert. In the previous experiments, continual learning has

proven to be advantageous when big differences occur in

the data. In this setup we show that continual learning also

provides stabilization during on-policy training within one

environment. Again, an expert based on the Laser Range

Finder is providing a self-supervisory signal. On-policy

learning tends to be more difficult as the data contains a

lot of “dummy” samples when the model visits irrelevant

states. This data inefficiency causes the model to learn

slower and possibly forget along the way. For example, if
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Figure 6: The training accuracy’s on the different types of corridors as well as the total accuracy during training on the corridor sequence (A,B,C,D) as

depicted in figure 5. Grey lines indicate the transition to a new environment. The lower right figure shows the cross-entropy loss on the recent buffer. The

accuracy’s of the baselines are added as horizontal lines for the initial model, the jointly trained model both online and offline.

Figure 7: Left: Real-world online and on-policy setup. Right: Number

of collisions per training step. Using online continual learning speeds up

the training.

the model collides on the left side, the recent data teaches

the model to turn right more often. However, after crossing

the arena and bumping on the right side, you still want the

model to remember its mistakes made earlier. As such,

preserving acquired knowledge over time is crucial for

on-policy online learning. In figure 7, we show the number

of collisions per step over time with error bars taken over

three different models. Clearly continual learning helps

the model to learn faster, with the number of collisions

dropping faster than without it.

5. Discussion and Conclusion

The importance weight regularization appears most ef-

fective in online training scenarios when large changes in

the learned distribution occur. The closer the online data

stream is to i.i.d. samples, the smaller the positive continual

learning effect.

In some cases however, continual learning tends to slow

down the adaptation to newly seen data. Especially when

the new data is much more informative or representative

than the old, continual learning initially has a negative ef-

fect on the training. In other words, pure online learning

is faster to adapt to new changes but therefore also inher-

ently less stable. Ultimately, whether the stabilizing effect

of continual learning is advantageous or not, depends on the

time scale of the changes in the data.

While in this work we focus on a setting where the net-

work architecture remains fixed, and no new outputs or

tasks are added over time, we believe it could also be ap-

plied in other settings. For instance in a class-incremental

setting, an extra head could be added to the network each

time a new category label appears. Alternatively, a projec-

tion into an embedding space could be used, as in [7], avoid-

ing the need for a growing network architecture. These are

directions for future work.

Due to the limited time, we used data from published

datasets in the face recognition experiment allowing quan-

titative evaluation. However, as future work, we plan to test

self-supervised online continual learning on large scale tv-

series, thus learning for a longer time.

In conclusion, we pushed the limits of current task-based

sequential learning towards online task-free continual learn-

ing. We assume an infinite stream of input data, containing

changes in the input distribution both gradual and sudden.

Our protocol deploys a state of the art importance weight

regularization method for online continual learning by de-

tecting when, how and on what data to perform importance

weight updates. Its effectiveness is validated successfully

for both supervised and self-supervised learning. More

specifically, by using our continual learning method, we

demonstrate an improvement of stability and performance

over the baseline in applications like learning face identities

from watching tv-series and robotic collision avoidance.
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