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Abstract

Interest in image-to-image translation has grown sub-

stantially in recent years with the success of unsupervised

models based on the cycle-consistency assumption. The

achievements of these models have been limited to a partic-

ular subset of domains where this assumption yields good

results, namely homogeneous domains that are character-

ized by style or texture differences. We tackle the chal-

lenging problem of image-to-image translation where the

domains are defined by high-level shapes and contexts, as

well as including significant clutter and heterogeneity. For

this purpose, we introduce a novel GAN based on preserv-

ing intra-domain vector transformations in a latent space

learned by a siamese network. The traditional GAN sys-

tem introduced a discriminator network to guide the gener-

ator into generating images in the target domain. To this

two-network system we add a third: a siamese network that

guides the generator so that each original image shares se-

mantics with its generated version. With this new three-

network system, we no longer need to constrain the gen-

erators with the ubiquitous cycle-consistency restraint. As

a result, the generators can learn mappings between more

complex domains that differ from each other by large differ-

ences - not just style or texture.

1. Introduction

Learning to translate an image from one domain to an-

other has been a much studied task in recent years [36,

17, 15, 38, 13]. The task is intuitively defined when we

have paired examples of an image in each domain, but

unfortunately these are not available in many interesting

cases. Enthusiasm has grown as the field has moved to-

wards unsupervised methods that match the distributions

of the two domains with generative adversarial networks

(GANs) [18, 11, 32, 35, 26]. However, there are infinitely

many mappings between the two domains [24], and there is

no guarantee that an individual image in one domain will

share any characteristics with its representation in the other

domain after mapping.

Figure 1: The TraVeLGAN architecture, which adds a siamese

network S to the traditional generator G and discriminator D and

trains to preserve vector arithmetic between points in the latent

space of S.

Other methods have addressed this non-identifiability

problem by regularizing the family of generators in various

ways, including employing cross-domain weight-coupling

in some layers [26] and decoding from a shared embedding

space [25]. By far the most common regularization, first in-

troduced by the CycleGAN and the DiscoGAN, has been

forcing the generators to be each other’s inverse, known
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Figure 2: Examples of TraVeLGAN generated output on Imagenet domains that are too different and diverse for cycle-consistent GANs

to map between. The TraVeLGAN successfully generates images that are both fully realistic in the output domain (shape of object, color,

background) and have preserved semantics learned by the siamese network.

as the cycle-consistency property [16, 39, 20, 31, 27, 2, 9,

4, 37]. Recent findings have shown that being able to in-

vert a mapping at the entire dataset level does not neces-

sarily lead to the generation of related real-generated image

pairs [23, 3, 11].

Not only do these dataset-level regularizations on the

generator not provide individual image-level matching, but

also by restricting the generator, they prevent us from

learning mappings that may be necessary for some do-

mains. Previous work continues to pile up regularization

after regularization, adding restrictions on top of the gen-

erators needing to be inverses of each other. These in-

clude forcing the generator to be close to the identity func-

tion [39], matching population statistics of discriminator ac-

tivations [20], weight sharing [26], penalizing distances in

the latent space [31], perceptual loss on a previously trained

model [25], or more commonly, multiple of these.

Instead of searching for yet another regularization on

the generator itself, we introduce an entirely novel ap-

proach to the task of unsupervised domain mapping: the

Transformation Vector Learning GAN (TraVeLGAN).

The TraVeLGAN uses a third network, a siamese net-

work, in addition to the generator and discriminator to pro-

duce a latent space of the data to capture high-level seman-
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tics characterizing the domains. This space guides the gen-

erator during training, by forcing the generator to preserve

vector arithmetic between points in this space. The vector

that transforms one image to another in the original domain

must be the same vector that transforms the generated ver-

sion of that image into the generated version of the other

image. Inspired by word2vec embeddings [14] in the nat-

ural language space, if we need to transform one original

image into another original image by moving a foreground

object from the top-left corner to the bottom-right corner,

then the generator must generate two points in the target

domain separated by the same transformation vector.

In word2vec, semantic vector transformations are a prop-

erty of learning a latent space from known word contexts. In

TraVeLGAN, we train to produce these vectors while learn-

ing the space.

Domain mapping consists of two aspects: (a) transfer the

given image to the other domain and (b) make the translated

image similar to the original image in some way. Previous

work has achieved (a) with a separate adversarial discrimi-

nator network, but attempted (b) by just restricting the class

of generator functions. We propose the natural extension to

instead achieve (b) with a separate network, too.

The TraVeLGAN differs from previous work in several

substantial ways.

1. It completely eliminates the need for training on cycle-

consistency or coupling generator weights or other-

wise restricting the generator architecture in any way.

2. It introduces a separate network whose output space

is used to score similarity between original and gen-

erated images. Other work has used a shared latent

embedding space, but differs in two essential ways: (a)

their representations are forced to overlap (instead of

preserving vector arithmetic) and (b) the decoder must

be able to decode out of the embedding space in an au-

toencoder fashion [25, 31] ([25] shows this is in fact

equivalent to the cycle consistency constraint.

3. It is entirely parameterized by neural networks:

nowhere are Euclidean distances between images as-

sumed to be meaningful by using mean-squared error.

4. It adds interpetability to the unsupervised domain

transfer task through its latent space, which explains

what aspects of any particular image were used to gen-

erate its paired image.

As a consequence of these differences, the TraVeLGAN is

better able to handle mappings between complex, hetero-

geneous domains that require significant and diverse shape

changing.

By avoiding direct regularization of the generators, the

TraVeLGAN also avoids problems that these regularizations

cause. For example, cycle-consistency can unnecessarily

prefer an easily invertible function to a possibly more co-

herent one that is slightly harder to invert (or preventing us

from mapping to a domain if the inverse is hard to learn).

Not only must each generator learn invertible mappings,

but it further requires that the two invertible mappings be

each other’s inverses. Furthermore, cycle-consistency is en-

forced with a pixel-wise MSE between the original and re-

constructed image: other work has identified the problems

caused by using pixelwise MSE, such as the tendency to

bias towards the mean images [7].

Our approach bears a resemblance to that of the Dis-

tanceGAN [6], which preserves pairwise distances between

images after mapping. However, they calculate distance di-

rectly on the pixel space, while also not preserving any no-

tion of directionality in the space between images. In this

paper, we demonstrate the importance of not performing

this arithmetic in the pixel space.

Many of these previous attempts have been developed

specifically for the task of style transfer, explicitly assuming

the domains are characterized by low-level pixel differences

(color, resolution, lines) as opposed to high-level semantic

differences (shapes and types of specific objects, composi-

tion) [7, 37, 13]. We demonstrate that these models do not

perform as well at the latter case, while the TraVeLGAN

does.

2. Model

We denote two data domains X and Y , consisting of fi-

nite (unpaired) training points {xi}
Nx

i=1
∈ X and {yi}

Ny

i=1
∈

Y , respectively. We seek to learn two mappings, GXY :
X → Y and GY X : Y → X , that map between the do-

mains. Moreover, we want the generators to do more than

just mimic the domains at an aggregate level. We want there

to be a meaningful and identifiable relationship between the

two representations of each point. We claim that this task of

unsupervised domain mapping consists of two components:

domain membership and individuality. Without loss of

generality, we define these terms with respect to GXY here,

with GY X being the same everywhere but with opposite do-

mains.

Domain membership The generator should output points

in the target domain, i.e. GXY (X) ∈ Y . To enforce this, we

use the standard GAN framework of having a discriminator

DY that tries to distinguish the generator’s synthetic output

from real samples in Y . This yields the typical adversarial

loss term Ladv:

Ladv = EX [DY (GXY (X))]

Individuality In addition, our task has a further require-

ment than just two different points in X each looking like

they belong to Y . Given xi, xj ∈ X, i 6= j, we want there

to be some relationship between xi and GXY (xi) that jus-

tifies why GXY (xi) is the representation in domain Y for
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Figure 3: Examples of TraVeLGAN generated output on traditional datasets for unsupervised domain transfer with cycle-consistent

GANs. Little change to the original image is necessary in these problems, and TraVeLGAN generates the expected, minimally changed

image in the other domain.

xi and not for xj . Without this requirement, the generator

could satisfy its objective by ignoring anything substantive

about its input and producing arbitrary members of the other

domain.

While other methods try to address this by regularizing

GXY (by forcing it to be close to the identity or to be in-

verted by GY X ), this limits the ability to map between do-

mains that are too different. So instead of enforcing simi-

larity between the point xi and the point GXY (xi) directly

in this way, we do so implicitly by matching the relation-

ship between the xi’s and the relationship between the cor-

responding GXY (xi)’s.

We introduce the notion of a transformation vector be-

tween two points. In previous natural language process-

ing applications [14], there is a space where the vector that

would transform the word man to the word woman is similar

to the vector that would transform king to queen. In our ap-

plications, rather than changing the gender of the word, the

transformation vector could change the background color,

size, or shape of an image. The crucial idea, though, is that

whatever transformation is necessary to turn one original

image into another original image, an analogous transfor-

mation must separate the two generated versions of these

images.

Formally, given xi, xj ∈ X , define the transforma-

tion vector between them ν(xi, xj) = xj − xi. The

generator must learn a mapping such that ν(xi, xj) =
ν(GXY (xi), GXY (xj)). This is a more powerful property

than even preserving distances between points, as it requires

the space to be organized such that the directions of the vec-

tors as well as the magnitudes be preserved. This property

requires that the vector that takes xi to xj , be the same vec-

tor that takes GXY (xi) to GXY (xj).

As stated so far, this framework would only be able to de-

fine simple transformations, as it is looking directly at the

input space. By analogy, the word-gender-changing vec-

8986



tor transformation does not hold over the original one-hot

encodings of the words, but instead holds in some reduced

semantic latent space. So we instead redefine the transfor-

mation vector to be ν(xi, xj) = S(xj)− S(xi), where S is

a function that gives a representation of each point in some

latent space. Given an S that learns high-level semantic

representations of each image, we can use our notion of pre-

serving the transformation vectors to guide generation. We

propose to learn such a space with an analogue to the ad-

versarial discriminator D from the traditional GAN frame-

work: a cooperative siamese network S.

The goal of S is to map images to some space where

the relationship between original images is the same as the

relationship between their generated versions in the target

domain:

LTraV eL = ΣΣi 6=jDist(νij , ν
′
ij)

νij = S(xi)− S(xj)

ν′ij = S(GXY (xi))− S(GXY (xj))

where Dist is a distance metric, such as cosine similarity.

Note this term involves the parameters of G, but G needs

this space to learn its generative function in the first place.

Thus, these two networks depend on each other to achieve

their goals. However, unlike in the case of G and D, the

goals of G and S are not opposed, but cooperative. They

both want LTraV eL to be minimized, but G will not learn a

trivial function to satisfy this goal, because it also is trying

to fool the discriminator. S could still learn a trivial function

(such as always outputting zero), so to avoid this we add one

further requirement and make its objective multi-task. It

must satisfy the standard siamese margin-based contrastive

objective [28, 29] LSc
, that every point is at least δ away

from every other point in the latent space:

LSc
= ΣΣi 6=jmax(0, (δ − ||νij ||2))

This term incentivizes S to learn a latent space that identi-

fies some differences between images, while LTraV eL in-

centivizes S to organize it. Thus, the final objective terms

of S and G are:

LS = LSc
+ LTraV eL

LG = Ladv + LTraV eL

G and S are cooperative in the sense that each is trying to

minimize LTraV eL, but each has an additional goal specific

to its task as well. We jointly train these networks such that

together G learns to generate images that S can look at and

map to some space where the relationships between original

and generated images are preserved.

3. Experiments

Our experiments are designed around intentionally dif-

ficult image-to-image translation tasks. These translations

Figure 4: It is hard to learn mappings between domains that

are each other’s inverse when the domains are asymmetric (e.g.

crossword configurations are more complex than abacus config-

urations). (a) G1 can change the background (red selection) or

black beads (orange circles) in hard-to-invert ways. (b) The cycle-

consistency assumption forced every black bead to a white cross-

word square and every blank space to a black crossword square,

even though the result is not a realistic crossword pattern. The

background is also not fully changed because it could not learn

that more complicated inverse function.

are much harder than style or texture transfer problems,

where the domain transformation can be reduced to repeat-

ing a common patch transformation on every local patch

of every image without higher-level semantic information

(e.g. turning a picture into a cartoon) [31, 19]. Instead,

we choose domains where the differences are higher-level

and semantic. For example, when mapping from horses to

birds, any given picture of a horse might solely consist of

style, texture, and patches that appear in other pictures of

real birds (like blue sky, green grass, sharp black outlines,

and a brown exterior). Only the higher-level shape and con-

text of the image eventually reveal which domain it belongs

to. Additionally, because we use datasets that are designed

for classification tasks, the domains contain significant het-

erogeneity that makes finding commonality within a domain

very difficult.

We compare the TraVeLGAN to several previous meth-

ods that first regularize the generators by enforcing cycle-

consistency and then augment this with further regular-

izations [39, 20, 3, 31, 27, 2, 9, 4]. Namely, we com-

pare to a GAN with just the cycle-consistency loss (cy-

cle GAN) [39], with cycle-consistency loss plus the iden-

tity regularization (cycle+identity GAN) [39], with cycle-

consistency loss plus a correspondence loss (cycle+corr

GAN) [3], with cycle-consistency loss plus a feature match-

ing regularization (cycle+featmatch GAN) [20], and with
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cycle-consistency loss plus a shared latent space regulariza-

tion (cycle+latent GAN) [25]. The TraVeLGAN utilizes a

U-net architecture with skip connections [30] for the gener-

ator. The discriminator network is a standard stride-2 con-

volutional classifier network that doubles the number of fil-

ters at each layer until the layer is 4x4 and outputs a sin-

gle sigmoidal probability. The siamese network is iden-

tical except rather than outputting one node like the dis-

criminator it outputs the number of nodes that is the size

of the latent space, without any nonlinear activation. For

the cycle-consistent GANs we compare to, we optimized

the hyperparameters to get the best achievement we could,

since our focus is on testing our different loss formulation.

This involved trying both Resnet and U-Net architectures

for the models from [39]: the U-Net performed much bet-

ter than the Resnet at these tasks, so we use that here. We

also had to choose a value of the cycle-consistent coefficient

that largely de-emphasized it in order to get them to change

the input image at all (0.1). Even so, we were not able to

achieve nearly as convincing results with any of the baseline

models as with the TraVeLGAN.

3.1. Similar domains

The datasets we first consider are traditional cases for

unsupervised domain mapping with cycle-consistent net-

works, where little change is necessary. These are:

Apples to oranges The photos of apples and oranges

from [39] (Figure 3a). The TraVeLGAN successfully

changes not only the color of the fruit, but also the shape

and texture. The stem is removed from apples, for example,

and the insides of oranges aren’t just colored red but fully

made into apples. In the last row, the TraVeLGAN changes

the shape of the orange to become an apple and correspond-

ingly moves its shadow down in the frame to correspond.

Van Gogh to landscape photo The portraits by Van Gogh

and photos of landscapes, also from [39] (Figure 3b). Here

the prototypical Van Gogh brush strokes and colors are suc-

cessfully applied or removed. Notably, in the last row, the

portrait of the man is changed to be a photo of a rocky

outcrop with the blue clothes of the man changing to blue

sky and the chair becoming rocks, rather than becoming a

photo-realistic version of that man, which would not belong

in the target domain of landscapes.

Ukiyoe to landscape photo Another dataset from [39],

paintings by Ukiyoe and photos of landscapes (Figure 3c).

It is interesting to note that in the generated Ukiyoe images,

the TraVeLGAN correctly matches reflections of mountains

in the water, adding color to the top of the mountain and the

corresponding bottom of the reflection.

CelebA glasses The CelebA dataset filtered for men with

and without glasses [8] (Figure 3d). As expected, the TraV-

eLGAN produces the minimal change necessary to trans-

fer an image to the other domain, i.e. adding or remov-

ing glasses while preserving the other aspects of the image.

Since the TraVeLGAN learns a semantic, rather than pixel-

wise, information preserving penalty, in some cases aspects

not related to the domain are also changed (like hair color

or background). In each case, the resulting image is still

a convincingly realistic image in the target domain with a

strong similarity to the original, though.

CelebA hats The CelebA dataset filtered for men with

and without hats [8] (Figure 3e). As before, the TraVeL-

GAN adds or removes a hat while preserving the other se-

mantics in the image.

Sketch to shoe Images of shoes along with their sketch

outlines, from [33] (Figure 3f). Because this dataset is

paired (though it is still trained unsupervised as always),

we are able to quantify the performance of the TraVeLGAN

with a heuristic: the pixel-wise mean-squared error (MSE)

between the TraVeLGAN’s generated output and the true

image in the other domain. This can be seen to be a heuris-

tic in the fourth row of Figure 3c, where the blue and black

shoe matches the outline of the sketch perfectly, but is not

the red and black color that the actual shoe happened to be.

However, even as an approximation it provides information.

Table 2 shows the full results, and while the vanilla cycle-

consistent network performs the best, the TraVeLGAN is

not far off and is better than the others. Given that the TraV-

eLGAN does not have the strict pixel-wise losses of the

other models and that the two domains of this dataset are

so similar, it is not surprising that the more flexible TraVeL-

GAN only performs similarly to the cycle-consistent frame-

works. These scores provide an opportunity to gauge the

effect of changing the size of the latent space learned by the

siamese network. We see that our empirically chosen de-

fault value of 1000 slightly outperforms a smaller and lower

value. This parameter controls the expressive capability of

the model, and the scores suggest providing it too small of a

space can limit the complexity of the learned transformation

and too large of a space can inhibit the training. The scores

are all very similar, though, suggesting it is fairly robust to

this choice.

Quantitative results Since the two domains in these

datasets are so similar, it is reasonble to evaluate each model

using structural similarity (SSIM) between the real and gen-

erated images in each case. These results are presented in

Table 1. There we can see that the TraVeLGAN performs

comparably to the cycle-consistent models. It is expected

that the baselines perform well in these cases, as these are

the standard applications they were designed to succeed on

in the first place; namely, domains that require little change

to the original images. Furthermore, it is expected that

the TraVeLGAN changes the images slightly more than the

models that enforce pixel-wise cycle-consistency. That the
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SSIM Apple Van Gogh Ukiyoe Glasses Hats

TraVeLGAN 0.302 0.183 0.222 0.499 0.420

Cycle 0.424 0.216 0.252 0.463 0.437

Cycle+ident 0.305 0.327 0.260 0.608 0.358

Cycle+corr 0.251 0.079 0.072 0.230 0.204

Cycle+featmatch 0.114 0.117 0.125 0.086 0.209

Cycle+latent 0.245 0.260 0.144 0.442 0.382

Table 1: Real/generated SSIM on the similar-domains datasets.

Pixel MSE Sketches Shoes

TraVeLGAN 0.060 0.267

TraVeLGAN (Dlatent=100) 0.069 0.370

TraVeLGAN (Dlatent=2000) 0.064 0.274

Cycle 0.047 0.148

Cycle+corr 0.427 0.603

Cycle+featmatch 0.077 0.394

Cycle+latent 0.072 0.434

Table 2: Per-pixel MSE on the shoes-to-sketch dataset.

TraVeLGAN performs so similarly demonstrates quantita-

tively that the TraVeLGAN can preserve the main qualities

of the image when the domains are similar.

3.2. Imagenet: diverse domains

The previous datasets considered domains that were very

similar to each other. Next, we map between two domains

that are not only very different from each other, but from

classification datasets where the object characterizing the

domain is sometimes only partially in the frame, has many

different possible appearances, or have substantial clutter

around it. In this most difficult task, we present arbi-

trary chooses two classes from the Imagenet [10] dataset.

These images are much higher-resolution (all images are

rescaled to 128x128), making it easier to learn a transfer that

only needs local image patches (like style/texture transfer)

than entire-image solutions like TraVeLGAN’s high-level

semantic mappings.

We chose classes arbitrarily because we seek a frame-

work that is flexible enough to make translations between

any domains, even when those classes are very different and

arbitrarily picked (as opposed to specific domains contrived

to satisfy particular assumptions). The pairs are: 1. aba-

cus and crossword (Figures 2a and S2) 2. volcano and jack-

-o-lantern (Figures 2b and S5) 3. clock and hourglass (Fig-

ures 2c and S4) 4. toucan and rock beauty (Figures 2d and

S3).

Asymmetric domains Learning to map between the do-

mains of abacus and crossword showcase a standard prop-

erty of arbitrary domain mapping: the amount and nature

of variability in one domain is larger than in the other. In

Figure 4, we see that the TraVeLGAN learned a seman-

tic mapping from an abacus to a crossword by turning the

beads of an abacus into the white squares in a crossword

and turning the string in the abacus to the black squares.

However, in an abacus, the beads can be aligned in any

Figure 5: (a) A real crossword image artificially manipulated

to move a white square around the frame. (b) The TraVeLGAN,

which has not seen any of these images during training, has learned

a semantic mapping between the domains that moves an abacus

bead appropriately with the crossword square.

Figure 6: The CycleGAN generates images such that pairwise

L2-distances in pixel space are strongly preserved. The TraVeL-

GAN generated images are virtually uncorrelated in pixel space,

but the siamese network learns a latent space where pairwise dis-

tances are preserved.

shape, while in crosswords only specific grids are feasible.

To turn the abacus in Figure 4 (which has huge blocks of

beads that would make for a very difficult crossword in-

deed!) into a realistic crossword, the TraVeLGAN must

make some beads into black squares and others into white

squares. The cycle-consistency loss fights this one-to-many

mapping because it would be hard for the other generator,

which is forced to also be the inverse of this generator, to

learn the inverse many-to-one function. So instead, it learns

a precise, rigid bead-to-white-square and string-to-black-

square mapping at the expense of making a realistic cross-

word (Figure 4b). Even though the background is an unim-

portant part of the image semantically, it must recover all of

the exact pixel-wise values after cycling. We note that the

TraVeLGAN automatically relaxed the one-to-one relation-

ship of beads to crossword squares to create realistic cross-

words. On the other hand, any real crossword configuration

is a plausible abacus configuration. In the next section, we

show that the TraVeLGAN also automatically discovered

this mapping can be one-to-one in white-squares-to-beads,

and preserves this systematically.

Manipulated images study Next we examine the degree

to which the TraVeLGAN has learned a meaningful seman-
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FID score (a) (b) (c) (d)

TraVeLGAN 1.026 0.032 0.698 0.206

Cycle 1.350 1.281 1.018 0.381

Cycle+identity 1.535 0.917 1.297 1.067

Cycle+corr 1.519 0.527 0.727 0.638

Cycle+featmatch 1.357 1.331 1.084 0.869

Cycle+latent 1.221 0.485 1.104 0.543

Table 3: FID scores for each of the models on each of the Ima-

genet datasets. Column labels correspond to Figure 2.

Discriminator score (a) (b) (c) (d)

TraVeLGAN 0.035 0.206 0.074 0.145

Cycle 0.014 0.008 0.033 0.008

Cycle+identity 0.011 0.044 0.040 0.064

Cycle+corr 0.009 0.191 0.026 0.001

Cycle+featmatch 0.002 0.029 0.066 0.014

Cycle+latent 0.009 0.069 0.047 0.039

Table 4: Discriminator scores for each of the models on each of

the Imagenet datasets. Column labels correspond to Figure 2.

tic mapping between domains. Since the Imagenet classes

are so cluttered and heterogeneous and lack repetition in the

form of two very similar images, we create similar images

with a manipulation study. We have taken one of the real

images in the crossword domain, and using standard photo-

editing software, we have created systematically related im-

ages. With these systematically related images, we can test

to see whether the TraVeLGAN’s mapping preserves the se-

mantics in the abacus domain in a systematic way, too.

In Figure 5, we started with a crossword and created a

regular three-by-three grid of black squares by editing an

image from Figure S2. Then, systematically, we move a

white square around the grid through each of the nine po-

sitions. In each case, the TraVeLGAN generates an aba-

cus with a bead moving around the grid appropriately. Re-

markably, it even colors the bead to fit with the neighboring

beads, which differ throughout the grid. Given that none

of the specific nine images in Figure 5 were seen in train-

ing, the TraVeLGAN has clearly learned the semantics of

the mapping rather than memorizing a specific point.

Pairwise distance preservation The DistanceGAN [6]

has shown that approximately maintaining pairwise dis-

tances between images in pixel space achieves similar suc-

cess to the cycle-consistent GANs. In fact, they show

that cycle-consistent GANs produce images that preserve

the pixel pairwise distance between images with extremely

highly correlation. On the toucan to rock beauty dataset,

we observe the same phenomenon (r2 = 0.82 in Figure 6).

While this produced plausible images in some cases, main-

taining pixel-wise distance between images could not gen-

erate realistic toucans or rock beauties. The TraVeLGAN

pairwise distances are virtually uncorrelated in pixel space

(r2 = 0.17). However, we understand the role of the

siamese network when we look at the pairwise distances

between real images in latent space and the correspond-

ing pairwise distances between generated images in latent

space. There we see a similar correlation (r2 = 0.72).

In other words, the TraVeLGAN simultaneously learns a

mapping with a neural network to a space where distances

can be meaningfully preserved while using that mapping to

guide it in generating realistic images.

Quantitative results Lastly, we add quantitative evidence

to the qualitative evidence already presented that the TraV-

eLGAN outperforms existing models when the domains are

very different. While we used the SSIM and pixel-wise

MSE in the previous sections to evaluate success, neither

heuristic is appropriate for these datasets. The goal in these

mappings is not to leave the image unchanged and as simi-

lar to the original as possible, it is to fully change the image

into the other domain. Thus, we apply use two different

metrics to evaluate the models quantitatively on these Ima-

genet datasets.

In general, quantifying GAN quality is a hard task [5].

Moreover, here we are specifically interested in how well

a generated image is paired or corresponding to the origi-

nal image, point-by-point. To the best of our knowledge,

there is no current way to measure this quantitatively for

arbitrary domains, so we have pursued the qualitative eval-

uations in the previous sections. However, in addition to

those qualitative evaluation of the correspondence aspect,

we at least quantify how well the generated images resem-

ble the target domain, at a population level, with heuristic

scores designed to measure this under certain assumptions.

The first, the Fréchet Inception Distance (FID score) [12]

is an improved version of the Inception Score (whose flaws

were well articulated in [5]) which compares the real and

generated images in a layer of a pre-trained Inception net-

work (Table 3). The second, the discriminator score, trains

a discriminator from scratch, independent of the one used

during training, to try to distinguish between real and gen-

erated examples (Table 4). The TraVeLGAN achieved bet-

ter scores than any of the baseline models with both metrics

and across all datasets.

4. Discussion

In recent years, unsupervised domain mapping has

been dominated by approaches building off of the cycle-

consistency assumption and framework. We have identi-

fied that some cluttered, heterogeneous, asymmetric do-

mains cannot be successfully mapped between by genera-

tors trained on this cycle-consistency approach. Further im-

proving the flexibility of domain mapping models may need

to proceed without the cycle-consistent assumption, as we

have done here.
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