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Abstract

Although Generative Adversarial Networks (GANs) are

known for their sharp realism in image generation, they of-

ten fail to estimate areas of the data density. This leads to

low modal diversity and at times distorted generated sam-

ples. These problems essentially arise from poor estima-

tion of the distance metric responsible for training these

networks. To address these issues, we introduce an addi-

tional regularisation term which performs optimal trans-

port in parallel within a low dimensional representation

space. We demonstrate that operating in a low dimen-

sion representation of the data distribution benefits from

convergence rate gains in estimating the Wasserstein dis-

tance, resulting in more stable GAN training. We empiri-

cally show that our regulariser achieves a stabilising effect

which leads to higher quality of generated samples and in-

creased mode coverage of the given data distribution. Our

method achieves significant improvements on the CIFAR-

10, Oxford Flowers and CUB Birds datasets over several

GAN baselines both qualitatively and quantitatively.

1. Introduction

Optimal transport theory has found widespread applica-

tions in numerous fields, including various applications in

statistics and machine learning domains. Despite some dif-

ficulties accompanying the optimal transport approach, it

offers a solution that is both intuitive and numerically well-

behaved. This makes it a compelling approach for large

scale problems which are unstable in nature; of note, opti-

mal transport has been recently employed in the domain of

Generative Adversarial Networks (GANs) [12] with great

success.

Generative Adversarial Networks are generative models

where a density function is not explicitly approximated but
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a sampling mechanism is provided. A GAN framework typ-

ically has two components: a Discriminator for estimating

a family of f -divergences [26] between a model distribu-

tion Pg and the data distribution Pr, and a Generator that

provides a mapping between a known noise distribution Pz

to the model distribution Pg . The framework is optimised

through a minimax two-step procedure where each network

is responsible for training its counterpart. In practice, the

family of f -divergences suffers from numerical instabilities

and brittle parameter selection, giving rise to many regular-

isation methods [22, 23, 28]; ultimately leading to training

instability issues such as vanishing gradients and mode col-

lapse [1, 6, 21, 29].

Optimal transport has played a key role in alleviating

these instability issues in GANs [2, 30]. Most notably, [2]

proposed an alternative to the value function being opti-

mised by GANs. This approach utilised ideas from trans-

portation theory, leveraging the Wasserstein distance to pro-

duce a value function which was shown to be less frag-

ile and better fitted as a GAN value function when using

gradient-based optimisation methods. Whilst use of the

Wasserstein distance was shown to help stabilise training

of GANs, its convergence rate was still directly dependent

on the dimensionality of the problem [8, 11], making it

a less reliable distance when measuring high dimensional

data [5,31] (as is often the case in images). Additionally, the

current solution exists in the dual formulation, which im-

poses the constraint that the Discriminator must lie within

the space of 1-Lipschitz functions. Enforcement of this con-

straint requires regularising divergence or distance used for

GAN training which is imposed via gradient penalty [13].

We propose the Parallel Optimal Transport GAN (POT-

GAN), an unsupervised approach which regularises the

Generator using the Wasserstein distance in a low dimen-

sional latent representation of the data distribution and

model distribution Pr, Pg respectively. We show that sig-

nificant convergence gains are achieved by reducing the di-

mensionality of the problem when estimating the Wasser-

stein distance. This allows for the direct computation of the

primal form of the optimal transportation problem, avoiding
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the need to carefully maintain the 1-Lipschitz constraint ac-

companying the dual form. The latent representation is ob-

tained using a Variational Autoencoder (VAE) [18] and for

estimating the Wasserstein distance, we use the Monge for-

mulation [34] where a transport map and a cost function are

estimated throughout the optimisation process. This pro-

cedure provides better initial estimates of the Wasserstein

distance at every iteration leading to more stable training,

where continuous matching of intrinsic representations will

result in increased mode coverage. We experimentally vali-

date our method and show significant improvements on In-

ception [29] and FID [15] scores.

The main contributions of this paper are the following:

1. We introduce a novel GAN framework which uses an

optimal transport regulariser on the latent representa-

tion of the data distribution, aiding the Generator net-

work towards a more stable convergence and increased

modal diversity.

2. We demonstrate that both a transportation map and

cost function can be effectively estimated within a low

dimensional latent space. We employ a novel approach

to perform this task by utilising the non-linear mapping

capabilities of decision forests.

3. We show our method significantly improves on sev-

eral GAN benchmarks on Inception and FID scores on

CIFAR-10, Oxford Flowers and CUB Birds datasets.

2. Background

The goal of a Generative Adversarial Network

(GAN) [12] is to train a Generator which, given an

input sample z ∈ Rdz drawn from some arbitrary distri-

bution (usually standard Gaussian), is able to produce an

output sample G(z) ∈ Rdr , belonging to some distribution

Pg which closely approximates a target distribution Pr. A

GAN achieves this by setting up a game between the Gen-

erator G and a Discriminator D (typically represented by

neural networks), which can be described by the following

minimax objective loss function:

min
G

max
D

V (D,G) = Ex∼Pr
[logD(x)]

+Ez∼Pz
[log (1−D ◦G(z))]

(1)

Proper optimisation over Eq. 1 occurs when both D and G

each learn at the same rate and are evenly matched, ensuring

that both networks continue to improve. [12] showed that

training D to convergence estimates Jensen-Shannon (JS)

distance between the two distributions, and this signal is

provided towards improving G. Further works generalised

this approach leading to f -divergences [26] and mutual in-

formation minimisation criteria [3].

2.1. GAN Regularisation

Since GANs lack an explicit specification of the den-

sity function, variational inference has been combined with

GANs to leverage advantages from each method [16]. [20]

introduced the VAEGAN which offered a trade-off between

the sharpness offered by a GAN in exchange for the stabil-

ity and diversity of a Variational Autoencoder (VAE). Sub-

sequently, [4] added an additional adversarial loss which

aimed to diffuse generated samples towards reconstructed

real samples. Both VAEGAN and MDGAN are similar

works in the sense that they attempt to add an additional

manifold matching penalisation term. A drawback to both

of these works is that the matching is being performed in the

high-dimensional pixel space, which harms these two meth-

ods substantially. ALI by [9] and BiGAN [7] both jointly

train a Generator and its inference while maintaining the ad-

versarial loss which mitigated sample quality degradation.

Most recently, VEEGAN [32] trained an auxiliary network

for inverting the Generator output in a GAN to match the

input noise distribution, using the mismatch to provide a

training signal for mitigating mode collapse and improve

modal diversity.

2.2. Optimal transport in GANs

Optimal transport [35] addresses the problem of match-

ing distributions from a perspective of mass transportation.

In this context, the Wasserstein distance is the measure be-

tween two distributions. For the set of all joint probability

distributions Γ(xr, xg), we have probability distributions

Pr, Pg over X ⊆ R
d and the cost function c(xr, xg) :

X × X → R
+. The transport plan γ∗ ∈ Γ(xr, xg) min-

imises the following:

Wc(Pr, Pg) = inf
γ∈Γ(Pr,Pg)

E(xr,xg)∼γ [c(xr, xg)] (2)

A study by [2] compared different distance metrics for mea-

suring distribution distances and showed the advantages of

using the Wasserstein distance over other probability dis-

tances including the Jensen-Shannon distance. To address

the expensive nature of estimating Eq. 2 for distributions

of high dimensions, [2] suggested using the Kantorovich-

Rubinstein duality [35]:

W1(Pr, Pg) = sup
f∈FLip

Exr∼Pr
[f(xr)]− Exg∼Pg

[f(xg)]

(3)

With the special case of (X , c) as a metric space and FLip

are bounded 1-Lipschitz functions. This form of computing

the Wasserstein distance replaced the conventional way of

estimating the JS distance in Eq. 1, resulting in a new GAN

objective:

min
G

max
D

V (D,G) = min
θ∈Θ

max
ω∈Ω

Exr∼Pr
[Dω(xr)]

−Ez∼Pz
[Dω ◦Gθ(z)]

(4)
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Figure 1: The data distribution Pr and model distribution

Pg are both high dimensional and compact in space X . Ob-

taining the optimal coupling between these distributions in

practical settings with a finite sample size suffers from a

weak convergence rate. Projecting both distributions (with

mapping Qα) onto a latent space Z offers an increased con-

vergence rate and better estimate of the Wasserstein dis-

tance. Estimation of Wasserstein distance in this space

encompasses learning a probability transformation Fℓ be-

tween the latent distributions, followed by computing the

transport map (a permutation). The operation of matching

the latent distribution serves as a guide for the overall goal

of matching distributions Pr, Pg .

With G, D being neural networks parameterised by θ, ω and

Pr, Pz being the data distribution and noise distribution re-

spectively. In [2], weight clipping was used to maintain the

1-Lipschitz bound on D; this was recently extended upon

by [13] which used gradient penalty instead to enforce the

Lipschitz constraint. In this work we will show how the

primal form in Eq. 2 computed explicitly on the latent rep-

resentation of the data is used as a regulariser to guide the

Generator component in Eq. 4.

3. On convergence rates of Wasserstein dis-

tance

The work of [12] showed that given the data distribution

Pr and enough modelling capacity, the Generator in a GAN

setup recovers a model distribution Pg matching the data

distribution Pr. Complementing this finding, [24] provides

strong evidence that Pr lies on a low dimensional manifold

and [1] further rigorously proves that both Pr and Pg lie

on low dimensional manifolds. Our GAN framework con-

structs an optimal transport regulariser on the latent repre-

sentation which aims to help stabilise training, yielding a

better estimation of the true distribution (refer to Fig. 1).

This is motivated from a convergence stand point of the

Wasserstein distance and is discussed as follows.

We denote a probability distribution by P and the empir-

ical distribution by P̂n. In the limit of large n, the Wasser-

stein distance of order k [35] approaches zero almost surely:

Wk(P, P̂n)→ 0 a.s. (5)

In practice, having access to a limited number of samples

n drawn from P raises the question of how to quantify the

rate at which P̂n converges to P . Unfortunately, as shown

in [8], the rate of convergence suffers from the curse of di-

mensionality [10]:

E[W1(P, P̂n)] .

(

1

n

)
1
d

(6)

and in effect, for probability measures over Rd as the di-

mensionality of the space d grows larger, the representative

power of P̂n towards P shrinks, needing more samples

to yield applicable convergence rates. Recently [37]

generalised the original asymptotic bound by [8]. Here, we

show a simplified version of [37].

Theorem 1. Let k ∈ [1,∞). The convergence rate of

the empirical distribution towards the k−order Wasserstein

distance is given by:

E[Wk(P, P̂n)] .

(

1

n

)
1
d

(7)

full proof given in [37].

We define the convergence rate product as Ωa
b for da ≤

db.

Proposition 1. Let us define the distribution Pr with the

random variable X ∈ X ⊆ Rdr and Pz as the distribu-

tion of its latent encoding with the latent random variable

Z ∈ Z ⊆ Rdz , with {∀dr, dz ∈ Z
+ : dz ≤ dr}. Given

the corresponding empirical distributions P ′
r, P

′
z along with

their associated convergence rates then:

Ωz
r .

(

1

n

)

dr+dz
drdz

(8)

where Ωz
r is the convergence rate product for n number of

samples.

Proof. Obtain convergence rates for empirical distributions

P ′
r, P

′
z by applying Theorem 1.

By inspecting Eq. 8, one can immediately observe that

for dr ≫ dz , the convergence product is dominated by the

term dz , i.e.:

Ωz
r .

(

1

n

)
1
dz

(9)
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For probability distributions of high dimensional data

such as images (i.e. when dr is high), computing the

Wasserstein distance in Eq. 2 is not feasible. Although

the Kantorovich-Rubinstein duality can be used under the

assumption of a compact metric space, maintaining the

Lipschitz-1 constraint is non-trivial and does not scale

well. The correct choice of latent representation size dz
in Eq. 9, in conjunction with a given dataset size can allow

for quicker convergence and obtaining an estimate of the

Wasserstein distance for the latent representation.

4. Parallel optimal transport in GANs

We define Pr, pr, Pg and pg to be the data and model

probability distributions and densities respectively. The la-

tent densities zr ∼ pr(z), zg ∼ pg(z) are defined as:

pr(z) =

∫

X

pr(z|x)dpr(x), pg(z) =

∫

X

pg(z|x)dpg(x)

(10)

For estimating the Wasserstein distance between latent dis-

tributions, we write out Eq. 2 and reformulate according

to [34]:

W (Pr, Pg) = inf
γ∈Γ(Pr,Pg)

E(zr,zg)∼γ [c(zr, zg)] =

inf
γ∈Γ(Pr,Pg)

∫

Z×Z

c(zr, zg)dγ(pr, pg) ≤

inf
γσ∈Γσ(Pr,Pg)

∫

Z

c(zr, zg)dpr(zr)δ[zg − σ(zr)]

(11)

with the final inequality emerging from the Monge for-

mulation of the optimal transport problem [34]. σ is

the transport map and γσ is the transport plan where

γσ(zr, zg) = prδ[zg −σ(zr)] is limited to distributions that

a mass point cannot split (i.e. there must be a one-to-one

mapping between Pr and Pg).

The bottom term in Eq. 11 recovers the Wasserstein dis-

tance under the conditions that the cost function in Eq. 2 is

convex and distributions Pr, Pg are continuous [34]. Min-

imising Eq. 11 requires estimating the transport map σ by

finding one-to-one corresponding pairs {zr,i, zg,i}i=1,...,N

under a dynamically changing cost function.

The Discriminator value function is expressed using the

WGAN-GP [13] form:

VDω
= Ez∼Pz

[Dω ◦Gθ(z)]−

Exr∼Pr
[Dω(xr)] + λGPEx̂∼Px̂

[(‖∇x̂Dω(x̂)‖
2 − 1)2]

(12)

we obtain the Generator value function by adding our

regularisation term:

VGθ
= Ez∼Pz

[−Dω ◦Gθ(z)]+

λPOTE(zr,zg)∼Pgδ[zg−σ∗

ρ(zr)]
[
∥

∥σ∗
ρ(zr)−F

∗
ℓ (zg)

∥

∥

2
]

(13)

with λPOT being a hyperparameter specifying the weight-

ing applied to the regularisation term. Permutation operator

σ∗
ρ is the transportation map and F∗

ℓ is a component of the

cost function found by minimising:

F∗
ℓ , σ

∗
ρ = min

σρ∈Sρ,ℓ
ΣN

i=1 ‖σρi
(zr,i)−Fℓ(zg,i)‖

2
(14)

where Sρ is the set of all possible permutations. We note

that F∗
ℓ , σ

∗
ρ need not be unique. The latent representations

zr, zg are obtained by using a pre-trained fixed Variational

Auto-Encoder [18] and applying the Encoder on xr ∼ Pr,

xg ∼ Pg . The functions D and G are parameterised using

neural networks with parameters ω and θ respectively. F is

a learnable function parameterised by ℓ which is discussed

in Section 4.2. Eq. 12 and Eq. 14 each evaluate the differ-

ent metrics on their respective domains and are computed

in parallel; where their results are then used to update the

Generator in Eq. 13.

4.1. Latent Transform Map

The Wasserstein distance as formulated in Eq. 11 is the

mean cost between a one-to-one correspondence of match-

ing pairs after applying a probability transformation F (dis-

cussed in Section 4.2) on latent samples zg . The lower di-

mensions of the latent representation allows a quick conver-

gence to regularise Generator Gθ. The encoding model for

inferring the latent representation is denoted by Q and is a

neural network parameterised by α.

Estimating the cost function and the transportation map for

each batch is described in Algorithm 1. This procedure

finds the correspondences between the data and generated

pairs such that a sample zr, from the data distribution will

be covered by a generated sample zg , from the model dis-

tribution (i.e.{∀zi,r : minj c(zi,r, zj,g)}). In the context

of neural networks, this means constructing a differentiable

operation that minimises the distances associated with cor-

responding pairs of real and generated samples. The trans-

port map is a permutation over a learned cost function, we

note that rearranging the data samples does not interfere

with the gradient-descent operation for minimising the loss

in Eq. 13. The cost function c is convex and also differen-

tiable as discussed in detail in the following section.

4.2. Learning a cost function

The transformation map σ in Eq. 11 requires a one-to-

one correspondence between latent samples zr to zg . Learn-

ing the cost function in the form of: c(a, b) = ‖a−Fℓ(b)‖
2

satisfies the convexity requirement and also estimates a

probability transformation Fℓ to every state in which distri-

bution Pg evolves throughout GAN training so that a trans-

formation map can be found. Omitting F from the cost

function in favour of a standard L2 cost function will re-
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Algorithm 1 Obtain transport map σρ and cost function

transformation Fℓ in minibatch of size N

ρ← initialise permutation container

zr ∈ Qα(Xr)← sample data batch

zg ∈ Qα(Xg)← sample generated batch

for itr = 1 to iters do

for i = 1 to N do

ρi ← minj ‖(zi,r −Fℓ(zj,g)‖
2

end for

z
′

r ← Permute{zr, ρ}

ℓ← Adam(∇ℓ(
∑N

i=1

∥

∥

∥
(z

′

i,r −Fℓ(zj,g)
∥

∥

∥

2

), β1, β2)

end for

return (ρ, ℓ)

sult in an inaccurate transformation map σ, leading to less

accurate Wasserstein distance estimated by the regulariser.

Latent Transformation Forest For the choice of F , [39,

40] showed that the non-linear discriminating power of de-

cision forests were able to disentangle complex, jointly dis-

tributed data in the compact latent representation space of

real images. In addition, [38] demonstrated that the use of

decision forests offers a smooth manifold on the low dimen-

sion space of image distributions. Given these insights, we

adopt the approach in [38] to employ a soft decision forest

as a learnable component of the cost function c. Since the

role ofF is to operate as a probability transformation on the

latent representation of our data, we refer to it as a Latent

Transformation Forest (LTF). LTF is applied to the latent

representation of samples from the generated distribution

i.e.:

c(zr, zg) = ‖zr −Fℓ(zg)‖
2

(15)

where ℓ are the parameters of F , which hold the values

stored in the leaf nodes of the forest.

Constructing the Forest For a given latent encoding of a

generated sample, zg , we can construct the internal decision

nodes of the LTF through a reshape of zg . The internal de-

cision nodes utilise the values of the generated latent vector

to determine routing portions to the terminal leaf nodes of

the LTF. This is achieved by comparing the values of the

generated latent vector zg with a designated threshold value

tn and then passing this value through a sigmoid function

(i.e. σ(zn − tn)) which converts them into a value between

the range of [0, 1]. This outputs the routing portion to the

left child or leaf node of the current decision node. The

right portion is computed as 1 − σ(zn − tn) where tn is a

threshold value zn is compared against. This is illustrated

in Fig. 2.

The leaf nodes ℓ of the LTF hold values which represent

the learned values of the transformed generated latent vec-

Figure 2: The latent vector of generated samples zg is

remapped as soft decision nodes in our LTF. The weighted

sum of leaves of the LTF output the transformed generated

latent vector z′g .

Algorithm 2 A full outline of the training procedure for the

POT-GAN model. For the complete formulation of LGAN

and the gradient penalisation term refer to [13]

α← Pre-train VAE, discard Decoder and retain Encoder

(Q) parameters

θ,ω, ℓ,← initialise Generator (G), Discriminator (D),
LTF (F) parameters respectively

for itr = 1 to iters do

Xr ← random mini-batch from dataset

Zg ← sample noise N (0, I)
Xg ← generate data Gθ(Zg)
(ρ, ℓ)← Algorithm1(Xr,Xg, ℓ)
LGAN ← Dω ◦Gθ(Zg)−Dω(Xr)+

λGPEx̂∼Px̂
[(‖∇x̂Dω(x̂)‖

2 − 1)2]

LPOT ← ‖σρ ◦Qα(Xr)−Fℓ ◦Qα ◦Gθ(Zg)‖
2

ω
+
← Adam(∇ωLGAN , β1, β2)

θ
+
← Adam(∇θ(−LGAN + λPOT ∗ LPOT ), β1, β2)

end for

tor z′g before Eq. 15 is applied. These values are blended

according to weights dictated by the portions computed by

the internal decision nodes (referring to Fig. 2, the por-

tion allocated to the values held in leaf node ℓ0 would be

p0 × p1 × p3). This represents a non-linear transformation

on the generated samples’ from its original representation

to a transformed one where the L2 norm between latent dis-

tributions of the data and generated distributions are more

evenly distributed (for additional details refer to supplemen-

tary material).
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Reverse-KL Divergence : KL(Pg(x)||Pr(x))

GAN [12] VEEGAN [32] WGAN-GP [13] POT-GAN (Ours)

8 Gaussian Ring (2D) 0.2417±0.0113 0.1540±0.0127 0.0046±0.0004 0.0020±0.0002

Gaussian Ball (3D) 3.0772±0.1014 2.5153±0.0708 0.9438±0.0044 0.7428±0.0038

Table 1: The reverse-KL divergence for learning Gaussian distributions. These values correlate with the visual results seen

in Fig. 3.

(a) GAN [12] (b) VEEGAN [32]

(c) WGAN-GP [13] (d) POT-GAN (Ours)

(e) Ground Truth

Figure 3: Results of learning a 3D Gaussian xr ∼ N3(0, I) distribution from a 2D Gaussian input z ∼ N2(0, I). The

2-Dimensional latent space, cannot fully cover the 3-Dimensional data distribution. The transparent light blue sphere in

Fig. 3a-3e has a radius of 3 standard deviations. The generated samples are the points inside the sphere. Points generated

outside the sphere were clipped for visualisation purposes. In this case, we treat the problem as covering the single mode as

best as possible. Aside from the quantitative results shown in Table 1, it is observable between Fig. 3a-3d, our method 3d

covers the sphere in the most convincing manner in relation to ground truth.

5. Experiments

For qualitative and quantitative evaluations, we perform

experiments on simulated data as well as three real datasets.

Empirically, we found that concurrently training of the VAE

and GAN does not lead to improved performance. As such,

we pre-train and subsequently fix our VAE to reduce com-

putation costs and reduce training time. In Algorithm 2, we

detail the full procedure for training the POT-GAN model.

We compare POT-GAN to four GAN benchmarks, DC-

GAN [27], WGAN-GP [13], VEEGAN [32] and WAE-

GAN [33]. To our knowledge, VEEGAN represents the

most recent GAN framework which explicitly aims at sta-

bilising GAN training by Generator regularisation. POT-

GAN uses the WGAN-GP model in [13] as a baseline GAN.

For the latent representation, we used a pretrained Varia-

tional Autoencoder [18], trained with settings specified in

its respective paper (for more details on network architec-

tures refer to the supplementary material).

Our POT-GAN model is trained with a batch size of 64,

with network weights using the initialisation scheme de-

tailed in [14]. Similar to [27], we use the ADAM opti-

miser [17], specifying a learning rate of 0.0002, first and

second moment terms of 0.5 and 0.9 respectively, minimis-

ing the GAN loss and regularisation term defined in Sec-

tion 4. For size of latent vector z, we use the commonly

chosen 128 dimensions. For choice of λPOT , we experi-

mented with values of 1.0, 0.1 and 0.01. We found empiri-

cally that a value of λPOT = 0.01 performed best and use

this value for all our experiments.
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Figure 4: CIFAR-10 (a) Inception Score [29] and (b) FID

Score [15] performance plots over Generator iterations.

Both WGAN-GP [13] and POT-GAN were trained up to

100K iterations. The regularisation component in POT-

GAN restricts the optimisation space in a way that leads

to significant improvement on both measures that correlate

well with quality and mode diversity of the model distribu-

tion.

5.1. Learning Gaussians

2D Gaussian Mixture Model We train a GAN [12],

VEEGAN [32] and WGAN-GP [13] to learn a 2-

Dimensional 8 Gaussian mixture model. We compute the

reverse-KL divergence, KL(Pg||Pr), using a Parzen win-

dow and the results of 50 runs are shown in Table 1. As

observed, our method significantly outperforms competing

methods, offering more than a relative 50% improvement in

reverse-KL Divergence compared to WGAN-GP.

3D Gaussian Ball Additionally, we set up a traditional

GAN, VEEGAN and WGAN-GP to learn a 3D Gaussian

ball (xr ∼ N3(0, I)) from a 2D Gaussian input (z ∼
N2(0, I)). This example is meant to train a Generator Gθ

to map between a space which does not have the capacity to

fully model the true distribution. In Fig. 3, we plot the re-

sults. The traditional GAN and VEEGAN fail to cover large

parts of the Gaussian ball, exhibiting partial mode coverage

behaviour. WGAN-GP is able to cover the sphere better, but

there are clearly noticeably large holes within the sphere,

representing parts of the distribution not covered. In con-

trast, our method covers the true distribution significantly

better than WGAN-GP and there are no noticeable dead-

zones within the sphere. We compute the reverse-KL diver-

gence similarly to the 8-Gaussian mixture model example

and list the results of 50 runs in Table 1. These results cor-

relate well with the visual results in Fig. 3. Our method out-

performs GAN [12], VEEGAN [32] and WGAN-GP [13],

under this example where the Generator is made to learn

the best mapping it can for covering a single mode while

lacking the latent space capacity to fully represent the true

distribution.

5.2. Real Datasets

For real data, we experimented on three commonly used

datasets for obtaining comparative benchmarks:

CIFAR-10 The CIFAR-10 dataset [19] is a dataset con-

sisting of 50,000 32×32 training images and 10,000 32×32

testing images evenly distributed across 10 broad class cat-

egories.

Oxford Flowers The Oxford Flowers dataset [25] con-

sists of 8,189 images in 102 separate intra-class flower cat-

egories. Following common practice, images were down-

sampled to 64×64 and samples were generated at the same

resolution.

CUB Birds The CUB Birds dataset [36] consists of

11,788 images in 200 separate intra-class bird categories.

Following common practice, images were downsampled to

64×64 and samples were generated at the same resolution.

5.3. Qualitative Results

In Fig. 5 we show qualitative results of generated sam-

ples comparing POT-GAN to the benchmark GANs. We

observe a noticeable improvement in both sample quality

and diversity of POT-GAN when compared to the bench-

mark GAN baselines.

5.4. Quantitative Results

For assessing the improvement in quality and modal di-

versity of the POT-GAN model, we use Inception Score [29]

and FID Score [15]. Methods such as VEEGAN [32] and

WAE-GAN [33] are constructed to prevent mode collapse

and increase modal diversity of the recovered distribution,

but in doing so sacrifice sample quality; they perform poorly

on both Inception and FID scores. In Table 2 we show In-

ception and FID scores of POT-GAN along with benchmark

models on the CIFAR-10, Oxford Flowers and CUB Birds

datasets. These results correlate with the sample quality

presented in Fig. 5 where POT-GAN achieves a consider-

able improvement over the other models. For an additional

ablation study on the choice of F , please refer to the sup-

plementary material.

5.5. Effects of regularisation

Finally, we study the effects of adding our optimal

transport regularisation term to the Generator used in the

WGAN-GP [13] framework over the entire GAN training

process. We show the added value the regularisation term

provides over this baseline along the entire optimisation

process. The Inception and FID scores for CIFAR-10 are

plotted over Generator iterations shown in Fig. 4. In both

plots we see POT-GAN converging to a better state than
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Inception Score : exp(ExKL(p(y|x)||p(y)))

DCGAN [27] VEEGAN [32] WAE-GAN [33] WGAN-GP [13] POT-GAN (Ours)

CIFAR-10 [19] 6.16±0.07 6.25±0.05 4.18±0.04 6.58±0.06 6.87±0.04

Oxford Flowers [25] 2.33±0.04 2.11±0.02 2.30±0.01 3.42±0.04 3.53±0.03

CUB Birds [36] 3.93±0.03 3.74±0.02 3.42±0.04 4.51±0.04 4.78±0.04

FID Score : ‖m−mw‖
2

2
+ Tr(C +Cw − 2(CCw)

1/2

CIFAR-10 [19] 37.7 35.6 87.7 34.4 32.5

Oxford Flowers [25] 88.2 299.0 145.9 98.7 65.7

CUB Birds [36] 76.3 173.9 143.3 70.4 58.6

Table 2: Inception and FID scores for DCGAN, VEEGAN, WAE-GAN, WGAN-GP and POT-GAN on CIFAR-10, Oxford

Flowers and CUB Birds datasets.

(a) DCGAN [27] (b) VEEGAN [32] (c) WGAN-GP [13] (d) POT-GAN (Ours)

Figure 5: Qualitative results on Oxford Flowers and CUB Birds datasets. Visually, when compared to the benchmark GAN

models, POT-GAN offers a significant improvement in sample quality and diversity. Additional samples for CIFAR-10 can

be found in the supplementary material.

WGAN-GP [13]. The additional regularisation term contin-

uously estimates a more accurate Wasserstein distance and

the Generator is constantly penalised for deviating from the

lower dimension representation. In the supplementary ma-

terial, we also show the critic loss curves for the CIFAR-10

dataset, which provides a good indication of the increased

stability and improvement in convergence of POT-GAN.

6. Conclusion

In this paper, we have presented POT-GAN, an unsu-

pervised learning approach for GANs which estimates the

Wasserstein distance on the latent representation of the data,

using this to regularise training of a GAN. We provide con-

vergence rate guarantees when working in a lower dimen-

sion and show that by applying our latent space regulari-

sation term to the Generator, we can yield significant im-

provements in sample quality and diversity when sampling

from the recovered model distribution. Using our approach,

we demonstrate significant improvements on the Inception

and FID scores over several GAN baselines.
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