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Abstract

Robust geometric and semantic scene understanding is

ever more important in many real-world applications such

as autonomous driving and robotic navigation. In this pa-

per, we propose a multi-task learning-based approach ca-

pable of jointly performing geometric and semantic scene

understanding, namely depth prediction (monocular depth

estimation and depth completion) and semantic scene seg-

mentation. Within a single temporally constrained recur-

rent network, our approach uniquely takes advantage of a

complex series of skip connections, adversarial training and

the temporal constraint of sequential frame recurrence to

produce consistent depth and semantic class labels simul-

taneously. Extensive experimental evaluation demonstrates

the efficacy of our approach compared to other contempo-

rary state-of-the-art techniques.

1. Introduction

As scene understanding grows in popularity due to its

applicability in many areas of interest for industry and

academia, scene depth has become ever more important

as an integral part of this task. Whilst in many cur-

rent autonomous driving solutions, imperfect stereo cam-

era set-ups or expensive LiDAR sensors are used to capture

depth, research has recently focused on refining estimated

depth with corrupted or missing regions in post-processing,

rendering it more useful in any downstream applications

[6, 78, 84]. Moreover, monocular depth estimation has re-

ceived significant attention within the research community

as a cheap and innovative alternative to other more expen-

sive and performance-limited technologies [8, 24, 29, 87].

Pixel-level image understanding, namely semantic seg-

mentation, also plays an important role in many vision-

based systems. Significant success has been achieved us-

ing Convolutional Neural Networks (CNN) in this field

[10, 17, 53, 66, 70] and many others such as image classifi-

cation [54], object detection [88] and alike in recent years.

Veritatem Dies Aperit: Time discovers the truth.

Figure 1: Exemplar results of the proposed approach.

RGB: input colour image; MDE: Monocular Depth Esti-

mation; GSS: Generated Semantic Segmentation.

In this work, we propose a model capable of semantically

understanding a scene by jointly predicting depth and pixel-

wise semantic classes (Figure 1). The network performs

semantic segmentation (Section 3.3) along with monocular

depth estimation (i.e., predicting scene depth based on a sin-

gle RGB image) or depth completion (i.e., completing miss-

ing regions of existing depth sensed through other imperfect

means, Section 3.2). Our approach performs these tasks

within a single model (Figure 2 (A)) capable of two sepa-

rate scene understanding objectives requiring low-level fea-

ture extraction and high-level inference, which leads to im-

proved and deeper representation learning within the model

[41]. This is empirically demonstrated via the notably im-

proved results obtained for each individual task when per-

formed simultaneously in this manner.

Within the current literature, many techniques focus on

individual frames to spatially accomplish their objectives,

ignoring temporal consistency in video sequences, one of

the most valuable sources of information widely available

within real-world applications. In this work, we propose

a feedback network that at each time step takes the output

generated at the previous time step as a recurrent input. Fur-

thermore, using a pre-trained optical flow estimation model,

we ensure the temporal information is explicitly considered

by the overall model during training (Figure 2 (A)).

In recent years, skip connections have been proven to
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Figure 2: Overall training procedure of the model (A) and the detailed outline of the generator architecture (B).

be very effective when the input and output of a CNN share

similar high-level spatial features [60, 66, 73, 79]. We make

use of a complex network of skip connections through-

out the architecture to guarantee that no high-level spatial

features are lost during training as the features are down-

sampled. In short, our main contributions are as follows:

• Depth Prediction - via a supervised multi-task model

adversarially trained using complex skip connections

that can predict depth (monocular depth estimation and

depth completion) having been trained on high-quality

synthetic training data [67] (Section 3.2).

• Semantic Segmentation - via the same multi-task

model, which is capable of performing the task of se-

mantic scene segmentation as well as the aforemen-

tioned depth estimation/completion (Section 3.3).

• Temporal Continuity - temporal information is explic-

itly taken into account during training using both recur-

rent network feedback and gradients from a pre-trained

frozen optical flow network.

This leads to a novel scene understanding approach capa-

ble of temporally consistent geometric depth prediction and

semantic scene segmentation whilst outperforming prior

work across the domains of monocular depth estimation

[8, 25, 29, 49, 83, 87], completion [9, 36, 50, 82] and se-

mantic segmentation [10, 17, 40, 52, 53, 59, 74, 75, 86].

2. Related Work

We consider relevant prior work over three distinct areas,

semantic segmentation (Section 2.1), monocular depth esti-

mation (Section 2.2), and depth completion (Section 2.3).

2.1. Semantic Segmentation

Within the literature, promising results have been

achieved using fully-convolutional networks [53], saved

pooling indices [10], skip connections [66], multi-path re-

finement [48], spatial pyramid pooling [85], attention mod-

ules focusing on scale or channel [18, 81] and others.

Temporal information in videos has also been used to

improve segmentation accuracy or efficiency. [26] proposes

a spatio-temporal LSTM based on frame features for higher

accuracy. Labels are propagated in [58] using gated re-

current units. In [27], features from preceding frames are

warped via flow vectors to reinforce the current frame fea-

tures. On the other hand, [69] reuses previous frame fea-

tures to reduce computation. In [89], an optical flow net-

work [23] is used to propagate features from key frames to

the current one. Similarly, [77] uses an adaptive key frame

scheduling policy to improve both accuracy and efficiency.

Additionally, [47] proposes an adaptive feature propagation

module that employs spatially variant convolutions to fuse

the frame features, thus further improving efficiency. Even

though the main objective of this work is not semantic seg-

mentation, it can be demonstrated that when the main ob-

jective (depth prediction) is performed alongside semantic

segmentation, the results are superior to when the tasks are

performed individually (Table 1).

2.2. Monocular Depth Estimation

Estimating depth from a single colour image is very de-

sirable as unlike stereo correspondence [68], structure from

motion [16] and alike [1, 71], it leads to a system with re-

duced size, weight, power and computational requirements.

For instance, [11] employs sparse coding to estimate depth,

while [24, 25] generates depth from a two-scale network

trained on RGB and depth. Other supervised models such

as [45, 46] have also achieved impressive results despite the

scarcity of ground truth depth for supervision.

Recent work has led to the emergence of new techniques

that calculate disparity by reconstructing corresponding

views within a stereo correspondence framework without

ground truth depth. The work by [76] learns to generate the

right view from the left image used as the input while pro-

ducing an intermediary disparity map. Likewise, [29] uses

bilinear sampling [39] and left/right consistency incorpo-

rated into training for better results. In [87], depth and cam-

era motion are estimated by training depth and pose predic-

tion networks, indirectly supervised via view synthesis. The

model in [44] is supervised by sparse ground truth depth and

the model is then enforced within a stereo framework via an

image alignment loss to output dense depth.

Additionally, contemporary supervised approaches such

as [8] have taken to using synthetic depth data to produce

sharp and crisp depth outputs. In this work, we also utilize

synthetic data [67] in a directly supervised training frame-

work to perform the task of monocular depth estimation.
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Method
Depth Error (lower, better) Depth Accuracy (higher, better) Segmentation (higher, better)

Abs. Rel. Sq. Rel. RMSE RMSE log σ < 1.25 σ < 1.252 σ < 1.253 Accuracy IoU

Two Models 0.245 1.513 6.323 0.274 0.803 0.856 0.882 0.604 0.672

One Model 0.208 1.402 6.026 0.269 0.836 0.901 0.926 0.748 0.764

Table 1: Comparison of depth prediction and segmentation tasks performed in one single network and two separate networks.

Figure 3: Comparing the results of the approach on synthetic test set when the model is trained with and without temporal

consistency. RGB: input colour image; GTD: Ground Truth Depth; GTS: Ground Truth Segmentation; TS: Temporal

Segmentation; TD: Temporal Depth; NS: Non-Temporal Segmentation; ND: Non-Temporal Depth.

2.3. Depth Completion

While colour image inpainting has been a long-standing

and well-established field of study [3, 13, 21, 62, 72, 80], its

use within the depth modality is considerably less effective

[6]. There have been a variety of depth completion tech-

niques in the literature including those utilizing smoothness

priors [33], exemplar-based depth inpainting [7], low-rank

matrix completion [78], object-aware interpolation [5], ten-

sor voting [43], Fourier-based depth filling [9], background

surface extrapolation [55, 57], learning-based approaches

using deep networks [4, 84], and alike [12, 19, 51]. How-

ever, prior work does not include any work focusing on en-

forcing temporal continuity in a learning-based approach.

3. Proposed Approach

Our approach is designed to perform two tasks using a

single joint model: depth estimation/completion (Section

3.2) and semantic segmentation (Section 3.3). This has been

made possible using a synthetic dataset [67] in which both

ground truth depth and pixel-wise segmentation labels are

available for video sequences of urban driving scenarios.

3.1. Overall Architecture

Our single network takes three different inputs produc-

ing two separate outputs for two tasks - depth prediction

and semantic segmentation. Moreover, temporal informa-

tion is explicit in our formulation, as one of the inputs at

every time step is an output from the previous time step via

recurrence. The network comprises three different compo-

nents: the input streams (Figure 2 (B) - left), in which the

inputs are encoded, the middle stream (Figure 2 (B) - mid-

dle), which fuses the features and begins the decoding pro-

cess, and finally the output streams (Figure 2 (B) - right), in

which the results are generated.

As seen in Figure 2 (A), two of the inputs are RGB or

RGB-D images (depending on whether monocular depth es-

timation to create depth, or depth completion to fill holes

within an existing depth image, is the focus) from the cur-

rent and previous time steps. The two input streams that de-

code these share their weights. The third input is the depth

generated at the previous time step. The middle section of

the network fuses and decodes the input features and finally

the output streams produce the results (scene depth and seg-

mentation). Every layer of the network contains two convo-

lutions, batch normalization [37] and PReLU [31].

Following recent successes of approaches using skip

connections [60, 66, 73, 79], we utilize a series of skip con-

nections within our architecture (Figure 2 (B)). Our inputs

and outputs, despite containing different types of informa-

tion (RGB, depth and pixel-wise class labels), relate to con-

secutive frames from the same scene and therefore, share

high-frequency information such as certain object bound-

aries, structures, geometry and alike, ensuring skip connec-

tions can be of significant value in improving the results.

By combining two separate objectives (predicting depth and

pixel-wise class labels) within our network, in which the

input streams and middle streams are fully trained on both

tasks, the results are better than when two separate networks

are individually trained to perform the same tasks (Table 1).

Even though the entire network is trained as one entity,

in our discussions, the parts of the network responsible for

predicting depth will be referred to as G1 and the portions

involved in semantic segmentation G2. These two modules

are essentially the same except for their output streams.

3.2. Depth Estimation / Completion

We consider depth prediction as a supervised image-to-

image translation problem, wherein an input RGB image

(for depth estimation) or RGB-D image (with the depth

channel containing holes for depth completion) is translated

to a complete depth image. More formally, a generative

model (G1) approximates a mapping function that takes as

its input an image x (RGB or RGB-D with holes) and out-

puts an image y (complete depth image) G1 : x → y.

The initial solution would be to minimize the Euclidean

distance between the pixel values of the output (G1(x))
and the ground truth depth (y). This simple reconstruc-

tion mechanism forces the model to generate images that

3375



Figure 4: Comparing the performance of the approach with differing components of the loss function removed.

Method
Depth Error (lower, better) Depth Accuracy (higher, better) Segmentation (higher, better)

Abs. Rel. Sq. Rel. RMSE RMSE log σ < 1.25 σ < 1.252 σ < 1.253 Accuracy IoU

T/R 0.991 1.964 7.393 0.402 0.598 0.684 0.698 0.156 0.335

T/R/A 0.851 1.798 6.826 0.368 0.692 0.750 0.778 0.341 0.435

T/R/A/SC 0.655 1.616 6.473 0.278 0.753 0.812 0.838 0.669 0.738

T/R/A/SC/S 0.412 1.573 6.256 0.258 0.793 0.875 0.887 0.693 0.741

N/R/A/SC/S 0.534 1.602 6.469 0.275 0.758 0.820 0.856 0.614 0.681

T/R/A/SC/S/OF 0.208 1.402 6.026 0.269 0.836 0.901 0.926 0.748 0.764

Table 2: Numerical results with different components of loss. T: Temporal training; T: Non-Temporal training; R: Recon-

struction loss; A: Adversarial loss; SC: Skip Connections; S: Smoothing loss; OF: Optical Flow.

are structurally and contextually close to the ground truth.

For monocular depth estimation, this reconstruction loss is:

Lrec = ||G1(x)− y||1, (1)

where x is the input image, G1(x) is the output and y the

ground truth. For depth completion, however, the input x

is a four-channel RGB-D image with the depth containing

holes that would occur during depth sensing. Since we use

synthetic data [67], we only have access to hole-free pixel-

perfect ground truth depth. While one could naı̈vely cut

out random sections of the depth image to simulate holes,

as other approaches have done [62, 80], we opt for creat-

ing realistic and semantically meaningful holes with char-

acteristics of those found in real-world images [6]. A sepa-

rate model is thus created and tasked with predicting where

holes would be by means of pixel-wise segmentation. A

number of stereo images (30, 000) [28] are used to train

the hole prediction model by calculating the disparity us-

ing Semi-Global Matching [34] and generating a hole mask

(M ) which indicates which image regions contain holes.

The left RGB image is used as the input and the generated

mask as the ground truth label, with cross-entropy as the

loss function.

When our main model is being trained to perform depth

completion, the hole mask generated by the hole prediction

network is employed to create the depth channel of the input

RGB-D image. Subsequently, the reconstruction loss is:

Lrec = ||(1−M)⊙G1(x)− (1−M)⊙ y||1, (2)

where ⊙ is the element-wise product operation and x the

input RGB-D image in which the depth channel is y ⊙M .

Experiments with an L2 loss returned similar results.

However, the sole use of a reconstruction loss would

lead to blurry outputs since monocular depth estimation and

depth completion are multi-modal problems, i.e., several

plausible depth outputs can correctly correspond to a re-

gion of an RGB image. This multi-modality results in the

generative model (G1) averaging all possible modes rather

than selecting one, leading to blurring effects in the out-

put. To prevent this, adversarial training [30] has become

prevalent within the literature [8, 22, 38, 62, 80] since it

forces the model to select a mode from the distribution re-

sulting in better quality outputs. In this vein, our depth gen-

eration model (G1) takes x as its input and produces fake

samples G1(x) = ỹ while a discriminator (D) is adversari-

ally trained to distinguish fake samples ỹ from ground truth

samples y. The adversarial loss is thus as follows:

Ladv = min
G1

max
D

E
x,y∼Pd(x,y)

[logD(x, y)]+

E
x∼Pd(x)

[log(1−D(x,G1(x)))],
(3)

where Pd is the data distribution defined by ỹ = G1(x),
with x being the generator input and y the ground truth.

Additionally, a smoothing term [29, 32] is utilized to en-

courage the model to generate more locally-smooth depth

outputs. Output depth gradients (∂G1(x)) are penalized us-

ing L1 regularization, and an edge-aware weighting term

based on input image gradients (∂x) is used since image

gradients are stronger where depth discontinuities are most

likely found. The smoothing loss is therefore as follows:

Ls = |∂G1(x)|e
||∂x||, (4)

where x is the input and G1(x) the depth output. The gra-

dients are summed over vertical and horizontal axes.
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Figure 5: Results on CamVid [14] (left) and Cityscapes [20]

(right). RGB: input colour image; GTS: Ground Truth Seg-

mentation; GS: Generated Segmentation; GD: Generated

Depth.

Method IoU Method IoU

CRF-RNN [86] 62.5 DeepLab [17] 63.1

Pixel-level Encoding [74] 64.3 FCN-8s [53] 65.3

DPN [52] 66.8 Our Approach 67.0

Table 3: Segmentation on the Cityscapes [20] test set.

Another important consideration is ensuring the depth

outputs are temporally consistent. While the model is ca-

pable of implicitly learning temporal continuity when the

output at each time step is recurrently used as the input at

the next time step, we incorporate a light-weight pre-trained

optical flow network [65], which utilizes a coarse-to-fine

spatial pyramid to learn residual flow at each scale, into our

pipeline to explicitly enforce consistency in the presence of

camera/scene motion. At each time step n, the flow between

the ground truth depth frames n and n−1 is estimated using

our pre-trained optical flow network [65] as well as the flow

between generated outputs from the same frames. The gra-

dients from the optical flow network (F ) are used to train

the generator (G1) to capture motion information and tem-

poral continuity by minimizing the End Point Error (EPE)

between the produced flows. Hence, the last component of

our loss function is:

LVn
= ||F (G1(xn), G1(xn−1))− F (yn, yn−1)||2, (5)

where x and y are input and ground truth depth images re-

spectively and n the time step. While we utilize ground

truth depth as inputs to the optical flow network, colour im-

ages can also be equally viable inputs. However, since our

training data contains noisy environmental elements (e.g.,

lighting variations, rain, etc.), using the sharp and clean

depth images leads to more desirable results.
Within the final decoder used exclusively for depth pre-

diction, outputs are produced at four scales, following [29].
Each scale output is twice the spatial resolution of its pre-
vious scale. The overall depth loss is therefore the sum of
losses calculated at every scale c:

Ldepth =

4∑

c=1

(λrecLrec + λadvLadv + λsLs + λV LVn
). (6)

The weighting coefficients (λ) are empirically selected

(Section 3.4). These loss components, used to optimize

Method IoU Method IoU

SegNet-Basic [10] 46.4 DeconvNet [59] 48.9

SegNet [10] 50.2 Bayesian SegNet-Basic [40] 55.8

Reseg [75] 58.8 Our Approach 59.1

Table 4: Segmentation on the CamVid [14] test set.

depth fidelity, are used alongside the semantic segmentation

loss, explained in Section 3.3.

3.3. Semantic Segmentation

As semantic segmentation is not the primary focus of

our approach, but only used to enforce deeper and better

representation learning within our model, we opt for a sim-

ple and efficient fully-supervised training procedure for our

segmentation (G2). The RGB or RGB-D image is used as

the input and the network outputs class labels. Pixel-wise

softmax with cross-entropy is used as the loss function, with

the loss summed over all the pixels within a batch:

Pk(x) =
eak(x)

∑K
k′=1 e

a
k′ (x)

, (7)

Lseg = −log(Pl(G2(x))), (8)

where G2(x) denotes the network output for the segmenta-

tion task, ak(x) is the feature activation for channel k, K is

the number of classes, Pk(x) is the approximated maximum

function and l is the ground truth label for image pixels. The

loss is summed for all pixels within the images.

Finally, since the entire network is trained as one unit,

the joint loss function is as follows:

L = Ldepth + λrecLseg. (9)

with coefficients selected empirically (Section 3.4).

3.4. Implementation Details

Synthetic data [67] consisting of RGB, depth and class

labels are used for training. The discriminator follows the

architecture of [64], and the optical flow network [65] is

pre-trained on the KITTI dataset [56]. Experiments with the

Sintel dataset [15] returned similar, albeit slightly inferior,

results. The discriminator uses convolution-BatchNorm-

leaky ReLU (slope = 0.2) modules. The dataset [67]

contains numerous sequences some spanning thousands of

frames. However, a feedback network taking in high-

resolution images (512× 128) back-propagating over thou-

sands of time steps is intractable to train. Empirically, we

found training over sequences of 10 frames offers a rea-

sonable trade-off between accuracy and training efficiency.

Mini-batches are loaded in as tensors containing two se-

quences of 10 frames each, resulting in roughly 10, 000
batches overall. All implementation is done in PyTorch

[61], with Adam [42] providing the best optimization (β1 =
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Figure 6: Results of our approach applied to KITTI [2, 56]. RGB: input colour image; GTD: Ground Truth Depth; MDE:

Monocular Depth Estimation; GTS: Ground Truth Segmentation; GS: Generated Segmentation.

Figure 7: Our results on locally captured data. SD: Depth

via Stereo Correspondence; DC: Depth Completion; MDE:

Monocular Depth Estimation; S: Semantic Segmentation.

0.5, β2 = 0.999, α = 0.0002). The weighting coef-

ficients in the loss function are empirically chosen to be

λrec = 1000, λadv = 100, λs = 10, λV = 1, λseg = 10.

4. Experimental Results

We assess our approach using ablation studies and both

qualitative and quantitative comparisons with state-of-the-

art methods applied to publicly available datasets [2, 14, 20,

28, 56]. We also utilize our own synthetic test set and data

captured locally to further evaluate the approach.

4.1. Ablation Studies

A crucial part of our work is demonstrating that every

component of the approach is integral to the overall per-

formance. We train our model to perform two tasks based

on the assumption that the network is forced to learn more

about the scene if different objectives are to be accom-

plished. We demonstrate this by training one model per-

forming both tasks and two separate models focusing on

each and conducting tests on randomly selected synthetic

sequences [67]. As seen in Table 1, both tasks (monocular

depth estimation and semantic segmentation) perform better

when the model is trained on both. Moreover, since the seg-

mentation pipeline does not receive any explicit temporal

Method PSNR SSIM Method PSNR SSIM

Holes 33.73 0.372 GTS [36] 31.47 0.672

ICA [82] 31.01 0.488 GIF [50] 44.57 0.972

FDF [9] 46.13 0.986 Ours 47.45 0.991

Table 5: Structural integrity analysis post depth completion.

supervision (from the optical flow network) and its temporal

continuity is only enforced by the input and middle streams

trained by the depth pipeline, when the two pipelines are

disentangled, the segmentation results become far worse

than the depth results (Table 1).

Figure 3 depicts the quality of the outputs when the

model is a feedback network trained temporally compared

to our model when the output depth from the previous time

step is not used as the input during training. We can clearly

see that both depth and segmentation results are of higher

fidelity when temporal information is used during training.

Additionally, our depth prediction pipeline uses sev-

eral loss functions. We employ the same test sequences

to evaluate our model trained as different components are

removed. Table 2 demonstrates the network temporally

trained with all the loss components (T/R/A/SC/S/OF) out-

performs models trained without specific ones. Qualita-

tively, we can see in Figure 4 that the results are far better

when the network is fully trained with all the components.

Specifically, the set of skip connections used in the network

make a significant difference in the quality of the outputs.

4.2. Semantic Segmentation

Segmentation is not the focus of this work and is mainly

used to boost the performance of depth prediction. How-

ever, we extensively evaluate our segmentation pipeline

which outperforms several well-known comparators. We

utilize Cityscapes [20] and CamVid [14] test sets for our

performance evaluation despite the fact that our model is

solely trained on synthetic data and without any domain

adaptation should not be expected to perform well on nat-

urally sensed real-world data. The effective performance

of our segmentation points to the generalization capabilities

of our model. When tested on CamVid [14], our approach

produces better results compared to well-established tech-

niques such as [10, 40, 59, 75] despite the lower quality

3378



Figure 8: Comparison of various completion methods applied to the synthetic test set. RGB: input colour image; GTD:

Ground Truth Depth; DH: Depth Holes; FDF: Fourier based Depth Filling [9]; GLC: Global and Local Completion [36];

ICA: Inpainting with Contextual Attention [82]; GIF: Guided Inpainting and Filtering [50].

Method
Error Metrics (lower, better) Accuracy Metrics (higher, better)

Abs. Rel. Sq. Rel. RMSE RMSE log σ < 1.25 σ < 1.252 σ < 1.253

Train Set Mean [28] 0.403 0.530 8.709 0.403 0.593 0.776 0.878

Eigen et al. [25] 0.203 1.548 6.307 0.282 0.702 0.890 0.958

Liu et al. [49] 0.202 1.614 6.523 0.275 0.678 0.895 0.965

Zhou et al. [87] 0.208 1.768 6.856 0.283 0.678 0.885 0.957

Godard et al. [29] 0.148 1.344 5.927 0.247 0.803 0.922 0.964

Zhan et al. [83] 0.144 1.391 5.869 0.241 0.803 0.928 0.969

Our Approach 0.193 1.438 5.887 0.234 0.836 0.930 0.958

Table 6: Numerical comparison of monocular depth estimation over the KITTI [28] data split in [25]. All comparators are

trained and tested on the same dataset (KITTI [28]) while our approach is trained on [67] and tested using [28].

of the input images as seen in Table 4. As for Cityscapes

[20], the test set does not contain video sequences, but

our temporal model still outperforms approaches such as

[17, 52, 53, 74, 86], as demonstrated in Table 3.

Examples of the segmentation results over both datasets

are seen in Figure 5. Additionally, we also use the KITTI

semantic segmentation data [2] in our tests and as shown in

Figure 6, our approach produces high fidelity semantic class

labels despite including no domain adaptation.

4.3. Depth Completion

Evaluation for depth completion ideally requires dense

ground truth scene depth. However, no such dataset exists

for urban driving scenarios, which is why we utilize ran-

domly selected previously unseen synthetic data with avail-

able dense depth images to assess the results. Our model

generates full scene depth and the predicted depth values

for the missing regions of the depth image are subsequently

blended in with the known regions of the image using [63].

Figure 8 shows a comparison of our results against other

contemporary approaches [9, 36, 50, 82]. As seen from the

enlarged sections, our approach produces minimal artefacts

(blurring, streaking, etc.) compared to the other techniques.

To evaluate the structural integrity of the results post com-

pletion, we also numerically assess the performance of our

approach and the comparators. As seen in Table 5, our ap-

proach quantitatively outperforms the comparators as well.

While blending [63] might work well for colour images

with a connected missing region, significant quantities of

small and large holes in depth images can lead to undesir-

able artefacts such as stitch mark or burning effects post

blending. Examples of artefacts can be seen in Figure 7,

which demonstrates the results of the approach applied to

locally captured data. This is further discussed in Section 5.

4.4. Monocular Depth Estimation

As the main focus of our model, our monocular depth

estimation model is evaluated against contemporary state-

of-the-art approaches [8, 25, 29, 49, 83, 87]. Following the

conventions of the literature, we use the data split suggested

in [25] as the test set. These images are selected from ran-

dom sequences and do not follow a temporally sequential

pattern, while our full approach requires video sequences

as its input. As a result, we apply our approach to all the

sequences from which the images are chosen but the evalu-

ation itself is only performed on the 697 test images.

For numerical assessment, the generated depth is cor-

rected for the differences in focal length between the train-

ing [67] and testing data [28]. As seen in Table 6, our ap-

proach outperforms [25, 49, 87] across all metrics and stays
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Figure 9: Comparing the results of the approach against [87, 29, 44, 8]. Images have been adjusted for better visualization.

RGB: input colour image; GTD: Ground Truth Depth; DEV: Depth and Ego-motion from Video [87]; LRC: Left-Right

Consistency [29]; SSE: Semi-supervised Estimation [44]; EST: Estimation via Style Transfer [8]; GS: Generated Segmen-

tation.

competitive with [29, 83]. It is important to note that all of

these comparators are trained on the same dataset as the one

used for testing [28] while our approach is trained on syn-

thetic data [67] without domain adaptation and has not seen

a single image from [28]. Additionally, none of the other

comparators is capable of producing temporally consistent

outputs as all of them operate on a frame level. As this can-

not be readily illustrated via still images within Figures 8

and 9, we kindly invite the reader to view the supplemen-

tary video material accompanying the paper.

We also assess our model using the data split of KITTI

[56] and qualitatively evaluate the results, since the ground

truth images in [56] are of higher quality than the laser data

and provide CAD models as replacements for the cars in the

scene. As shown in Figure 6, our method produces sharp

and crisp depth outputs with segmentation results in which

object boundaries and thin structures are well preserved.

5. Limitations and Future Work

Even though our approach can generate temporally con-

sistent depth and segmentation by utilizing a feedback net-

work, this can lead to error propagation, i.e., when an er-

roneous output is generated at one time step, the invalid

values will continually propagate to future frames. This

can be resolved by exploring the use of 3D convolutions or

regularization terms aimed at penalizing propagated invalid

outputs. Moreover, as mentioned in Section 4.3, blending

the depth output into the known regions of the depth [63]

produces undesirable artefacts in the results. This can be

rectified by incorporating the blending operation into the

training procedure. In other words, the blending itself will

take place before the supervisory signal is back-propagated

through the network during training, which would force

the network to learn these artefacts, removing any need for

post-processing. As for our segmentation component, no

explicit temporal consistency enforcement or class balanc-

ing is performed, which has lead to frame-to-frame flick-

ering and lower accuracy with unbalanced classes (e.g.,

pedestrians, cyclists). By improving segmentation, the en-

tire model can benefit from a performance boost. Most of

all, the use of domain adaptation [8, 35] can significantly

improve all results since despite its generalization capabili-

ties, the model is only trained on synthetic data and should

not be expected to perform just as well on naturally-sensed

real-world images.

6. Conclusion

We propose a multi-task model capable of performing

depth prediction and semantic segmentation in a tempo-

rally consistent manner using a feedback network that takes

as its recurrent input the output generated at the previous

time step. Using a series of dense skip connections, we

ensure that no high-frequency spatial information is lost

during feature down-sampling within the training process.

We consider the task of depth prediction within the areas

of depth completion and monocular depth estimation, and

therefore train models based on both objectives within the

depth prediction component. Using extensive experimen-

tation, we demonstrate that our model achieves much bet-

ter results when it performs depth prediction and segmen-

tation at the same time compared to two separate networks

performing the same tasks. The use of skip connections is

also shown to be significantly effective in improving the re-

sults for both depth prediction and segmentation tasks. Al-

though certain isolated issues remain, experimental evalu-

ation demonstrates the efficacy of our approach compared

to contemporary state-of-the-art methods tackling the same

problem domains [17, 29, 36, 40, 53, 82, 83, 87].

We kindly invite the readers to refer to the video:

https://vimeo.com/325161805 for more information and

larger improved-quality result images.
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