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Abstract

We present a bundle-adjustment-based algorithm for re-

covering accurate 3D human pose and meshes from monoc-

ular videos. Unlike previous algorithms which operate on

single frames, we show that reconstructing a person over an

entire sequence gives extra constraints that can resolve am-

biguities. This is because videos often give multiple views

of a person, yet the overall body shape does not change and

3D positions vary slowly. Our method improves not only on

standard mocap-based datasets like Human 3.6M – where

we show quantitative improvements – but also on challeng-

ing in-the-wild datasets such as Kinetics. Building upon our

algorithm, we present a new dataset of more than 3 million

frames of YouTube videos from Kinetics with automatically

generated 3D poses and meshes. We show that retraining a

single-frame 3D pose estimator on this data improves accu-

racy on both real-world and mocap data by evaluating on

the 3DPW and HumanEVA datasets.

1. Introduction

Understanding the 3D configuration of the human body

has numerous real-life applications in robotics, augmented

and virtual reality, and animation, among other fields. How-

ever, it is an inherently under-constrained problem when

only a single image is available, as there are many 3D poses

which project to the same 2D image. Data-driven meth-

ods to resolve this ambiguity are promising, but they are

typically trained and evaluated on motion capture datasets

recorded in constrained and unrealistic environments [17,

43, 29, 19].

To resolve some of the ambiguities in monocular 3D

pose estimation, we exploit temporal consistency across

frames of a video. The temporal dimension of ordinary

videos encodes valuable information: multiple views of

people are observed, where the body shape and bone lengths

remain constant throughout a video, and joint positions in

∗Equal contribution.
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both 2D and 3D change slowly over time. These priors con-

strain the space of possible poses and thus help reduce the

ambiguity of this ill-posed problem as shown in Fig. 1. De-

spite its value, the temporal information in mocap datasets

is discarded by all current leading 3D pose estimation al-

gorithms [20, 36, 45, 28] which use only single, ambigu-

ous frames. Our approach incorporates temporal informa-

tion through a form of bundle adjustment, a method used in

multi-view geometry for estimating cameras and 3D struc-

ture of rigid scenes from image correspondences [13, 48].

We repurpose bundle adjustment to deal with non-rigid (ar-

ticulated) human motion in a video sequence. In contrast to

previous recurrent models for human pose [15], our method

can jointly reason about all frames in the video, and errors

made in initial frames do not accumulate over time. As il-

lustrated in Fig. 1, the current state-of-art single frame esti-

mation network for the SMPL model [20] fails on a number

of frames of “in the wild” videos, such as when there is oc-

clusion, unusual poses, poor lighting or motion blur. Our

bundle adjustment method is able to correct these estimates

and infer 3D human pose for these frames.

To address the lack of real-world data in 3D pose esti-

mation, we apply our bundle adjustment framework to “in

the wild” clips from the Kinetics dataset [22] comprised of

YouTube videos, and show how we can leverage our predic-

tions on real-world videos as a source of weak supervision

to improve existing 3D pose estimation models. By encour-

aging temporal consistency with bundle adjustment and us-

ing YouTube videos as a source of weakly supervised data,

we make the following novel contributions:

First, we show that multi-frame bundle adjustment can

be specialized to human pose estimation, which improves

performance on the Human 3.6M dataset over single frame

estimation. Our method achieves the state-of-the-art for

SMPL [26] models on this dataset.

We then apply our bundle adjustment method to 107 000

YouTube videos from the Kinetics dataset [22] and gener-

ate a large-scale dataset of 3D human poses aligned with the

video frames. This dataset contains great diversity in pose,

with 400 different human actions, and will be publicly re-

leased as a training resource via the DeepMind website. As
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Figure 1. Although monocular 3D pose estimation is an ill-posed problem, state-of-art methods [20] do not use temporal information to

constrain the problem. Coupled with the fact that 3D supervision is only available from lab-captured mocap datasets, they often fail on “in

the wild” videos, e.g., from Kinetics [22]. As shown in the second row, the failure modes of [20] vary even though the image has barely

changed. Our proposed bundle adjustment considers all frames in the video jointly and uses temporal coherence to prevent major failures

(column 2 and 3) and to resolve ambiguities (column 5). We then apply our method on YouTube videos to obtain weakly-supervised data

to improve per-frame methods. Note that we are only showing 5 out of 190 frames in the clip. Best viewed in colour on screen.

we are fitting SMPL body models [26] to the data, other

information such as 2D keypoints and body-part segmenta-

tions can also be obtained automatically as done by [23].

By retraining the single-frame 3D pose estimator using

our automatically-generated dataset, we obtain a more ro-

bust network that performs better on real-world (3DPW

[52]) and mocap (HumanEVA [42]) datasets. We are thus

the first paper, to our knowledge, to show how we can use

masses of unlabelled real-world data to improve 3D pose

estimation models.

2. Related Work

3D human pose is typically represented in the literature

as either a point cloud of 3D joint positions or the parame-

ters of a body model. A common approach with the former

representation is to “lift” 2D keypoints (either ground truth

or from a 2D pose detector) to 3D. This has been recently

done with neural networks [28, 57, 31] and previously using

a dictionary of 3D skeletons [38, 2, 59, 54] or other priors

[47, 50, 2] to constrain the problem. The point cloud repre-

sentation also allows one to train a CNN to regress directly

from an image (instead of 2D keypoints) to 3D joints us-

ing supervision from motion capture datasets like Human

3.6M [35, 41, 34]. However, this approach overfits to the

constrained environments of lab-captured motion capture

datasets and does not generalise well to real-world images.

Whilst methods based on “lifting” are more robust to this

domain shift, they discard valuable information from the

image as they depend solely on the input 2D keypoints.

Training models with supervision from both 2D key-

points (from real-world datasets such as [25, 3, 18]) and 3D

joints (from mocap datasets) has been shown to help with

generalisation to real-world images [58, 40, 29, 9, 44, 45].

However, greater success has been achieved in this scenario

by fitting parametric models of human body meshes to im-

ages. Human body models, such as [26] and [5], encap-

sulate more prior knowledge, thus reducing the ambiguity

of the 3D pose estimation problem. Explicit priors such

as bone length ratios remaining constant [58, 9] and limbs

being symmetric [9] are enforced naturally by body mod-

els. Moreover, this mesh representation also enables a direct

mapping to body part segmentations [23, 36, 20].

Early work used the SCAPE body model [5] and fitted

it to images using manually annotated keypoints and sil-

houettes [12, 42, 6, 14]. More recent works use the SMPL

model [26] and fit it automatically. This is done by either

solving an optimisation problem to fit the model to the data

[7, 23, 55, 6] or by regressing the model parameters directly

using a neural network [20, 32, 36, 49] or random forest

[23]. Optimisation-based approaches minimise an energy

function that depends on the reprojection error of the 3D

joints onto 2D [7, 23], priors on joint angle and shape pa-

rameters [7, 23], and/or the discrepancy between the silhou-

ette of the 3D model and its foreground mask in the 2D im-

age [23, 6]. Direct regression methods, in contrast, train a

neural network where the keypoint [20, 32, 36] or silhouette

reprojection errors are used in its training objective [36, 32].

Kanazawa et al. [20] also use an adversarial loss that distin-

guishes between real and fake joint angles of SMPL models.

This effectively acts as a joint-angle prior, allowing the au-
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thors to utilise existing ground truth SMPL model fits from

[27] without requiring them to be paired to images.

Our approach uses the per-frame neural network model

of Kanazawa et al. [20] as the initialisation of our optimisa-

tion problem. Despite efforts by [20] to train it with realistic

2D data, we show (as illustrated by Fig. 1, 2) how this model

often fails on challenging real-world videos and how these

errors can be corrected with bundle adjustment. Moreover,

we show how we can improve the performance of this net-

work by finetuning it using the results of our bundle adjust-

ment as ground truth on originally difficult sequences.

We note that despite there being previous efforts to

produce temporally consistent fits of the SMPL model

[16, 56, 55, 37], none of these works have been able to

use these results to improve a per-frame model as we have.

Furthermore, [56] and [37] have not explicitly evaluated on

3D pose estimation either. Additionally, we do not assume

knowledge of calibrated cameras like [16, 55].

There are also several methods which enforce temporal

consistency without body models: The works of [10, 53, 24]

were based on Non-Rigid Structure from Motion whilst [4]

lifted tracked 2D keypoints into 3D. More recently, Hos-

sain et al. [15] also lifted 2D keypoints using an LSTM in

a sequence-to-sequence [46] model. However, it is diffi-

cult to retain memory over long sequences as evidenced by

their model performing best with a temporal context of only

five frames. Dabral et al. [9] use a feedforward network us-

ing the predictions of the previous 20 frames as input. Our

optimisation based approach, in contrast, can consider all

frames (our experiments have as many as 1175 frames) in

the video to produce more globally coherent results. Fur-

thermore, as we consider all frames jointly, rather than se-

quentially like [9, 15], errors do not accumulate over time.

Finally, we note that there are several works which

synthesise additional training data using rendering engines

[39, 51, 8]. Although this approach provides additional di-

versity compared to motion capture datasets, the resultant

data, although fully labelled, is not photorealistic. Our ap-

proach is complementary in that we leverage unlabelled, but

real-world YouTube videos from the Kinetics dataset. Con-

currently to this paper, [21] have also used additional videos

from Instagram to improve 3D pose estimation models.

3. Bundle Adjustment using the SMPL Model

We jointly optimise the parameters of a SMPL statistical

body shape model [26] and a camera over an entire video

sequence. The whole-video approach contrasts with recur-

rent networks such as [15] which are only effective using

a temporal context of only five frames, and allows for bet-

ter global solutions. As shown in Fig. 2, the input to our

method is a sequence of video frames, 2D keypoint pre-

dictions for a single person for each frame using a state-

of-art 2D pose detector [33] and initial SMPL parameters

produced per-frame using the HMR network of [20]. From

this, our method outputs SMPL- and camera parameters for

each frame in the video that are consistent with each other

and reproject to the 2D keypoints. In Sec. 3.1, we briefly de-

scribe the SMPL body model that we are fitting to videos.

Thereafter, in Sec. 3.2, we detail the objective function that

we minimise in order to fit this model to the video. Sec-

tion. 3.3 we provide details on the optimisation.

3.1. Body representation

The SMPL body model [26] parameterises a triangulated

mesh with N = 6890 vertices of a human body. It fac-

torises the 3D mesh into shape parameters, β ∈ R
10 and

pose θ ∈ R
3K , where K = 23 joints. The shape pa-

rameters model the variations in body proportions, height

and weight. They are the coefficients of a low-dimensional

shape space that was originally learned by [26, 7] from a

training set of approximately 4000 registered human-body

scans. The pose parameters model the deformation of the

body as a result of the articulation of its K internal joints.

They are an axis-angle representation of the relative rota-

tion of a joint with respect to its parent in the model’s kine-

matic tree. SMPL is a differentiable function that outputs a

mesh and positions of joints in 3D. We denote the latter as

X = SMPL(β, θ) ∈ R
J×3 where J is the number of joints.

3.2. Formulation

We optimise an objective function that considers the re-

projection of 3D keypoints onto 2D, temporal consistency

of SMPL parameters, 3D- and 2D-keypoints, and a prior:

E(β, θ,Ω) = ER(β, θ,Ω)+ET (β, θ,Ω)+EP (θ, β) (1)

Reprojection error: We assume that we have 2D key-

point detections, xdet,i with a confidence score of wi for

the ith joint. This error term penalises deviations of the

projections of our estimated 3D joints onto 2D over all T

frames in the video for all J body joints:

ER(β, θ,Ω) = λR

T
∑

t

J
∑

i

wiρ(x
t
i − x

t
det,i). (2)

Here, ρ is the robust Huber error function which we favour

over a squared error as it can deal better with noisy es-

timates that we sometimes obtain on “in-the-wild” se-

quences, and the superscript t denotes time. x is the 2D

projection of the 3D joint X,

x
t = stΠ(RX

t) + ut (3)

X
t = SMPL(β, θt), (4)

where Π is an orthographic projection, R ∈ R
3×3 is the

global rotation matrix parameterised by a Rodrigues vector
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Figure 2. Overview of our method: Using initial per-frame estimates of 2D keypoints, SMPL- and camera parameters, we jointly optimise

over the whole video comprising T frames by encouraging temporal consistency. As a result, we can overcome poor 2D keypoint detection

(first row) and poor initial SMPL estimates (all rows) to output accurate SMPL- and camera-parameters.

and Ω
t = {st, ut} are the camera parameters comprising of

scale, s ∈ R and translation u ∈ R
2 and time-step t. Note

that the parameters β and θ are mapped to 3D joint positions

X by SMPL, and that we use a single β parameter for the

whole sequence as the body shape of the video’s subject

remains constant.

Temporal error: This error, ET is defined as:

ET (β, θ,Ω) =

T
∑

t=2

J
∑

i=1

λ1ρ(X
t
i −X

t−1

i ) + λ2ρ(x
t
i − x

t−1

i )

+ λ3ρ(Ω
t −Ω

t−1). (5)

The temporal error on 3D joints, X, and camera parameters,

Ω, encourages smooth motions that are typical of humans in

videos. This is also applied on the 2D keypoint projections,

x, as it helps to compensate for spurious errors of the 2D

keypoint detector at a particular frame in the video.

3D Prior: There are many 3D poses (including some that

are not humanly possible) that project correctly onto the 2D

keypoints while also having low temporal error (for exam-

ple, having all keypoints in a flat plane actually minimises

the change with time). We use a single β for the entire se-

quence, meaning that changes in distance between 2D key-

points must be explained by pose changes, but telling which

keypoint is in front of the other often remains ambiguous.

Therefore, we include a prior term that encourages realis-

tic 3D poses which match the appearance, as illustrated in

Fig. 3. We use two terms: the same joint angle prior used

by [7, 16, 23], and another term that robustly encourages

the solution to stay close to our initialisation, (β̃, θ̃), which

was estimated by the single-frame HMR model. It is thus

defined as:

EP (β, θ) =
T
∑

t

EJ(θ
t) + λIEI(θ

t, β) (6)

EJ(θ) = − log

(

∑

i

giN
(

θt;µi,Σi

)

)

(7)

EI(θ
t, β) =

J
∑

i

ρ(Xt
i − X̃

t
i) + λβρ(β − β̃t). (8)

The joint angle prior, EJ(θ), is the negative log-likelihood

of a Gaussian Mixture Model that was fitted to the joint an-

gles on the CMU Mocap dataset [1]. gi are the mixture

model weights of 8 Gaussians [7, 16, 23], and µi and Σi

are the mean and covariance of the ith Gaussian. Multi-

ple modes are used to represent the diverse range of poses

which a human can be in. Note that though our initialisation

prior (8) penalises deviations in 3D joint positions, these are

functions of the SMPL parameters according to (4).

3.3. Optimisation

We optimise (1) with respect to all SMPL and camera pa-

rameters, for all frames in the video, jointly using L-BFGS

and Tensorflow. The solution is first initialised using the re-

sults of the per-frame, HMR neural network [20]. In total

there are 10 + 75F parameters to be optimised for, where

F is the number of frames in the video. On a typical clip

from Kinetics [22] consisting of 250 frames, the optimisa-

tion takes about 8 minutes on a standard CPU or GPU (as

we did not implement customised kernels for this task), or

only 2 seconds per frame. The time- and memory-efficiency

of our method is thus suited for batch, offline processing of

videos as done in the following section.
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Figure 3. Without the prior (6), the SMPL model fit can project

well onto 2D keypoints without being in a valid human pose.

3.4. Discussion

As previous works [37, 16, 55, 56, 30] have incorporated

temporal information into 3D pose estimation using bun-

dle adjustment before, we discuss the differences of our ap-

proach: First, in contrast to [37, 55, 30, 56], we use a robust

Huber penalty function, and unlike previous approaches,

also incorporate additional robustness into our reprojection

term for Kinetics data in the next section. Second, our tem-

poral consistency term is not only on 3D joint positions,

but also on 2D joint projections and camera parameters

(note that [16, 55, 30] assume known intrinsics). Third,

unlike previous works, we use our bundle adjustment re-

sults to improve a per-frame model. Fourth, [37] optimises

in the feature space of HMR, whilst we optimise SMPL-

and camera-parameters directly. Additional segmentation

masks for model fitting as also used by [16] and [55].

4. Leveraging Kinetics for weak supervision

Kinetics-400 [22] is a large-scale dataset of human ac-

tions collected from YouTube. It contains 400 or more 10s

video clips for each of 400 action classes. Each clip is from

a different YouTube video, and consequently the dataset

contains considerable diversity in people, scenes and cam-

era viewpoints as shown in Fig. 1,2,3. We perform bun-

dle adjustment on this dataset to obtain real-world, weakly-

supervised training data for 3D pose models. Bundle adjust-

ment is challenging on Kinetics since there are often multi-

ple people in a frame, shaking cameras, and people are often

occluded or move off-camera. The diversity also results in

more frequent failures of our multi-person 2D pose detector

[33] and HMR [20].

Dealing with multiple people: We could handle multi-

ple people with our formulation in Sec. 3 by first tracking a

single person through the video, and applying our method

to only the tracked region. However, we found this ap-

proach too sensitive to missing detections and tracking fail-

ures. Consequently, we perform tracking to initialise the

solution but also augment the per-frame component of our

loss function, (1), to deal with multiple (or potentially no)

people, and allow for outliers to be ignored:

ER(β, θ
t,Ωt;xt

det,i) = (9)

min

(

min
p∈P t

J
∑

i

wih(x
t
i − x

t,p
det,i), τR

)

,

EI(β, θ
t) = (10)

min

(

min
p∈P t

J
∑

i

ρ(Xt,p
i − X̃

t
i) + λβρ(β − β̃t), τI

)

.

Here, τR and τI are constants, and p indexes the differ-

ent person detections P t in frame t. Intuitively, the “inner

min” means that the loss is with respect to the current best-

matching 2D pose for each frame. However, if estimates

from either the 2D pose detection or the HMR model are

too far from the current bundle adjustment estimates, they

are considered outliers, and the loss is set to a constant (per-

formed by the “outer min”). This means that they no longer

affect the bundle adjustment procedure. There is also sub-

stantial jitter in keypoint prediction in Kinetics, due to both

2D detector inaccuracy and camera shake. This causes sig-

nificant problems if a bone is close to parallel with the cam-

era plane: in such cases, jitter in 2D keypoints can often

only be explained by large changes in 3D orientation. Since

we are penalising 3D changes, this encourages the overall

algorithm to avoid poses where bones are near parallel with

the camera plane. To mitigate this, we replace the Huber

loss, ρ, in the reprojection term with a hinge loss, h, which

is 0 if the error is less than 5 pixels, and behaves like the Hu-

ber loss (i.e. L1 error) otherwise. Finally, to deal with cam-

era motion, we find it advantageous to put an upper bound

on the camera translations in (5), which is equal to 10% of

the image width, and we do not penalise camera scaling.

Initialisation by tracking: The possibility of outliers

means that initialisation is important, which we do by first

tracking people in 2D using our multi-person pose detec-

tor [33] that outputs 2D keypoints and bounding boxes for

each person in the image. We select bounding boxes by

computing the shortest path from the start to the end of

the video: distances between detected people in subsequent

frames are equal to the mean-squared-error in pixels be-

tween detected keypoints. As there may be missing per-

son detections, we allow the shortest-path algorithm to skip

frames with a penalty of 100 pixels. Given a selected person

detection for each frame, we initialise the 3D pose parame-

ters for each frame using the estimates from HMR (for any

skipped frames, we initialise using the pose from the nearest

non-skipped frame).
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Training data selection: After optimising, we measure

the success of the algorithm by the total loss (1). How-

ever, we find that the loss tends to be lowest for people who

aren’t moving, producing videos that are not suitable to use

as training data. This problem is alleviated by normalising

the total loss by the the 3D trajectory length,

Enorm(β, θ,Ω) =
E(β, θ,Ω)

∑T

t

∑J

i ‖Xt
i −X

t−1

i ‖
. (11)

To obtain training data, we process all videos in Kinet-

ics that do not have more than 6 detected people in a sin-

gle frame, as our 2D pose detector and HMR usually fail

on crowded scenes. After running bundle adjustment, we

then discard any videos where Enorm is above a threshold,

retaining roughly 10% of the original videos. From these

videos, we keep the frames where the 2D reprojections of

the 3D poses are inliers with respect to our detected key-

points (i.e. minp∈P t

∑J

i wiρ(x
t
i − x

t,p
det,i) < τR).

5. Experiments

After describing common experimental details in

Sec. 5.1, we first analyse our bundle adjustment method on

the Human 3.6M dataset in Sec. 5.2. Although this lab-

captured dataset is not particularly realistic, it has metric

ground truth 3D which allows us to conduct an ablation

study and compare to previous work on 3D pose estimation

using the SMPL model. Thereafter, in Sec. 5.3 we run our

method large-scale on Kinetics videos before using these

predictions in Sec. 5.4 as weakly-supervised ground truth to

retrain a per-frame 3D pose estimation model as described

previously in Sec. 4.

5.1. Experimental Set-up

We initialise the solution to bundle adjustment using the

state-of-art HMR neural network [20] which is input an im-

age and outputs SMPL and orthographic camera parame-

ters. Unless otherwise specified, we use the publicly re-

leased model that has been trained on 3D mocap datasets:

Human 3.6M [17] and MPI-3DHP [29], 2D pose datasets:

COCO [25], MPII [3] and LSP [18], and an adversarial prior

that was trained on SMPL model fits using [27]. The key-

points that we use for bundle adjustment are obtained using

[33], which was trained on the same 2D pose data as HMR

and additional data from Flickr collected by the authors.

5.2. Results on Human 3.6M

Human 3.6M [17] is a popular motion capture dataset

and 3D pose benchmark. Following previous work [35, 40,

20], we downsample the videos from 50fps to 10fps and

evaluate on the validation set. Even so, some videos contain

as many as 1175 frames, which we are still able to jointly

optimise over. We report the mean per joint position error

Table 1. Ablation study on Human 3.6M, considering the effect of

different terms of our objective function (1). Mean errors over the

validation set are reported.

Method MPJPE (mm) PA-MPJPE (mm)

HMR initialisation [20] 85.8 57.5

ER 154.3 99.7

ER + EP 79.6 55.3

ER + EP + ET 77.8 54.3

ER (gt. keypoints) 89.2 64.5

ER + EP (gt. keypoints) 66.5 45.7

ER + EP + ET (gt. keypoints) 63.3 41.6

(MPJPE) [17], and also this error after rigid alignment of

the prediction with respect to the ground truth using Pro-

crustes Analysis [11] which we denote as PA-MPJPE.

Table 1 shows the effect of the various terms of our ob-

jective function in (1). We initialise the solution to our bun-

dle adjustment using the public HMR model of [20], and

the error increases if we only use the reprojection error. As

shown in Fig. 3, optimising for reprojection error alone can

result in impossible poses. Note that we are using a single

β shape parameter across the whole video, but this alone is

too weak a constraint. The addition of the prior term (6)

improves results substantially: MPJPE reduces by 6.2mm

compared to the HMR initialisation. Although HMR was

also trained with 2D reprojection as one of its loss functions,

we obtain better results by explicitly optimising for this

term and using HMR as an initialisation method. Note that

the 2D pose detector that we use [33] has not been trained

on Human 3.6M at all. Our final model, which enforces

temporal consistency with not only a single β parameter,

but smoothness of joints and camera parameters, achieves

the best results, significantly improving the MPJPE error of

the initial HMR model by 9.4% and PA-MPJPE by 5.6%.

The final three rows of Tab. 1 use ground truth 2D key-

points. Note that here, as the ground truth is the projection

of 3D joints into the image using the known camera, we

have keypoints for occluded joints too. Each term of our ob-

jective function (1) has the same effect on the overall error

as before. However, the MPJPE and PA-MPJPE improve

considerably more over the initialisation of HMR: Our final

model reduces these errors by 26.2 and 27.2% respectively.

This shows the significant benefits that we can obtain if we

have knowledge of occluded keypoints since this further re-

duces the ambiguity in the problem.

Finally, Tab. 2 shows we achieve the best results on Hu-

man 3.6M among other methods utilising the SMPL model.

Note that Mehta et al. [30] also perform bundle adjust-

ment to improve the predictions of a CNN model, obtain-

ing an MPJPE of 80.5. However, as [30] do not use the

SMPL model, they are not directly comparable. Addition-

ally, although direct CNN-regression methods such as [9]

obtain MPJPE errors of as low as 52.1, they overfit to the

Human 3.6M dataset and have been shown to be signifi-
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Table 2. Comparison of approaches fitting the SMPL model [26]

on Human 3.6M. We did not use additional Kinetics data here.

Method MPJPE (mm) PA-MPJPE (mm)

Self-Sup [49] – 98.4

Lassner et al. direct fitting [23] – 93.9

SMPLify [7] – 82.3

Lassner et al. optimisation [23] – 80.7

Pavlakos et al. [36] – 75.9

NBF [32] – 59.9

MuVS (Note uses 4 cameras) [16] – 58.4

HMR [20] 88.0 56.8

Ours 77.8 54.3

Table 3. Statistics of our bundle-adjustment dataset from Kinetics-

400. 2D inliers refers to frames where 2D reprojection error was

small: ER < τR.

Count

Total videos 106 589

Selected videos (Enorm < τR) 15 046

Total frames in selected videos 3 730 672

BA inliers 3 045 603

cantly outperformed by SMPL-based approaches on real-

world datasets such as 3DPW [52] by Kanazawa et al. [21].

5.3. Results on Kinetics

Given that our algorithm can reliably improve 3D esti-

mates, we apply our method to a large-scale video dataset

to produce training data for single-frame 3D pose estima-

tion. We used the entirety of Kinetics-400 [22] (400+ clips

of 400 action classes), after automatically selecting videos

as described in Sec. 4.

Table 3 shows the statistics of the important stages in

this process. We first pre-select roughly 15K videos based

on the normalized bundle adjustment loss (11), resulting

in 3.7M frames. The bundle adjustment matched the pre-

diction of the 2D pose detector [33] for 3.0M out of 3.7M

frames (we used a threshold of τR = 50 pixels total error to

determine outliers). Visual inspection showed that the 3D

pose detector was fairly reliable: for the majority of out-

lier frames, the person was occluded or had simply left the

frame.

Table 4 lists the action classes from Kinetics that were

selected most often, showing that none of them appear in

existing mocap datasets [17, 43, 29]. Mocap datasets only

contain actions performed by a single person, in contrast

to classes such as “tap dancing” and “salsa dancing” which

bundle adjustment performs well on. Similarly, our method

is effective on outdoor activities such as “roller skating” and

“playing tennis” which cannot be recorded by mocap. There

were no classes without any selected videos, but for several

classes (e.g., “scrambling eggs” and “tying tie”), where a

person is rarely fully visible, we only selected 1 video each.

Some qualitative examples of the diversity of our dataset

are shown in Fig. 4. All experimental hyperparameters are

included in the arxiv version.

Table 4. The most common action classes of the videos selected

from Kinetics. Our bundle adjustment method works well on ac-

tion classes that do not appear in motion capture datasets, e.g.,

those that occur outdoors or contain multiple people.

Action class Selected videos Selected frames

Hula hooping 237 55 481

Roller skating 237 52 616

Spinning poi 210 40 251

Dribbling basketball 201 42 136

Playing tennis 191 45 824

Salsa dancing 187 42 744

Tap dancing 187 43 947

Table 5. Results on the 3DPW [52] and HumanEVA [43] datasets

when training with our Kinetics datasets. We evaluate the HMR

model retrained by us on its original training data using the au-

thor’s public code, and the HMR model trained on its original data

and 300K and 3M frames from our Kinetics dataset. We report the

PA-MPJPE error in mm.

Dataset Original data
Original +

Kinetics 300K

Original +

Kinetics 3M

3DPW 77.2 73.8 72.2

HumanEVA 85.7 83.5 82.1

5.4. Weak supervision from Kinetics

We utilise the training data that we automatically ob-

tained in the previous section to retrain a new HMR model

from Imagenet initialisation. We use the original train-

ing data (described in Sec. 5.1) too, and use a model only

trained on this data as our baseline. We evaluate on the re-

cently released 3D Poses in the Wild dataset (3DPW) [52],

which consists of outdoor videos captured in real-world

conditions and HumanEVA [43], a mocap dataset. Our net-

work has never been trained on images from either dataset.

To verify the effect of Kinetics training, we trained a model

with all frames from our automatically-generated dataset

(Kinetics 3M), and also with a random subset of 10% of

the frames in our dataset (Kinetics 300K).

When retraining the HMR model on Kinetics data, we

made modifications to the HMR training procedure [20].

These are detailed in the arxiv version, where we also show

that our modifications only help for training on Kinetics

data, and not when using only the original training data used

by HMR.

3D Poses in the Wild: This recently released dataset con-

tains 60 clips, consisting of outdoor videos captured from a

moving mobile phone and 17 IMUs attached to the subjects

[52]. The IMU data allowed the authors to accurately com-

pute 3D poses which we use as ground truth. We evaluate

on the test set comprising 24 videos; details of our evalua-

tion protocol are in the arxiv version.

Table 5 shows how using additional data from Kinet-

ics improves results on this dataset. Training with 300K

frames of Kinetics data improves the PA-MPJPE by 3.4mm,
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Figure 4. The dataset we automatically generated from Kinetics has a diverse range of scenes, people, camera viewpoints and action classes

not found in motion capture. We show the input frame, results for a single tracked person (which are cropped for display) of HMR (pink)

and bundle adjustment (blue), and the bundle adjustment result from another view respectively. Note how bundle adjustment typically

improves the per-frame estimates of HMR.

and our model trained with all 3M frames of Kinetics im-

proves further by 5 mm over the baseline. Our Kinetics-

trained model also outperforms the public HMR model [20]

(trained by the authors) which obtains a PA-MPJPE error of

74.9. While isolated checkpoints from our reimplementa-

tion of HMR perform as well as the public model, not all

do; Tab 5 computes the mean of 20 checkpoints (roughly

1500 training iterations apart) to minimise variance.

HumanEVA: HumanEVA [43] is an indoor motion-

capture dataset where we follow the evaluation protocol

of [7] on the validation set. Although HumanEVA does

not contain “in the wild” data, it is a dataset which our

HMR model has not been trained on at all. Table 5 shows

how adding additional data from our Kinetics dataset im-

proves performance on this dataset compared to our base-

lines that were trained without Kinetics. Our model trained

with 300K frames of Kinetics data improves the PA-MPJPE

by 2.2 mm, and the model trained with 3M Kinetics frames

improves further by 3.6 mm over our baseline. The public

HMR model obtains a PA-MPJPE error of 83.5, which is

also worse than our Kinetics-trained model.

These experiments thus show how we can effectively use

Kinetics data to improve the per-frame HMR model on mul-

tiple datasets. We also achieve greater improvements on

the real-world 3DPW dataset, compared to the mocap Hu-

manEVA dataset.

6. Conclusion and Future Work

We presented a bundle-adjustment algorithm to leverage

the temporal context in a video in order to improve esti-

mates of the 3D pose of a person. Furthermore, we ap-

plied this to YouTube videos from Kinetics and automat-

ically generated a dataset which we used to improve per-

frame 3D pose estimators, demonstrating how we can ef-

fectively use large amounts of unlabelled data to improve

existing models.

Bundle adjustment was effective because videos are shot

in a 3D world where people move slowly (relative to the

camera framerate), and the person’s size and appearance re-

main consistent over time. If properly characterised, these

constraints can give strong supervision to algorithms, which

allows us to break out of the environments which motion

capture devices are restricted to. We believe there is far

more 3D structure to exploit, because people don’t behave

in a vacuum. People act under gravity, are supported by

ground planes and interact with objects. Therefore, we aim

in future to use physical constraints and information about

human actions to constrain poses and predict the objects that

people are interacting with to estimate their affordances.
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Relja Arandjelović, João Carreira, Rohit Girdhar, Viorica
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