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Abstract

Most approaches to visual scene analysis have empha-

sised parallel processing of the image elements. However,

one area in which the sequential nature of vision is appar-

ent, is that of segmenting multiple, potentially similar and

partially occluded objects in a scene. In this work, we re-

visit the recurrent formulation of this challenging problem

in the context of reinforcement learning. Motivated by the

limitations of the global max-matching assignment of the

ground-truth segments to the recurrent states, we develop

an actor-critic approach in which the actor recurrently pre-

dicts one instance mask at a time and utilises the gradient

from a concurrently trained critic network. We formulate

the state, action, and the reward such as to let the critic

model long-term effects of the current prediction and in-

corporate this information into the gradient signal. Fur-

thermore, to enable effective exploration in the inherently

high-dimensional action space of instance masks, we learn

a compact representation using a conditional variational

auto-encoder. We show that our actor-critic model consis-

tently provides accuracy benefits over the recurrent baseline

on standard instance segmentation benchmarks.

1. Introduction

Methods for instance segmentation have for the most

part relied on the idea of parallel processing of the im-

age elements and features within images [13]. However,

previous work [31, 32] suggests that instance segmenta-

tion can be formulated as a sequential visual task, akin

to human vision, for which substantial evidence has re-

vealed that many vision tasks beyond eye movements are

solved sequentially [36]. While the segmentation accuracy

of feed-forward pipelines hinges on a large number of ob-

ject proposals, proposal-free recurrent models have a par-

ticular appeal for instance segmentation where the number

of instances is unknown. Also, the temporal context can

facilitate a certain order of prediction: segmenting “hard”

instances can be improved by conditioning on the masks

of “easy” instances segmented first (e.g., due to occlusions,

ambiguities in spatial context etc.; [20]).

A pivotal question of a recurrent formulation for instance

segmentation is the assignment of the ground-truth seg-

ments to timesteps, since the order in which they have to

be predicted is unknown. Previously this was addressed us-

ing the Kuhn-Munkres algorithm [18], computing the max-

matching assignment. We provide some insight, however,

that the final prediction ordering depends on the initial as-

signment. Furthermore, the loss for every timestep is not

informative in terms of its effect on future predictions. Intu-

itively, considering the future loss for the predictions early

on should improve the segmentation accuracy at the later

timesteps. Although this can be achieved by unrolling the

recurrent states for gradient backpropagation, such an ap-

proach quickly becomes infeasible for segmentation net-

works due to high memory demands.

In the past years, reinforcement learning (RL) has been

showing promise in solving increasingly complex tasks [23,

26, 27]. However, relatively little work has explored appli-

cations of RL outside its conventional domain, which we

attribute to two main factors: (1) computer vision prob-

lems often lack the notion of the environment, which pro-

vides the interacting agent with the reward feedback; (2)

actions in the space of images are often prohibitively high-

dimensional, leading to tough computational challenges.

Here, we use an actor-critic (AC) model [5] to make

progress regarding both technical issues of a recurrent ap-

proach to instance segmentation. We use exploration noise

to reduce the influence of the initial assignments on the

segmentation ordering. Furthermore, we design a reward

function that accounts for the future reward in the objec-

tive function for every timestep. Our model does not use

bounding boxes – often criticised due to their coarse rep-

resentation of the objects’ shape. Instead, we built on an

encoder-decoder baseline that makes pixelwise predictions

directly at the scale of the input image. To enable the use

of RL for instance segmentation with its associated high-

dimensional output space, we propose to learn a compact

action-space representation through the latent variables of

a conditional variational auto-encoder [16], which we inte-

grate into a recurrent prediction pipeline.
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Our experiments demonstrate that our actor-critic model

improves the prediction quality over its baseline trained

with the max-matching assignment loss, especially at the

later timesteps, and performs well on standard instance seg-

mentation benchmarks.

2. Related Work

Instance segmentation has received growing attention in

the recent literature. One family of approaches focuses

on learning explicit instance encodings [4, 9, 17, 24, 35],

which are then clustered into individual instance masks us-

ing post-processing. Another common end-to-end approach

is to first predict a bounding box for each instance using dy-

namic pooling and then to produce a mask of the dominant

object within the box using a separate segmentation net-

work [13, 22]. These methods are currently best-practice,

which can be attributed to the maturity of deep network-

based object detection pipelines. However, this strategy is

ultimately limited by the detection performance, proposal

set, and the need of additional processing to account for

pixel-level context [2, 8].

Making the predictions sequentially points at an alter-

native line of work. Romera-Paredes & Torr [32] used a

convolutional LSTM [39] with a spatial softmax, which

works well for isotropic object shapes and moderate scale

variation. At each timestep, the recurrent model of Ren &

Zemel [31] predicts a box location and scale for one in-

stance. However, the extent of the available context for sub-

sequent segmentations is limited by the box. Some bene-

fits of the temporal and spatial context have been also re-

asserted on the task of object detection [7, 21] and, much

earlier, on image generation [12] and recognition [19]. In

contrast to these works, our method obviates the need for

the intermediate bounding box representation and predicts

masks directly at the image resolution.

We cast the problem as a sequential decision process,

as is studied by reinforcement learning (RL; [34]). Using

the actor-critic framework [5], we define the actor as the

model that sequentially produces instance masks, whereas

the critic learns to provide a score characterising the ac-

tor’s performance. Leveraging this score, the actor can be

trained to improve the quality of its predictions. This is

reminiscent of the more recent Generative Adversarial Net-

works (GANs; [11]), in which a generator relies on a dis-

criminator to improve. In particular, our model is similar

to Wasserstein GANs [1] in that the discriminator is trained

on a regression-like loss, and to SeqGAN [40] in that the

generator’s predictions are sequential.

One obstacle is the action dimensionality, since the sam-

pling complexity required for exploration grows exponen-

tially with the size of the actions. A naive action repre-

sentation for dense pixelwise predictions would lead to an

action space of dimension in the order of O(2H×W ) for im-

Figure 1. Illustration of the max-matching assignment for instance

segmentation. Consider an image with ground-truth instances a

and b, and a recurrent model making predictions 1 and 2. In the

constructed bipartite graph, each edge is assigned a weight corre-

sponding to the IoU of the prediction with the connected ground

truth. From the set of possible assignments, depicted by the or-

ange and grey edges, max-matching finds the one that maximizes

the sum of the IoUs. The loss is then computed independently for

each timestep w.r.t. to this assignment to the ground truth.

ages with resolution H × W . This is significantly higher

than the action spaces of standard problems studied by re-

inforcement learning (usually, between 1 and 20), or even

its applications to natural language processing [3, 30]. To

address this, we suggest learning a compact representation

using variational auto-encoders [16] to enable the crucial

reduction of the problem from a high-dimensional discrete

to a lower-dimensional continuous action space.

3. Motivation

As discussed above, we follow previous work in mod-

elling instance segmentation as a sequential decision prob-

lem [31, 32], yielding one instance per timestep t.

To motivate our work, we revisit the standard prac-

tice of using the Kuhn-Munkres algorithm [18] to assign

the ground-truth instances to the predictions of a recurrent

model. Let θ parametrise the model and Uθ ∈ R
n×n de-

note a matrix of elements uij measuring the score of the

ith prediction w.r.t. the jth ground truth (e.g., the IoU). The

Kuhn-Munkres algorithm finds a permutation matrix as a

solution to the max-matching problem

argmax
P∈P

tr(UθP ), (1)

where P is the set of n-dimensional permutation matrices,

i.e. such that for all P ∈ P , we have
∑

j Pij = 1,
∑

i Pij =
1, Pij ∈ {0, 1}. Given a differentiable loss function lθ(i, j)
(e.g., the binary cross-entropy), the model parameters θ are

then updated to minimise
∑

ij,Pij=1 lθ(i, j).
Consider a simple case of two ground-truth segments,

a and b, illustrated in Fig. 1. Without loss of generality,

assume that the initial (random) model parameters yield

u1a+u2b < u1b+u2a, i.e. the sum of scores for segmenting

instance a first and b second is lower than in the opposite or-

der. This implies that max-matching will perform a gradient

update step maximising the second sum, i.e. u1b + u2a, but

not the first. As a consequence, for the updated parameters,

the score for the ordering b → a is likely to dominate also
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at the later iterations of training.1

Previous work [20, 37] suggests that sequential mod-

els are not invariant to the order of predictions, including

object segments (c.f . supplemental material). The impli-

cation from the example above is that sup u1a + u2b 6=
sup u1b + u2a (the sup is w.r.t. θ). One conceivable rem-

edy to alleviate the effect of the initial assignment is to in-

troduce noise ǫ to the score matrix U (e.g., i. i. d. Gaussian),

such that Eq. (1) becomes

argmax
P∈P

tr
(

(Uθ + ǫ)P
)

. (2)

However, the noise in the loss function will not account for

the inherent causality of the temporal context in recurrent

models: perturbation of one prediction affects the consecu-

tive ones.

In this work, we consider a more principled approach to

encourage exploration of different orderings. We inject ex-

ploration noise at the level of individual predictions made

by an actor network, while a jointly trained critic network

keeps track of the long-term outcome of the early predic-

tions. This allows to include in the gradient to the actor

not only the immediate loss, but also the contribution of the

current prediction to the future loss. We achieve this by re-

formulating the instance segmentation problem in the RL

framework, which we briefly introduce next.

4. Notation and Definitions

In the following, we define the key concepts of Markov

decision processes (MDPs) in the context of instance seg-

mentation. For a more general introduction, we refer to

[34].

We consider finite-horizon MDPs defined by the tuple

(S,A, T, r), where the state space S, the action space A,

the state transition T : S × A → S, and the reward

r : S ×A → R are defined as follows.

State. The state st ∈ S of the recurrent system is a tuple

of the input image (and its task-specific representations) and

an aggregated mask, i.e. st = (I,Mt). The mask Mt simply

accumulates previous instance predictions, which encour-

ages the model to focus on yet unassigned pixels. Including

I enables access to the original input at every timestep.

Action. To limit the dimensionality of the action space, we

define the action at ∈ A in terms of a compact mask repre-

sentation. To achieve this, we pre-train a conditional varia-

tional auto-encoder (cVAE; [16]) to reproduce segmentation

masks. As a result, the action at ∈ A = R
l is a continuous

latent representation of a binary mask and has dimension-

ality l ≪ H · W , while the decoder D : R
l → R

H×W

“expands” the latent code to a full-resolution mask.

1Note that a formal proof is likely non-trivial due to the stochastic na-

ture of training.

State transition. As implied by the state and action defini-

tions above, the state transition

T
(

(I,Mt), at
)

=
(

I,max(Mt,D(at))
)

(3)

uses a pixelwise max of the previous mask and the decoded

action, i.e. integrating the currently predicted instance mask

into the previously accumulated predictions.

Reward. We design the reward function to measure the

progress of the state transition towards optimising a certain

segmentation criterion. The building block of the reward is

the state potential [28], which we base on the max-matching

assignment of the current predictions to the ground-truth

segments, i.e.

φt := max
k∈P(N)

t
∑

i=1

F(Si, Tki
), (4)

where Ti and S1≤i≤t are the N ground-truth masks and t

predicted masks; P(N) is a collection of all permutations

of the set {1, 2, ..., N}. F(·, ·) denotes a distance between

the prediction and a ground-truth mask and can be chosen

with regard to the performance metric used by the specific

benchmark (e.g., IoU, Dice, etc.). We elaborate on these

choices in the experimental section.

The state potential in Eq. (4) allows us to define the re-

ward as the difference between the potentials of subsequent

states

rt := φ(st+1)− φ(st). (5)

Note that since the (t + 1)st prediction might re-order the

optimal assignment (computed with the Kuhn-Munkres al-

gorithm), our definition of the reward is less restrictive w.r.t.

the prediction order compared to previous work [31, 32],

which enforces a certain assignment to compute the gradi-

ent. Instead, our immediate reward allows to reason about

the relative improvement of one set of predictions over an-

other.

5. Actor-Critic Approach

5.1. Overview

The core block of the actor model, shown in Fig. 2, is

a conditional variational auto-encoder (cVAE; [16]). The

encoder computes a compact vector of latent variables, en-

coding a full-resolution instance mask. The decoder recov-

ers such a mask from the latent code. Using the transition

function defined by Eq. (3), the latest prediction updates the

state, and the procedure repeats until termination.

The actor relies on two types of context with comple-

mentary properties. As discussed above, the mask Mt is

a component of the state st, which accumulates the masks

produced in the previous steps. It provides permutation-

invariant temporal context of high-resolution cues, encour-

aging the network to focus on yet unlabelled pixels. The
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ht+1State st

Action

at∼N (µ, σ)

Time

Q(st, at)

LSTM

Critic
Encoder Decoder

Concatenate

State Pyramid

max(Mt−1,mt−1)

st

Mask mt

Actor

Figure 2. Actor-critic model for instance segmentation. The model relies on two types of context: a spatial permutation-invariant state

st accumulates the masks, whereas the hidden LSTM state ht models a temporal context sensitive to the prediction ordering. The State

Pyramid propagates the high-res information at multiple scales to the decoder to compensate the loss of resolution at the bottleneck section.

hidden state of actor ht is implemented by the LSTM [14]

at the bottleneck section and is unknown to the critic. In

contrast to state st, the representation of the hidden state is

learned and can be sensitive to the prediction ordering due

to the non-commutative updates of the LSTM state. The

hidden state, therefore, contributes to the temporal context

and is shown to be particularly helpful for counting in the

ablation study.

We train our model in two stages as described next.

5.2. Pretraining

We pre-train the actor cVAE to reconstruct the mask of

the target segment. The input to the network consists of the

image and the binary mask of a randomly chosen ground-

truth instance. To account for the loss of high-resolution in-

formation at the latent level, the decoder is conditioned on

the input image and auxiliary channels of instance-relevant

representations supplied at multiple scales, which we term

State Pyramid. One channel contains the foreground predic-

tion, while the other 8 channels encode the instance angle

quantisation of [35], thereby binning the pixels of the object

segment into quantised angles relative to the object’s cen-

troid. These features assist in instance detection and disam-

biguation, since a neighbourhood of orthogonal quantisa-

tion vectors indicates occlusion boundaries and object cen-

troids. Following Ren & Zemel [31], we predict the angles

with a pre-processing network [25] trained in a standalone

fashion.

The auto-encoder uses the binary cross-entropy (BCE)

as the reconstruction loss. For the latent representation, we

use a Gaussian prior with zero mean and unit variance. The

corresponding loss function is taken as the Kullback-Leibler

divergence [16].

5.3. Training

During training, we learn a new encoder to sequentially

predict segmentation masks. In addition to the image, the

encoder also receives the auxiliary channels used during

pre-training. In contrast, however, the encoder is encour-

aged to learn instance-sensitive features, since the decoder

expects the latent code of ground-truth masks.

Algorithm 1 provides an outline of the training proce-

dure. The actor is trained jointly with the critic from a buffer

of experience accumulated in the episode execution step.

In the policy evaluation, the critic is updated to minimise

the error of approximating the expected reward, while in

the policy iteration the actor receives the gradient from the

critic to maximise the Q-value.

Episode execution. For an image with N instances, we

define the episode as the sequence of N predictions. The

algorithm randomly selects a mini-batch of images without

replacement and provides it as inputs to the actor. Using

the reparametrisation trick [16], the actor samples an action

corresponding to the next prediction of the instance mask.

The results of the predictions and corresponding rewards

are saved in a buffer. At the end of each episode, the target

Q-value can be computed for each timestep t as a sum of

immediate rewards.

Policy evaluation. The critic network parametrised by φ,

maintains an estimate of the Q-value defined as a function

of the state and action guided by the policy µ:

Qφ(st, at) = Eaj∼µ(sj),j>t

[

N
∑

i=t

γi−tri(si, ai)

]

. (6)

Note the finite sum in the expectation due to the finite num-

ber of instances in the image. The critic’s loss LCritic,t for
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timestep t is defined as the squared L2-distance with a dis-

counted sum of rewards

LCritic,t =

∥

∥

∥

∥

∥

Qφ(st, at)−
N
∑

i=t

γi−tri

∥

∥

∥

∥

∥

2

2

, (7)

where γ ∈ (0, 1) is a discount factor that controls the time

horizon, i.e. the degree to which future rewards should be

accounted for. The hyperparameter γ allows to trade off the

time horizon for the difficulty of the reward approximation:

as γ → 1, the time horizon extends to all states, but the

critic has to approximate a distant future reward based only

on the current state and action. We update the parameters

of the critic to minimise Eq. (7) using the samples of the

state-actions and rewards in the buffer, and set γ = 0.9
throughout our experiments.

Policy iteration. The actor samples an action at ∈ A from

a distribution provided by the current policy µθ : S → A,

parametrised by θ and observes a reward rt computed by

Eq. (5). Given the initial state s1, the actor’s goal is

to find the policy maximising the expected total reward,

θ∗ = argmaxθ Eaj∼µθ(sj)

[
∑N

i=1 γ
iri(si, ai)

]

, approxi-

mated by the critic. To achieve this, the state st = (I,Mt)
and the actor’s mask prediction mt are passed to the critic,

which produces the corresponding Q-value. The gradient

maximising the Q-value is computed via backpropagation

and returned to the actor for its parameter update.

We found that fixing the decoder during training led to

faster convergence. Since the critic only approximates the

true loss, its gradient is biased, which in practice can break

the assumption we maintain during training – that an opti-

mal mask can be reconstructed from a normally-distributed

latent space. We fix the decoder and maintain the KL-

divergence loss LKL while sampling new actions, thus en-

couraging exploration of the action space. In our ablation

study, we verify that such exploration improves the segmen-

tation quality. Note that we do not pre-define the layout of

the actions, but only maintain the Gaussian prior.

To further improve the stability of the joint actor-critic

training, we use a warm-up phase for the critic: episode

execution and update of the critic happen without updating

the actor for a number of epochs. This gives the critic the

opportunity to adapt to the current action and state space of

the actor. We could confirm in our experiments that pre-

training the decoder was crucial; omitting this step resulted

in near-zero rewards from which it proved to be difficult to

train the critic even with the warm-up phase.

Termination. We connect the hidden state ht and the last

layer preceding it (via a skip connection) to a single unit

predicting “1” to continue prediction, and “0” to indicate the

terminal state. Using the ground-truth number of instances,

we train this unit with the BCE loss.

Algorithm 1: Actor-critic training

Initialise actor µθ(s) from pre-training and critic Qφ(s, a)
for epoch = 1,NumEpochs do

foreach minibatch do

// accumulate buffer for replay

buffer← [ ]
foreach (Image, {T }1,...,N ) in minibatch do

Initialise mask M1 ← Empty

Initialise state s1 ← (Image,M1)
episode← [ ]
for t = 1, N do

Sample action at ∼ µθ(st)
Obtain next state st+1 = T (st, at) with Eq. (3)

Add (st, at, st+1) to episode

end

Compute rewards for episode with Eq. (5)

Add episode with rewards to buffer

end

// Batch-update critic from buffer
foreach (st, at, rt, st+1) in buffer do

φ← φ− αcritic∇φ

(

Qφ(st, at)−
∑N

i=t γ
i−tri

)2

end

// Batch-update actor using critic

Initialise states s1 from buffer
for t = 1, N do

Sample action at ∼ µθ(st)
θ←θ+αact∇atQφ(st, at)∇θµθ(st)−βact∇θLKL

Obtain next state st+1 = T (st, at) using Eq. (3)

end

end

end

Inference. We recurrently run the actor network until the

termination prediction. To obtain the masks, we discard the

deviation part and only take the mean component of the ac-

tion predicted by the encoder and pass it through the de-

coder. We do not use the critic network at inference time.

Implementation details.2 We use a simple architecture

similar to [32] for both the critic and the actor networks

trained with Adam [15] until the training loss on validation

data does not improve (c.f . supplemental material).

5.4. Discussion

In the actor-critic model the critic plays the role of mod-

elling the subsequent rewards for states si>t given state st.

Hence, if the critic’s approximation is exact, the backprop-

agation through time (BPTT; [38]) until the first state is not

needed: to train the actor, we need to compute the gradient

w.r.t. the future rewards already predicted by the critic. The

implication of this property is that memory-demanding net-

works, such as those for dense prediction, can be effectively

trained with truncated BPTT and the critic, even in case of

long sequences. Moreover, using the critic’s approximation

allows the reward be a non-differentiable, or even a discon-

tinuous function tailored specifically to the task.

2Code is available at https://github.com/visinf/acis/.
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6. Experiments

In our experiments, we first quantitatively verify the im-

portance of the different components in our model and in-

vestigate the sources of the accuracy benefits of the actor-

critic over the baseline. Then, we use two standard datasets

of natural images for the challenging task of instance seg-

mentation, and compare to the state of the art.

6.1. Ablation study

We design a set of experiments to investigate the effect of

various aspects of the model using the A1 benchmark of the

Computer Vision Problems in Plant Phenotyping (CVPPP)

dataset [33]. It comprises a collection of 128 images of

plants taken from a top view with leaf annotation as ground-

truth instance masks. We downsized the original 128 im-

ages in the training set by a factor of two and used a cen-

tre crop of size 224 × 224 for training. For the purpose of

the ablation study, we randomly select 103 images from the

CVPPP A1 benchmark for training and report the results on

the remaining 25 images.

To compute the reward for our actor-critic model

(Eq. 4), we use the Dice score computed as F(S, T ) =
2
∑

i SiTi∑
i Si+

∑
i Ti

. The dimensionality of the latent action space

is fixed to 16.

In the first part of the experiment, we look into how dif-

ferent terms in the loss influence the segmentation quality,

measured in Symmetric Best Dice (SBD), and the absolute

Difference in Counting (|DiC|). Specifically, we train five

models: BL is an actor-only recurrent model trained with

BPTT through all states. We use the BCE loss and Dice-

based max-matching as a heuristic for assigning the ground

truth to predictions, similar to [31, 32]. BL-Trunc is similar

to BL, but is trained with a truncated, one-step BPTT. We

train our actor-critic model AC-Dice with the gradient from

the critic approximating the Dice score. AC-Dice-NoKL

is similar to the AC-Dice model, i.e. the actor is trained

jointly with the critic, but we remove the KL-divergence

term, which encourages exploration, from the loss of the

actor. Lastly, we verify the benefit of the State Pyramid,

the multi-res spatial information provided to the decoder,

by comparing to a baseline without it (AC-Dice-NoSP).

The side-by-side comparison of these models sum-

marised in Table 1 reveals that AC-Dice exhibits a superior

accuracy compared to the baselines, both in terms of Dice

and counting. Using the KL-divergence term in the loss

improves the actor, which shows the value of action explo-

ration in a consistent action space. We also observed that

training AC-Dice-NoKL would sometimes diverge and re-

quire a restart with the critic warm-up. Furthermore, the

State Pyramid aids the decoder, as removing it leads to a

significant drop in mask quality. Surprisingly, BL-Trunc

is only slightly worse than BL, which however has by far

Model SBD ↑ |DiC| ↓

BL 80.0 1.08

BL-Trunc 79.4 1.32

AC-Dice 80.5 0.88

AC-Dice-NoKL 75.4 1.36

AC-Dice-NoSP 61.3 1.52

Table 1. Evaluation on CVPPP val. We compare our baseline

with fully-unrolled (BL) and truncated BPTT (BL-Trunc) to the

actor-critic with Dice-based reward, with (AC-Dice) and without

(AC-Dice-NoKL) exploration, and without the State Pyramid (AC-

Dice-NoSP).

Model
LSTM + Mask Mask only LSTM only

Dice∗ ↑ |DiC| ↓ Dice∗ ↑ |DiC| ↓ Dice∗ ↑ |DiC| ↓

BL 78.6 1.04 76.6 4.36 6.5 3.96

BL-Trunc 77.9 1.72 77.5 6.24 6.0 4.8

AC-Dice 78.4 0.88 78.5 1.92 5.8 4.36

∗ computed by max-matching and ground-truth stopping

Table 2. Contribution of recurrent states to mask quality measured

by Dice and absolute Difference in Counting |DiC| on CVPPP val.

Figure 3. Dice score of our actor-critic model (AC-Dice) vs. our

baseline with truncated BPTT (BL-Trunc) on CVPPP val, aver-

aged for each timestep. We observe the advantage of our actor-

critic model at later timesteps, which is an expected benefit of in-

cluding the estimate of the expected reward in the loss at the ear-

lier timesteps. Note that few images contain 20 instances, hence a

large variance for this timestep.

higher memory demands than both AC-Dice and BL-Trunc

in the setting of long sequences and high resolutions.

To further investigate the accuracy gains of the actor-

critic model, we report the average Dice score w.r.t. the cor-

responding timestep of the prediction in Fig. 3. The his-

togram confirms our intuition that incorporating the future

reward into the loss function for every timestep, as mod-

elled by the critic, should improve the segmentation quality

at later stages of prediction: the Dice score of the actor-
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Model SBD ↑ |DiC| ↓

RIS [32] 66.6 1.1

MSU [33] 66.7 2.3

Nottingham [33] 68.3 3.8

IPK [29] 74.4 2.6

DLoss [9] 84.2 1.0

E2E [31] 84.9 0.8

Ours (AC-Dice) 79.1 1.12

Table 3. Segmentation quality of our actor-critic model on CVPPP

test with Dice-based reward (AC-Dice) in terms of Symmetric Best

Dice (SBD) and absolute Difference in Counting (|DiC|).

critic model tends to be tangibly higher especially at the

later timesteps. Note that the contribution of this benefit to

the average score across the dataset is moderated by not all

images in the dataset having many instances.

In the next part of the experiment, we are interested in the

reliance of the model on the recurrent state. Recall that our

model maintains the mask accumulating the previous pre-

dictions as well as the hidden LSTM state. We alternately

“block” either of the states by providing a zero tensor at

every timestep. We consider only the first n predictions to

compute the Dice score, where n is the number of ground-

truth masks. We stop the iterations if no termination was

predicted after 21 timesteps, since the largest number of in-

stances in our validation set is 20. The results in Table 2

show that the LSTM plays an important role for counting

(or, termination prediction), while having almost no effect

on the mask quality. The networks have learned a sequen-

tial prediction strategy given only the binary mask of previ-

ously predicted pixels. Note that in contrast to the baseline

models, actor-critic training reduced the dependence on the

LSTM state for counting (AC-Dice), which suggests that

the actor makes a better use of the state mask to make the

next prediction.

6.2. Instance segmentation

We compare our method to other approaches on two

standard instance segmentation benchmarks, each contain-

ing a rich variety of small segments as well as occlusions.

CVPPP dataset. For the CVPPP dataset used in our ab-

lation study, this time we evaluate on the official 33 test

images and train only our actor-critic model (AC-Dice) on

the total 128 images in the training set.

The results on the test set in Table 3 show that our

method is on par with the state of the art in terms of count-

ing while maintaining competitive segmentation accuracy.

From a qualitative analysis, see examples in Fig. 4a, we ob-

serve that the order of prediction follows a consistent, inter-

pretable pattern: large leaves are segmented first, whereas

small and occluded leaves are segmented later. This follows

our intuition for an optimal processing sequence: “easy”,

Model MWCov ↑ MUCov ↑ AvgFP ↓ AvgFN ↓

DepthOrder [42] 70.9 52.2 0.597 0.736

DenseCRF [41] 74.1 55.2 0.417 0.833

AngleFCN+D [35] 79.7 75.8 0.201 0.159

E2E [31] 80.0 66.9 0.764 0.201

Ours (BL-Trunc) 72.2 50.7 0.393 0.432

Ours (AC-IoU) 75.6 57.3 0.338 0.309

(a) KITTI test set

Model MWCov ↑ MUCov ↑ AvgFP ↓ AvgFN ↓

E2E (Iter-1) 64.1 54.8 0.200 0.375

E2E (Iter-3) 71.3 63.4 0.417 0.308

E2E (Iter-5) 75.1 64.6 0.375 0.283

Ours (BL-Trunc) 70.4 55.8 0.313 0.339

Ours (AC-IoU) 71.9 59.5 0.262 0.253

(b) KITTI validation set

Table 4. Segmentation quality on KITTI. We evaluate our baseline

with truncated BPTT (BL-Trunc) and the actor-critic with IoU-

based reward (AC-IoU) in terms of mean weighted (MWCov) and

unweighted (MUWCov) coverage, average false positive (AvgFP),

and false negative (AvgFN) rates.

more salient instances should be predicted first to alleviate

consecutive predictions of the “harder” ones. We also note,

however, that the masks miss some fine details, such as the

stalk of the leaves, which limits the benefits of the context

for occluded instances. We believe this stems from the lim-

ited capacity of the critic network to approximate a rather

complex reward function.

KITTI benchmark. We use the instance-level annotation

of cars in the KITTI dataset [10] to test the scalability of

our method to traffic scenes. We used the same data split

as in previous work [31, 35], which provides 3712 images

for training, 144 images for validation, and 120 images for

testing. While the validation and test sets have high-quality

annotations [6, 41], the ground-truth masks in the training

set are largely (> 95%) coarse or incomplete [6]. Hence,

good generalisation from the training data would indicate

that the algorithm can cope well with inaccurate ground-

truth annotation.

The evaluation criteria for this dataset are: the mean

weighted coverage loss (MWCov), the mean unweighted

coverage loss (MUCov), the average false positive rate

(AvgFP), and the average false negative rate (AvgFN).

MUCov is the maximum IoU of the ground truth with a pre-

dicted mask, averaged over all ground-truth segments in the

image. MWCov additionally weighs the IoUs by the area of

the ground-truth mask. AvgFP is the fraction of mask pre-

dictions that do not overlap with the ground-truth segments.

Conversely, AvgFN measures the fraction of the ground-

truth segments that do not overlap with the predictions.

We use an IoU-based score function to compute the re-

wards, i.e. F(S, T ) =
∑

i SiTi∑
i Si+

∑
i Ti−

∑
i SiTi

. To show the
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(b) Predictions of our model on the KITTI validation set

Figure 4. Predictions from our AC model on the CVPPP (a) and KITTI datasets (b). The colourmap (middle) encodes the prediction order

and ranges from blue (first prediction) to red (last prediction). Note how the prediction order follows a consistent pattern: large unoccluded

segments tend to be segmented first, whereas small and occluded segments are usually predicted last.

benefits of our Actor-Critic model (AC-IoU) for structured

prediction at higher resolutions, we also train and report re-

sults for a baseline, the actor-only model trained with one

step BPTT (BL-Trunc). Considering the increased variabil-

ity of the dataset compared to CVPPP, we used 64 latent

dimensions for the action space.

The results on the test are shown in Table 4a. Given the

relatively small size of the test set, we also report the re-

sults on the validation set in Table 4b, and use the available

results from the equivalent evaluation of a state-of-the-art

method [31] for reference.

The results indicate that our method scales well to larger

resolutions and action spaces and shows competitive accu-

racy despite not using bounding box representations. Sim-

ilar to our results on CVPPP, our model does not quite

reach the accuracy of a recurrent model using bounding

boxes [31] and a non-recurrent pipeline. We believe the seg-

mentation accuracy is currently limited by the degree of the

reward approximation by the critic and the representational

power of the network architecture used by the actor model.

As can be seen in some examples in Fig. 4b, without post-

processing the masks are not always well aligned with the

object and occlusion boundaries. However, we note that the

prediction order also follows a consistent, interpretable pat-

tern: nearby instances are segmented first, while far-away

instances are segmented last. Without hard-coding such

constraints, the network appears to have learned a strategy

that agrees with human intuition to segment larger, close-

by objects first and exploits the resulting context to make

predictions in the order of increasing difficulty.

7. Conclusions

In the current study, we formalised the task of instance

segmentation in the framework of reinforcement learning.

Our proposed actor-critic model utilises exploration noise

to alleviate the initialisation bias on the prediction ordering.

Considering the high dimensionality of pixel-level actions,

we enabled exploration in the action space by learning a

low-dimensional representation through a conditional vari-

ational auto-encoder. Furthermore, the critic approximates

a reward signal that also accounts for future predictions at

any given timestep. In our experiments, it attained com-

petitive results on established instance segmentation bench-

marks and showed improved segmentation performance at

the later timesteps. Our model predicts instance masks di-

rectly at the full resolution of the input image and does

not require intermediate bounding box predictions, which

stands in contrast to proposal-based architectures [13] or

models delivering only a preliminary representation for fur-

ther post-processing, e.g. [9, 35].

These encouraging results suggest that actor-critic mod-

els have potentially a wider application spectrum, since the

critic network was able to learn a rather complex loss func-

tion to a fair degree of approximation. In future work, we

aim to improve our baseline model of the actor network,

which currently limits the attainable accuracy.
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