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Abstract

PointNet has revolutionized how we think about repre-

senting point clouds. For classification and segmentation

tasks, the approach and its subsequent extensions are state-

of-the-art. To date, the successful application of PointNet

to point cloud registration has remained elusive. In this pa-

per we argue that PointNet itself can be thought of as a

learnable “imaging” function. As a consequence, classi-

cal vision algorithms for image alignment can be applied

on the problem – namely the Lucas & Kanade (LK) algo-

rithm. Our central innovations stem from: (i) how to mod-

ify the LK algorithm to accommodate the PointNet imag-

ing function, and (ii) unrolling PointNet and the LK al-

gorithm into a single trainable recurrent deep neural net-

work. We describe the architecture, and compare its perfor-

mance against state-of-the-art in common registration sce-

narios. The architecture offers some remarkable proper-

ties including: generalization across shape categories and

computational efficiency – opening up new paths of explo-

ration for the application of deep learning to point cloud

registration. Code and videos are available at https:

//github.com/hmgoforth/PointNetLK.

1. Introduction

Point clouds are inherently unstructured with sample and

order permutation ambiguities. This lack of structure makes

them problematic for use in modern deep learning architec-

tures. PointNet [26] has been revolutionary from this per-

spective, as it offers a learnable structured representation

for point clouds. One can think of this process as a kind of

“imaging” – producing a fixed dimensional output irrespec-

tive of the number of samples or ordering of points. This

innovation has produced a number of new extensions and

variants [28, 34, 42] that are now state-of-the-art in object

classification and segmentation on point clouds.

The utility of PointNet for the task of point cloud reg-

istration, however, has remained somewhat elusive. In this

* equal contribution.

Figure 1: Point cloud registration of (Top) Stanford

bunny [39] and (Bottom) raw indoor scan from S3DIS [1]

with PointNetLK. Refer to Sec. 4.2 and Sec. 4.4 for more

details. As the iterations progress, PointNetLK is able

to successfully register the source points to the template

model, even though it was not trained on these shapes. We

include Bunny surface rendering for the sake of visualiza-

tion.

paper we want to explore further the notion of interpret-

ing the PointNet representation as an imaging function – a

direct benefit of which could be the application of image

alignment approaches to the problem of point cloud regis-

tration. In particular we want to utilize the classical Lucas &

Kanade (LK) algorithm [18]. This connection is motivated

by a recent innovation [41] that has demonstrated state-of-

the-art 2D photometric object tracking performance by rein-

terpreting the LK algorithm as a recurrent neural network.

The LK algorithm, however, cannot be naively applied

to the PointNet representation. This is due to the LK algo-
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rithm’s dependence on gradient estimates, which are esti-

mated in practice through convolution. Within a 2D photo-

metric image, or a 3D volumetric image, each element of

the representation (i.e. pixel or voxel) has a known local

dependency between its neighbors, which can be expressed

as 2D- and 3D- grids respectively – from which convolu-

tion can be defined. It is also well understood that this

dependency does not have to take the form or a ND-grid,

with the notion of “graph” convolution [42] also being ex-

plored. PointNet representations have no such local depen-

dency making the estimation of spatial gradients through

convolution ill posed.

Contributions: We propose a modification to the LK al-

gorithm which circumvents the need for convolution on the

PointNet representation. We then demonstrate how this

modified LK form can be unrolled as a recurrent neural net-

work and integrated within the PointNet framework – this

unified network shall be referred to herein as PointNetLK.

Unlike many variants of iterative closest point (ICP), our ap-

proach requires no costly computation of point correspon-

dences [31], which gives rise to substantial advantages in

terms of accuracy, robustness to initialization and computa-

tional efficiency. PointNetLK exhibits remarkable general-

ization to unseen object and shape variations, as shown in

Fig. 1. This generalization performance can be attributed

to the explicit encoding of the alignment process within

the network architecture. As a consequence, the network

only needs to learn the PointNet representation rather than

the task of alignment. Finally, our approach is fully differ-

entiable, unlike most registration approaches in literature,

hence allowing for an easy integration with larger DNN

systems. An added computational benefit is that our ap-

proach can be run directly on GPU as part of a larger neural-

network pipeline, unlike most of the comparisons which re-

quire a method like ICP or its variants to be run on CPU.

2. Related Work

PointNet: PointNet [26] is the first work to propose the

use of DNN with raw point clouds as input, for the pur-

poses of classification and segmentation. The architecture

achieves state of the art performance on this task despite its

simplicity, and provides interesting theoretical insight into

processing raw point clouds. PointNet++ was proposed as

an improvement over the PointNet, by hierarchically aggre-

gating features in local point sets [28]. Another variant con-

siders aggregates features of nearby points [34]. Wang et

al. [42] use a local neighborhood graph and convolution-

like operations on the edges connecting neighboring pairs

of points.

ICP and variants: Besl and McKay [4] introduced the

iterative closest point (ICP), which is a popular approach

for registration, by iteratively estimating point correspon-

dence and performing a least squares optimization. Several

variants of the ICP have been developed (see [31] for a re-

view) that incorporate sensor uncertainties [33, 35], are ro-

bust to outliers [5], use different optimizers [8], etc. ICP and

its variants, however, have a few fundamental drawbacks,

namely: (1) explicit estimation of closest point correspon-

dences, which results in the complexity scaling quadrati-

cally with the number of points, (2) sensitive to initializa-

tion, and (3) nontrivial to integrate them to deep learning

framework due to issues of differentiability.

Globally optimal registration: Since ICP and most of

its variants are sensitive to initial perturbation in align-

ment, they only produce locally optimal estimates. Yang et

al. [46] developed Go-ICP, a branch and bound-based

optimization approach to obtain globally optimal pose.

More recently convex relaxation has been used for global

pose estimation using Riemannian optimization [30], semi-

definite programming [13, 20] and mixed integer program-

ming [14]. A major drawback of the above methods is the

large computation time, rendering them unsuitable for real

time applications.

Interest point methods: There are works in literature

that estimate interest points to help with registration. For

instance, scale invariant curvature descriptors [9], ori-

ented descriptors [10], extended Gaussian images [19], fast

point feature histograms [32], color intensity-based descrip-

tors [11], global point signatures [6], heat kernels [25], etc.

While interest points have the potential to improve the com-

putationally speed of the registration approaches, they do

not generalize to all applications [12].

Hand-crafted representations: The discriminative opti-

mization (DO) work of Vongkulbhisal et al. [40] uses a

hand-crafted feature vector and learns a set of maps, to es-

timate a good initial alignment. The alignment is later re-

fined using an ICP. The drawback of this approach is that

the features and maps are specific to each object and do not

generalize. More recently they developed inverse composi-

tion discriminative optimization (ICDO), which generalizes

over unseen object shapes. ICDO unfortunately has a com-

plexity which is quadratic in the number of points, making

it difficult to use in several real world scenarios. Another is-

sue with ICDO is that both the features and alignment maps

are learned, which can result in a compromise on the gener-

alizability of the approach.

Alternate representations: Voxelization is a method to

discretize the space and convert a point clouds to a struc-
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tured grid. Several methods have been developed that use

DNNs over voxels [22, 43]. Major drawbacks of these ap-

proaches include computation time and memory require-

ments. Another popular representation is depth image or

range image, which represents the point cloud as a collec-

tion of 2D views, which are easily obtained by commer-

cial structured light sensors. Typically convolution oper-

ations are performed on each view and the resulting fea-

tures are aggregated [36]. Some works also combine voxel

data with multi-view data [27, 3]. There are several works

that directly estimate 3D pose from photometric images.

For instance, [37, 16, 21, 44, 24], directly regress over

the Euler angles of object orientations from cropped ob-

ject images. On the other hand, in applications such as

robotic manipulation, pose is often decoupled into rotation

and translation components and each is inferred indepen-

dently [37, 38, 15, 45, 29, 17].

3. PointNetLK

In Section 3.1 we introduce notation and mathematics

for PointNetLK. In Section 3.2 we provide a derivation of

the optimization on PointNet feature vectors used for point

cloud alignment. In Section 3.3 we describe aspects of

training for our model, including loss functions and pos-

sible symmetric operators.

Notation: We denote matrices with uppercase bold such

as M, constants as uppercase italic such as C, and scalar

variables with lowercase italic such as s.

3.1. Overview

Let φ denote the PointNet function, φ : R3×N → R
K ,

such that for an input point cloud P ∈ R
3×N , φ(P) produces

a K-dimensional vector descriptor. The function φ applies a

Multi-Layer Perceptron (MLP) to each 3D point in P, such

that the final output dimension of each point is K. Then a

symmetric pooling function, such as maximum or average,

is applied, resulting in the K-dimensional global descriptor.

We formulate an optimization as follows. Let PT , PS

be template and source point clouds respectively. We will

seek to find the rigid-body transform G ∈ SE(3) which

best aligns source PS to template PT . The transform G will

be represented by an exponential map as follows:

G = exp

(

∑

i

ξiTi

)

ξ = (ξ1, ξ2, ..., ξ6)
T , (1)

where Ti are the generators of the exponential map with

twist parameters ξ ∈ R
6. The 3D point cloud align-

ment problem can then be described as finding G such that

φ(PT ) = φ(G · PS), where we use the shorthand (·) to de-

note transformation of PS by rigid transform G. This equa-

tion is analogous to the quantity being optimized in the clas-

sical LK algorithm for 2D images, where the source image

is warped such that the pixel intensity differences between

the warped source and template are minimized. It is worth

noting that we do not include the T-net in our PointNet ar-

chitecture, since its purpose was to transform the input point

cloud in order to increase classification accuracy [26]. How-

ever, we instead use the LK layer to estimate the alignment,

and the T-net is unnecessary.

Another key idea that we can borrow from the LK al-

gorithm is the Inverse Compositional (IC) formulation [2].

The IC formulation is necessitated by the fact that the tradi-

tional LK algorithm has a high computational cost for each

iteration of the optimization. This cost comes from the re-

computation of an image Jacobian on the warped source im-

age, at each step of the optimization. The insight of the IC

formulation is to reverse the role of the template and source:

at each iteration, we will solve for the incremental warp up-

date to the template instead of the source, and then apply

the inverse of this incremental warp to the source. By doing

this, the Jacobian computation is performed for the template

instead of the source and happens only once before the op-

timization begins. This fact will be more clearly seen in the

following derivation of the warp update.

3.2. Derivation

Restating the objective, we seek to find G such that

φ(PT ) = φ(G · PS). To do this, we will derive an itera-

tive optimization solution.

With the IC formulation in mind, we take an inverse form

for the objective:

φ(PS) = φ(G−1 · PT ) (2)

The next step is to linearize the right-hand side of (2):

φ(PS) = φ(PT ) +
∂

∂ξ

[

φ(G−1 · PT )
]

ξ (3)

Where we define G−1 = exp(−
∑

i ξiTi).

Canonical LK: We will denote the Jacobian

J = ∂
∂ξ

[

φ(G−1 · PT )
]

, where J ∈ R
K×6 matrix. At

this point, computing J would seem to require an analytical

representation of the gradient for the PointNet function

with respect to the twist parameters of G. This analytical

gradient would be difficult to compute and quite costly.

The approach taken in the classical LK algorithm for ND

images is to split the Jacobian using the chain rule, into

two partial terms: an image gradient in the ND image

directions, and an analytical warp Jacobian [2]. However,

in our case this approach will not work either, since there

is no graph or other convolutional structure which would

allow taking gradients in x, y and z for our 3D registration

case.
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Figure 2: Point cloud inputs source PS and template PT are passed through a shared MLP, and a symmetric pooling function,

to compute the global feature vectors φ(PS) and φ(PT ). The Jacobian J is computed once using φ(PT ). The optimal twist

parameters are found, which are used to incrementally update the pose of PS , and then the global feature vector φ(PS) is

recomputed. During training, a loss function is used which is based on the difference in the estimated rigid transform and the

ground truth transform.

Modified LK: Motivated by these challenges, we instead

opt to compute J using a stochastic gradient approach.

Specifically, each column Ji of the Jacobian can be approx-

imated through a finite difference gradient computed as

Ji =
φ(exp(−tiTi) · PT )− φ(PT )

ti
(4)

Where ti are infinitesimal perturbations of the twist pa-

rameters ξ. This approach to computing J is what allows the

application of the computationally efficient inverse compo-

sitional LK algorithm to the problem of point cloud regis-

tration using PointNet features. Note that J is computed

only once, for the template point cloud, and does not need

to be recomputed as the source point cloud is warped during

iterative alignment.

For each column Ji of the Jacobian, only the ith twist

parameter has a non-zero value ti. Theoretically, ti should

be infinitesimal so that J is equal to an analytical derivative.

In practice, we find empirically that setting ti to some small

fixed value over all iterations yields the best result.

We can now solve for ξ in (3) as

ξ = J+ [φ(PS)− φ(PT )] (5)

Where J+ is a Moore-Penrose inverse of J.

In summary, our iterative algorithm consists of a looping

computation of the optimal twist parameters using (5), and

then updating the source point cloud PS as

PS ← ∆G · PS ∆G = exp

(

∑

i

ξiTi

)

(6)

The final estimate Gest is then the composition of all

incremental estimates computed during the iterative loop:

Gest = ∆Gn · ... ·∆G1 ·∆G0 (7)

The stopping criterion for iterations is based on a mini-

mum threshold for ∆G. A graphical representation of our

model is shown in Fig. 2.

3.3. Training

Loss function: The loss function for training should be

targeted at minimizing the difference between the estimated

transform Gest and the ground truth transform Ggt. This

could be expressed as the Mean Square Error (MSE) be-

tween the twist parameters ξest and ξgt. Instead, we use

||(Gest)
−1 ·Ggt − I4||F , (8)

which is more computationally efficient to compute as it

does not require matrix logarithm operation during training,

and follows in a straightforward way from the representa-

tion of Gest,Ggt ∈ SE(3).

Symmetric pooling operator: In PointNet, the MLP op-

eration is followed by a symmetric pooling function such as

maximum or average pooling, to facilitate point-order per-

mutation invariance (see Fig. 2). In Section 4, we show

results using either max or average pooling and make ob-

servations about which operator may be more suitable given

different scenarios. Particularly, we hypothesize that aver-

age pooling would have an advantage over max pooling on
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Figure 3: Results for Section 4.1 and 4.2. PointNetLK

achieves remarkable alignment results on categories seen

during training (PNLK same category), as well as those

unseen during training (PNLK different category). Results

are reported for 10 iterations of both PointNetLK and ICP,

showcasing also the ability of PointNetLK to align quickly

in fewer iterations.

the case of noisy point cloud data, which is confirmed in our

experiments.

4. Experiments

We experiment with various combinations of training

data, test data, and symmetric operators. We compare with

ICP [4] as a baseline at test time. We have used Model-

Net40 [43], a dataset containing CAD models for 40 object

categories, for experiments unless otherwise noted.

4.1. Train and test on same object categories

Our first experiment is to train PointNetLK on the train-

ing set for 20 object categories in ModelNet40, and test on

the test set for the same 20 object categories. We begin

by first training a standard PointNet classification network

on ModelNet40, and then initialize the PointNetLK feature

extractor φ using this classification network and fine-tune

with the PointNetLK loss function. The point clouds used

for registration are the vertices from ModelNet40 shapes.

The source point cloud is a rigid transformation of the tem-

plate. Template points are normalized into a unit box at the

origin [0, 1]3 before warping to create the source. We use

random Ggt with rotation angles [0, 45] degrees about ar-
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Figure 4: Results for Section 4.3. We compare PointNetLK

trained on zero-noise data with max pool, trained on zero-

noise data with avg. pool, and trained on noisy (SD=0.04)

data using avg. pool. The results support our hypothesis

that avg. pooling is important in order to account for noise

in data.

bitrarily chosen axes and translation [0, 0.8] during training

of PointNetLK. Results at test time compared with ICP are

shown in Fig. 3. We report results after 10 iterations of both

ICP and PointNetLK. This emphasizes an important result,

that PointNetLK is able to converge to the correct solution

in typically many fewer iterations than ICP. We ensure that

testing takes place for the same point clouds and perturba-

tions for both ICP and PointNetLK, for a fair comparison.

Initial translations for testing are in the range [0, 0.3] and

initial rotations are in the range [0, 90] degrees.

4.2. Train and test on different object categories

We repeat the experiment from Section 4.1, however,

we train on the other 20 categories of ModelNet40. We

then test on the 20 categories in ModelNet which have not

been seen during training, which are the same categories as

used in testing for Section 4.1. We find that PointNetLK

has the ability to generalize for accurate alignment on ob-

ject categories which are unseen during training. The re-

sults are shown in Fig. 3 for ModelNet40 test dataset,

and Fig. 1 on the Stanford bunny dataset [39]. The result

with Stanford bunny dataset is especially impressive as this

dataset is significantly different than the ModelNet train-

ing data. For the sake of comparison we also repeated the
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Figure 5: Example registrations with Gaussian noise added to each point in the source point cloud for ModelNet object

categories unseen during training (Section 4.3). For each example, initial position of the points is shown in the left and

converged results are shown on the right. The orange points show the ICP estimates and blue points show the PointNetLK

estimates.

experiments with ICP and Go-ICP [46]. We observe that

the rotation and translation errors respectively for ICP are

(175.51◦, 0.22), Go-ICP are (0.18◦, 10−3) and PointNetLK

are (0.2◦, 10−4). While ICP takes 0.36s, and Go-ICP takes

80.78s, PointNetLK takes only 0.2s.

4.3. Gaussian noise

We explore the robustness of PointNetLK against Gaus-

sian noise on points. The experiment set-up is as follows:

a template point cloud is randomly sampled from the faces

of the ModelNet shape, and a source is set equal to the tem-

plate with additive Gaussian noise of certain standard devia-

tion. We use 1000 points during sampling. We hypothesize

that the choice of symmetric operator becomes more crit-

ical to the performance of PointNetLK in this experiment.

As noted in the original PointNet work, using the max pool

operator leads to a critical set of shape points which define

the global feature vector. With noisy data, this critical set

is subject to larger variation across different random noise

samples. Therefore we hypothesize that average pooling

would be better suited to learning the global features used

for alignment on noisy data. This hypothesis is confirmed

in the results shown in Fig. 4. We repeat the procedure of

Section 4.2, testing on object categories which are unseen

during training. Some example alignment pairs are shown

in Fig. 5.

4.4. Partially visible data

We explore the use of PointNetLK on the common reg-

istration scenario of aligning 2.5D data. In the real world,

oftentimes the template is a full 3D model and the source a

0 30 60 90 120
Initial Angle (Deg.)

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
io

ICP PNLK (max,3d) PNLK (max,partial)

Figure 6: Results for Section 4.4. We test registration

of partially visible ModelNet data, comparing ICP, Point-

NetLK trained on 3D data, and PointNetLK trained on par-

tially visible data. Both PointNetLK models are trained

with max pool. Test categories are unseen during training.

We find that training with partially visible data greatly im-

proves performance, even surpassing ICP. A registration is

counted as successful if the final alignment rotation error

is less than 5 degrees and translation error is less than 0.01.

Notice that PointNetLK has perfect performance at zero ini-

tial angle since we subtract the mean of each point cloud,

whereas ICP does not.

2.5D scan. One approach in this case is to input the 2.5D

source and 3D template directly into an alignment algo-

rithm and estimate the correspondence and the alignment.

A second approach is to use an initial estimate of camera

pose with respect to the 3D model to sample visible points
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on the model, which can be compared with the 2.5D scan.

The camera pose can be iteratively updated until the visible

points on the 3D model match the 2.5D scan.

We take the latter approach for testing PointNetLK, be-

cause the cost function φ(PT ) − φ(G · PS) can tend to be

large for input point clouds which are a 3D model and 2.5D

scan. Instead, it makes more sense to sample visible points

from the 3D model first based on an initial pose estimate,

so that the inputs to PointNetLK are both 2.5D. This way,

a correct final alignment is more likely to lead to the cost

function φ(PT )− φ(G · PS) being close to zero.

Sampling visible points is typically based on simulating

a physical sensor model for 3D point sensing, which has a

horizontal and vertical field-of-view, and a minimum and

maximum depth [23, 7]. We adapt ModelNet40 data for

partially visible testing using a simplistic sensor model as

follows. We sample faces from ModelNet shapes to cre-

ate a template, place the template into a unit box [0, 1]3,

set the template equal to the source, and warp the source

using a random perturbation. Next we translate the source

and template both by a vector of length 2 in the direction

[1, 1, 1]T from the origin. Then we assign the visible points

of the template Pv
T as those satisfying (PT +2 · [1, 1, 1]T ) <

mean(PT + 2 · [1, 1, 1]T ). This operation can be thought of

a placing a sensor at the origin which faces the direction

[1, 1, 1]T and samples points on the 3D models which lie in

front of it, up to a maximum depth equal to the mean of the

point cloud. We set the visible source points Pv
S in the same

manner. This operation returns about half of the points both

template and source being visible for any given point cloud.

We input the 2.5D visible point sets Pv
T and Pv

S into Point-

NetLK, allowing a single iteration to occur for estimation of

the aligning transform Gest. We then warp the original full

source model PS using the single-iteration guess Gest, and

re-sample Pv
S . We repeat the single-iteration update and vis-

ibility re-sampling until convergence. We repeat the same

procedure for testing ICP.

We test on the ModelNet40 test set, using random trans-

lation [0, 0.3] for all tests. The results are shown in Fig. 6.

Notably, we find that PointNetLK is able to learn to register

objects using our sensor model, and generalizes well when

the sensor model is applied to unseen object categories. Ex-

ample template and source pairs for partially visible align-

ment are shown in Fig. 7 for ModelNet test dataset. We ob-

serve that our approach generalizes well to unseen shapes

as shown in Fig. 1 which is generated from RGBD sensor

data [1].

4.5. Same category, different object

We hypothesize that PointNetLK features could be use-

ful for registering point clouds of objects which are different

but of the same category. An example of this is shown for

two airplane models in Fig. 8. We would hope that the reg-

Figure 7: Results for Section 4.4. We test registration of

partially visible ModelNet data, comparing ICP (shown by

orange points), and PointNetLK trained on partially visible

data (shown by blue points).

istration error for PointNetLK |φ(G · PS)− φ(PT )| is min-

imized when the airplane models, despite being different,

are aligned in orientation. This reaffirms that the feature

vectors learned for alignment are capturing a sense of the

object category, and the canonical orientation of that object.

The network used for this experiment is trained using max

pool on full 3D models. We find that in many cases, such

as in the airplane example of Fig. 8, the PointNetLK cost

function is globally minimized when the correct orientation

is attained, while the ICP cost function is not necessarily

minimized. In practice, this approach could work particu-

larly well to identify the correct orientation of objects within

a category if the orientation is known up to one or two axes

of rotation.

4.6. Computational efficiency

We plot trends for computation time in Fig. 9, com-

paring PointNetLK and ICP on an Intel Xeon 2GHz CPU.

We argue that PointNetLK is quite competitive in efficiency

among current approaches to point cloud registration, due to

the fact that it has complexity O(n) in n number of points.

Note that we do not use a kd-tree in the ICP for this particu-

lar comparison, because in several applications such as pose
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Figure 8: Results for Section 4.5. PointNetLK can achieve

a global minimum when two different objects of the same

category have the same orientation, whereas ICP can fail.

We use two different airplane models from ModelNet40, a

biplane (a) and a jetliner (b). (c) shows the initial (incor-

rect) configuration for alignment, where the centroids each

model are at the same location. The jetliner is then rotated

about the Z-axis through its centroid. The cost function

for standard ICP and PointNetLK during this rotation are

plotted. The airplanes have the same orientation at −90◦

(ground truth). PointNetLK has a global minimum here,

whereas ICP has global minimum at 180◦.

tracking from 2.5D data, one does not have kd-tree informa-

tion. Further, the computation can be sped up several orders

of magnitude with a GPU implementation as PointNetLK is

highly parallelizable.

5. Implementation Details

For the MLP in all experiments we use dimensions

(3, 64, 64, 64, 128,K = 1024). Our early experiments

showed that this choice of K is suitable for alignment of

point clouds containing points on the order of 1000, the

number we used in most of our experiments. For setting

ti, the infinitesimal perturbations of twist parameters used

to compute the Jacobian in Eq. 4, we find that 1e−2 or sim-

ilar works well. For the minimum threshold for ∆G used

to stop iterations of PointNetLK, we use |∆ξi| < 1e−7.

That is, we condition on the magnitude of individual twist

parameters which constitute ∆G.

During the fine-tuning stage of training PointNetLK, af-
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Figure 9: Computation cost of PointNetLK grows in O(n)
with n points, compared to O(n2) for ICP.

ter training the PointNet classifier, we train for 200 epochs

of the ModelNet test set (about one day of training). We find

that more epochs are needed to realize good performance

for noisy data or partial visibility data (approximately 300

and 400 epochs respectively). When training PointNetLK

on 2.5D data, some modifications to the PointNetLK archi-

tecture ( as shown in Fig. 2) were necessary in order to

maintain differentiability. This includes creating a visible

point mask which sets the non-visible points in the 2.5D

source and template to zero, and this mask is applied before

the max pooling operator. At test time for 2.5D, differentia-

bility is not a concern and therefore these maskings are not

necessary. We implement PointNetLK in PyTorch and train

using an NVIDIA GeForce GTX Titan X.

6. Conclusion

We have presented PointNetLK, a novel approach for

adapting PointNet for point cloud registration. We mod-

ify the classical LK algorithm to circumvent the inherent

inability of the PointNet representation to accommodate

gradient estimates through convolution. This modified LK

framework is then unrolled as a recurrent neural network

from which PointNet is then integrated to form the Point-

NetLK architecture. Our approach achieves impressive pre-

cision, robustness to initialization, and computational effi-

ciency. We have also shown the ability to train PointNetLK

on noisy data or partially visible data and achieve large per-

formance gains, while maintaining impressive generaliza-

tion to shapes far removed from the training set. Finally, we

believe that this approach presents an important step for-

ward for the community as it affords an effective strategy

for point cloud registration that is differentiable, generaliz-

able, and extendable to other deep learning frameworks.
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