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Figure 1: Our Inverse Path Tracing algorithm takes as input a 3D scene and up to several RGB images (left), and estimates

material as well as the lighting parameters of the scene. The main contribution of our approach is the formulation of an

end-to-end differentiable inverse Monte Carlo renderer which is utilized in a nested stochastic gradient descent optimization.

Abstract

Modern computer vision algorithms have brought sig-

nificant advancement to 3D geometry reconstruction. How-

ever, illumination and material reconstruction remain less

studied, with current approaches assuming very simplified

models for materials and illumination. We introduce In-

verse Path Tracing, a novel approach to jointly estimate the

material properties of objects and light sources in indoor

scenes by using an invertible light transport simulation. We

assume a coarse geometry scan, along with corresponding

images and camera poses. The key contribution of this work

is an accurate and simultaneous retrieval of light sources

and physically based material properties (e.g., diffuse re-

flectance, specular reflectance, roughness, etc.) for the pur-

pose of editing and re-rendering the scene under new condi-

tions. To this end, we introduce a novel optimization method

using a differentiable Monte Carlo renderer that computes

derivatives with respect to the estimated unknown illumina-

tion and material properties. This enables joint optimiza-

tion for physically correct light transport and material mod-

els using a tailored stochastic gradient descent.

1. Introduction

With the availability of inexpensive, commodity RGB-D

sensors, such as the Microsoft Kinect, Google Tango, or

Intel RealSense, we have seen incredible advances in 3D

reconstruction techniques [27, 14, 28, 33, 8]. While track-

ing and reconstruction quality have reached impressive lev-

els, the estimation of lighting and materials has often been

neglected. Unfortunately, this presents a serious problem

for virtual- and mixed-reality applications, where we need

to re-render scenes from different viewpoints, place virtual

objects, edit scenes, or enable telepresence scenarios where

a person is placed in a different room.

This problem has been viewed in the 2D image do-

main, resulting in a large body of work on intrinsic images

or videos [1, 26, 25]. However, the problem is severely

underconstrained on monocular RGB data due to lack of

known geometry, and thus requires heavy regularization

to jointly solve for lighting, material, and scene geome-

try. We believe that the problem is much more tractable

in the context of given 3D reconstructions. However, even

with depth data available, most state-of-the-art methods,

e.g., shading-based refinement [34, 37] or indoor re-lighting

[36], are based on simplistic lighting models, such as spher-
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ical harmonics (SH) [30] or spatially-varying SH [23],

which can cause issues on occlusion and view-dependent

effects (Fig. 4).

In this work, we address this shortcoming by formulat-

ing material and lighting estimation as a proper inverse ren-

dering problem. To this end, we propose an Inverse Path

Tracing algorithm that takes as input a given 3D scene along

with a single or up to several captured RGB frames. The key

to our approach is a differentiable Monte Carlo path tracer

which can differentiate with respect to rendering parame-

ters constrained on the difference of the rendered image

and the target observation. Leveraging these derivatives, we

solve for the material and lighting parameters by nesting the

Monte Carlo path tracing process into a stochastic gradient

descent (SGD) optimization. The main contribution of this

work lies in this SGD optimization formulation, which is

inspired by recent advances in deep neural networks.

Figure 2: Inserting virtual objects in real 3D scenes; the

estimated lighting and material parameters of our approach

enable convincing image compositing in AR settings.

We tailor this Inverse Path Tracing algorithm to 3D

scenes, where scene geometry is (mostly) given but the ma-

terial and lighting parameters are unknown. In a series of

experiments on both synthetic ground truth and real scan

data, we evaluate the design choices of our optimizer. In

comparison to state-of-the-art lighting models, we show

that our inverse rendering formulation achieves significantly

more accurate results.

In summary, we contribute the following:

• An end-to-end differentiable inverse path tracing for-

mulation for joint material and lighting estimation.

• A flexible stochastic optimization framework with ex-

tensibility and flexibility for different materials and

regularization terms.

2. Related Work

Material and illumination reconstruction has a long his-

tory in computer vision (e.g., [29, 4]). Given scene geome-

try and observed radiance of the surfaces, the task is to infer

the material properties and locate the light source. How-

ever, to our knowledge, none of the existing methods handle

non-Lambertian materials with near-field illumination (area

light sources), while taking interreflection between surfaces

into account.

3D approaches. A common assumption in reconstruct-

ing material and illumination is that the light sources are in-

finitely far away. Ramamoorthi and Hanrahan [30] project

both material and illumination onto spherical harmonics

and solve for their coefficients using the convolution theo-

rem. Dong et al. [11] solve for spatially-varying reflectance

from a video of an object. Kim et al. [19] reconstruct the

reflectance by training a convolutional neural network op-

erating on voxels constructed from RGB-D video. Maier et

al. [23] generalize spherical harmonics to handle spatial de-

pendent effects, but do not correctly take view-dependent

reflection and occlusion into account. All these approaches

simplify the problem by assuming that the light sources are

infinitely far away, in order to reconstruct a single environ-

ment map shared by all shading points. In contrast, we

model the illumination as emission from the surfaces, and

handle near-field effects such as the squared distance falloff

or glossy reflection better.

Image-space approaches (e.g., [2, 1, 10, 25]). These

methods usually employ sophisticated data-driven ap-

proaches, by learning the distributions of material and illu-

mination. However, these methods do not have a notion of

3D geometry, and cannot handle occlusion, interreflection

and geometry factors such as the squared distance falloff in

a physically based manner. These methods also usually re-

quire a huge amount of training data, and are prone to errors

when subjected to scenes with different characteristics from

the training data.

Active illumination (e.g., [24, 9, 16]). These methods

use highly-controlled lighting for reconstruction, by care-

fully placing the light sources and measuring the intensity.

These methods produce high-quality results, at the cost of a

more complicated setup.

Inverse radiosity (e.g., [35, 36]) achieves impressive re-

sults for solving near-field illumination and Lambertian ma-

terials for indoor illumination. It is difficult to generalize

the radiosity algorithm to handle non-Lambertian materials

(Yu et al. handle it by explicitly measuring the materials,

whereas Zhang et al. assume Lambertian).

Differentiable rendering. Blanz and Vetter utilized

differentiable rendering for face reconstruction using 3D

morphable models [3], which is now leveraged by mod-

ern analysis-by-synthesis face trackers [31]. Gkioulekas et

al. [13, 12] and Che et al. [7] solve for scattering parame-

ters using a differentiable volumetric path tracer. Kasper et

al. [17] developed a differentiable path tracer, but focused

on distant illumination. Loper and Black [22] and Kato [18]

developed fast differentiable rasterizers, but do not support

global illumination. Li et al. [21] showed that it is possible

to compute correct gradients of a path tracer while taking

discontinuities introduced by visibility into consideration.
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3. Method

Our Inverse Path Tracing method employs physically

based light transport simulation [15] to estimate derivatives

of all unknown parameters w.r.t. the rendered image(s). The

rendering problem is generally extremely high-dimensional

and is therefore usually solved using stochastic integration

methods, such as Monte Carlo integration. In this work,

we nest differentiable path tracing into stochastic gradient

descent to solve for the unknown scene parameters. Fig. 3

illustrates the workflow of our approach. We start from the

captured imagery, scene geometry, object segmentation of

the scene, and an arbitrary initial guess of the illumination

and material parameters. Material and emission properties

are then estimated by optimizing for rendered imagery to

match the captured images.

The path tracer renders a noisy and undersampled ver-

sion of the image using Monte Carlo integration and com-

putes derivatives of each sampled light path w.r.t. the un-

knowns. These derivatives are passed as input to our opti-

mizer to perform a single optimization step. This process is

performed iteratively until we arrive at the correct solution.

Path tracing is a computationally expensive operation, and

this optimization problem is non-convex and ill-posed. To

this end, we employ variance reduction and novel regular-

ization techniques (Sec. 4.4) for our gradient computation to

arrive at a converged solution within a reasonable amount of

time, usually a few minutes on a modern 8-core CPU.

3.1. Light Transport Simulation

If all scene and image parameters are known, an ex-

pected linear pixel intensity can be computed using light

transport simulation. In this work, we assume that all sur-

faces are opaque and there is no participating media (e.g.,

fog) in the scene. In this case, the rendered intensity I
j
R for

pixel j is computed using the path integral [32]:

I
j
R =

∫

Ω

hj(X)f(X)dµ(X), (1)

where X = (x0, ...,xk) is a light path, i.e. a list of vertices

on the surfaces of the scene starting at the light source and

ending at the sensor; the integral is a path integral taken over

the space of all possible light paths of all lengths, denoted

as Ω, with a product area measure µ(·); f(X) is the mea-

surement contribution function of a light path X that com-

putes how much energy flows through this particular path;

and hj(X) is the pixel filter kernel of the sensor’s pixel j,

which is non-zero only when the light path X ends around

the pixel j and incorporates sensor sensitivity at this pixel.

We refer interested readers to the work of Veach [32] for

more details on the light transport path integration.

The most important term of the integrand to our task is

the path measurement contribution function f , as it contains

the material parameters as well as the information about the

light sources. For a path X = (x0, ...,xk) of length k, the

measurement contribution function has the following form:

f(X) = Le(x0,x0x1)

k
∏

i=1

fr(xi, xi−1xi, xixi+1), (2)

where Le is the radiance emitted at the scene surface point

x0 (beginning of the light path) towards the direction x0x1.

At every interaction vertex xi of the light path, there is

a bidirectional reflectance distribution function (BRDF)

fr(xi,xi−1xi,xixi+1) defined. The BRDF describes the

material properties at the point xi, i.e., how much light is

scattered from the incident direction xi−1xi towards the out-

going direction xixi+1. The choice of the parametric BRDF

model fr is crucial to the range of materials that can be re-

constructed by our system. We discuss the challenges of

selecting the BRDF model in Sec. 4.1.

Note that both the BRDF fr and the emitted radiance

Le are unknown and the desired parameters to be found at

every point on the scene manifold.

3.2. Optimizing for Illumination and Materials

We take as input a series of images in the form of real-

world photographs or synthetic renderings, together with

the reconstructed scene geometry and corresponding cam-

era poses. We aim to solve for the unknown material pa-

rameters M and lighting parameters L that will produce

rendered images of the scene that are identical to the input

images.

Given the un-tonemapped captured pixel intensities I
j
C

at all pixels j of all images, and the corresponding noisy es-

timated pixel intensities Ĩ
j
R (in linear color space), we seek

all material and illumination parameters Θ = {M,L} by

solving the following optimization problem using stochas-

tic gradient descent:

argmin
Θ

E(Θ) =
N
∑

j

∣

∣

∣
I
j
C − Ĩ

j
R

∣

∣

∣

1
, (3)

where N is the number of pixels in all images. We found

that using an L1 norm as a loss function helps with robust-

ness to outliers, such as extremely high contribution sam-

ples coming from Monte Carlo sampling.

3.3. Computing Gradients with Path Tracing

In order to efficiently solve the minimization problem in

Eq. 3 using stochastic optimization, we compute the gradi-

ent of the energy function E(Θ) with respect to the set of

unknown material and emission parameters Θ:

∇ΘE(Θ) =

N
∑

j

∇ΘĨ
j
R sgn

(

I
j
C − Ĩ

j
R

)

, (4)
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(a) input photos (b) geometry scan &

object segmentation

(c) path tracing

update

material

update

emission

update

material

update

emission

(d) backpropagate (e) reconstructed

materials & illumination

Figure 3: Overview of our pipeline. Given (a) a set of input photos from different views, along with (b) an accurate geometry

scan and proper segmentation, we reconstruct the material properties and illumination of the scene, by iteratively (c) rendering

the scene with path tracing, and (d) backpropagating to the material and illumination parameters in order to update them.

After numerous iterations, we obtain the (e) reconstructed material and illumination.

where sgn(·) is the sign function, and ∇ΘĨ
j
R the gradient of

the Monte Carlo estimate with respect to all unknowns Θ.

Note that this equation for computing the gradient now

has two Monte Carlo estimates for each pixel j: (1) the esti-

mate of pixel color itself Ĩ
j
R; and (2) the estimate of its gra-

dient ∇ΘĨ
j
R. Since the expectation of product only equals

the product of expectation when the random variables are

independent, it is important to draw independent samples

for each of these estimates to avoid introducing bias.

In order to compute the gradients of a Monte Carlo esti-

mate for a single pixel j, we determine what unknowns are

touched by the measurement contribution function f(X) for

a sampled light path X. We obtain the explicit formula of

the gradients by differentiating Eq. 2 using the product rule

(for brevity, we omit some arguments for emission Le and

BRDF fr):

∇ΘL
f(X) = ∇ΘL

Le(x0)

k
∏

i

fr(xi) (5)

∇ΘM
f(X) = Le(x0)

k
∑

l

∇ΘM
fr(xl)

k
∏

i,i 6=l

fr(xi) (6)

where the gradient vector ∇Θ = {∇ΘM
,∇ΘL

} is very

sparse and has non-zero values only for unknowns touched

by the path X. The gradients of emissions (Eq. 5) and mate-

rials (Eq. 6) have similar structure to the original path con-

tribution (Eq. 2). Therefore, it is natural to apply the same

path sampling strategy; see the appendix for details.

3.4. Multiple Captured Images

The single-image problem can be directly extended to

multiple images. Given multiple views of a scene, we aim

to find parameters for which rendered images from these

views match the input images. A set of multiple views can

cover parts of the scene that are not covered by any single

view from the set. This proves important for deducing the

correct position of the light source in the scene. With many

views, the method can better handle view-dependent effects

such as specular and glossy highlights, which can be ill-

posed with just a single view, as they can also be explained

as variations of albedo texture.

4. Optimization Parameters and Methodology

In this section we address the remaining challenges of

the optimization task: what are the material and illumina-

tion parameters we actually optimize for, and how to resolve

the ill-posed nature of the problem.

4.1. Parametric Material Model

We want our material model to satisfy several properties.

First, it should cover as much variability in appearance as

possible, including such common effects as specular high-

lights, multi-layered materials, and spatially-varying tex-

tures. On the other hand, since each parameter adds an-

other unknown to the optimization, we would like to keep

the number of parameters minimal. Since we are interested

in re-rendering and related tasks, the material model needs

to have interpretable parameters, so the users can adjust the

parameters to achieve the desired appearance. Finally, since

we are optimizing the material properties using first-order

gradient-based optimization, we would like the range of the

material parameters to be similar.

To satisfy these properties, we represent our materials

using the Disney material model [5], the state-of-the-art

physically based material model used in movie and game

rendering. It has a “base color” parameter which is used

by both diffuse and specular reflectance, as well as 10 other

parameters describing the roughness, anisotropy, and specu-

larity of the material. All these parameters are perceptually

mapped to [0, 1], which is both interpretable and suitable for

optimization.
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Figure 4: Methods based on spherical harmonics have dif-

ficulties handling sharp shadows or lighting changes due

to the distant illumination assumption. A physically based

method, such as Inverse Path Tracing, correctly reproduces

these effects.

4.2. Scene Parameterization

We use triangle meshes to represent the scene geome-

try. Surface normals are defined per-vertex and interpolated

within each triangle using barycentric coordinates. The op-

timization is performed on a per-object basis, i.e., every ob-

ject has a single unknown emission and a set of material

parameters that are assumed constant across the whole ob-

ject. We show that this is enough to obtain accurate lighting

and an average constant value for the albedo of an object.

4.3. Emission Parameterization

For emission reconstruction, we currently assume all

light sources are scene surfaces with an existing recon-

structed geometry. For each emissive surface, we currently

assume that emitted radiance is distributed according to a

view-independent directional emission profile Le(x, i) =
e(x)(i · n(x))+, where e(x) is the unknown radiant flux

at x; i is the emission direction at surface point x, n(x) is

the surface normal at x and (·)+ is the dot product (cosine)

clamped to only positive values. This is a common emission

profile for most of the area lights, which approximates most

of the real soft interior lighting well. Our method can also

be extended to more complex or even unknown directional

emission profiles or purely directional distant illumination

(e.g., sky dome, sun) if needed.

4.4. Regularization

The observed color of an object in a scene is most easily

explained by assigning emission to the triangle. This is only

avoided by differences in shading of the different parts of

the object. However, it can happen that there are no observ-

able differences in the shading of an object, especially if the

object covers only a few pixels in the input image. This can

be a source of error during optimization. Another source

of error is Monte Carlo and SGD noise. These errors lead

to incorrect emission parameters for many objects after the

optimization. The objects usually have a small estimated

emission value when they should have none. We tackle the

problem with an L1-regularizer for the emission. The vast

majority of objects in the scene is not an emitter and having

such a regularizer suppresses the small errors we get for the

emission parameters after optimization.

4.5. Optimization Parameters

We use ADAM [20] as our optimizer with batch size

B = 8 estimated pixels and learning rate 5 · 10−3. To form

a batch, we sample B pixels uniformly from the set of all

pixels of all images. Please see the appendix for an evalua-

tion regarding the impact of different batch sizes and sam-

pling distributions on the convergence rate. While a higher

batch size reduces the variance of each iteration, having

smaller batch sizes, and therefore faster iterations, proves

to be more beneficial.

5. Results

Evaluation on synthetic data. We first evaluate our

method on multiple synthetic scenes, where we know the

ground truth solution. Quantitative results are listed in

Tab. 1, and qualitative results are shown in Fig. 5. Each

scene is rendered using a path tracer with the ground truth

lighting and materials to obtain the “captured images”.

These captured images and scene geometry are then given

to our Inverse Path Tracing algorithm, which optimizes for

unknown lighting and material parameters. We compare to

the closest previous work based on spatially-varying spher-

ical harmonics (SVSH) [23]. SVSH fails to capture sharp

details such as shadows or high-frequency lighting changes.

A comparison of the shadow quality is presented in Fig. 4.

Our method correctly detects light sources and converges

to a correct emission value, while the emission of objects

that do not emit light stays at zero. Fig. 6 shows a novel

view, rendered with results from an optimization that was

performed on input views from Fig. 5. Even though the

light source was not visible in any of the input views, its

emission was correctly computed by Inverse Path Tracing.

In addition to albedo, our Inverse Path Tracer can also

optimize for other material parameters such as roughness.

In Fig. 8, we render a scene containing objects of varying

roughness. Even when presented with the challenge of es-

timating both albedo and roughness, our method produces

the correct result as shown in the re-rendered image.

Evaluation on real data. We use the Matterport3D [6]

dataset to evaluate our method on real captured scenes ob-

tained through 3D reconstruction. The scene was parame-

terized using the segmentation provided in the dataset. Due

to imperfections in the data, such as missing geometry and

inaccurate surface normals, it is more challenging to per-

form an accurate light transport simulation. Nevertheless,

our method produces impressive results for the given in-

put. After the optimization, the optimized light direction
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Figure 5: Evaluation on synthetic scenes. Three scenes have been rendered from different views with both direct and indirect

lighting (right). An approximation of the albedo lighting with spatially-varying spherical harmonics is shown (left). Our

method is able to detect the light source even though it was not observed in any of the views (middle). Notice that we are

able to reproduce sharp lighting changes and shadows correctly. The albedo is also closer to the ground truth albedo.
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Figure 6: Inverse Path Tracing is able to correctly detect the

light emitting object (top). The ground truth rendering and

our estimate is shown on the bottom. Note that this view

was not used during optimization.

Figure 7: We can resolve object textures by optimizing for

the unknown parameters per triangle. Higher resolution tex-

tures can be obtained by further subdividing the geometry.

matches the captured light direction and the rendered result

closely matches the photograph. Fig. 11 shows a compari-

son to the SVSH method.

The albedo of real-world objects varies across its surface.

Inverse Path Tracing is able to compute an object’s average

albedo by employing knowledge of the scene segmentation.

To reproduce fine texture, we refine the method to optimize

for each individual triangle of the scene with adaptive sub-

division where necessary. This is demonstrated in Fig. 7.

Figure 8: Inverse Path Tracing is agnostic to the underlying

BRDF; e.g., here, in a specular case, we are able to correctly

estimate both the albedo and the roughness of the objects.

The ground truth rendering and our estimate is shown on

top, the albedo in the middle and the specular map on the

bottom.

Optimizer Ablation. There are several ways to reduce

the variance of our optimizer. One obvious way is to use

more samples to estimate the pixel color and the derivatives,

but this also results in slower iterations. Fig. 9 shows that

the method does not converge if only a single path is used.

A general recommendation is to use between 27 and 210 de-

pending on the scene complexity and number of unknowns.

Another important aspect of our optimizer is the sample

distribution for pixel color and derivatives estimation. Our

tests in Fig. 10 show that minimal variance can be achieved

by using one sample to estimate the derivatives and the re-

maining samples in the available computational budget to

estimate the pixel color.

Limitations. Inverse Path Tracing assumes that high-

quality geometry is available. However, imperfections in

the recovered geometry can have big impact on the quality

of material estimation as shown in Fig. 11. Our method also

does not compensate for the distortions in the captured input

images. Most cameras, however, produce artifacts such as

lens flare, motion blur or radial distortion. Our method can

potentially account for these imperfections by simulating

the corresponding effects and optimize not only for the ma-
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Figure 9: Convergence with respect to the number of paths

used to estimate the pixel color. If this is set too low, the

algorithm will fail.

Figure 10: Convergence with respect to distributing the

available path samples budget between pixel color and

derivatives. It is best to keep the number of paths high for

pixel color estimation and low for derivative estimation.

Method Scene 1 Scene 2 Scene 3

SVSH Rendering Loss 0.052 0.048 0.093

Our Rendering Loss 0.006 0.010 0.003

SVSH Albedo Loss 0.052 0.037 0.048

Our Albedo Loss 0.002 0.009 0.010

Table 1: Quantitative evaluation for synthetic data. We

measure the L1 loss with respect to the rendering error and

the estimated albedo parameters. Note that our approach

achieves a significantly lower error on both metrics.

terial parameters, but also for the camera parameters, which

we leave for future work.

6. Conclusion

We present Inverse Path Tracing, a novel approach for

joint lighting and material estimation in 3D scenes. We

Figure 11: Evaluation on real scenes: (right) input is 3D

scanned geometry and photographs. We employ object in-

stance segmentation to estimate the emission and the aver-

age albedo of every object in the scene. Our method is able

to optimize for the illumination and shadows. Other meth-

ods usually do not take occlusions into account and fail to

model shadows correctly. Views 1 and 2 of Scene 2 show

that if the light emitters are not present in the input geome-

try, our method gives an incorrect estimation.

demonstrate that our differentiable Monte Carlo renderer

can be efficiently integrated in a nested stochastic gradi-

ent descent optimization. In our results, we achieve sig-

nificantly higher accuracy than existing approaches. High-

fidelity reconstruction of materials and illumination is an

important step for a wide range of applications such as vir-

tual and augmented reality scenarios. Overall, we believe

that this is a flexible optimization framework for computer

vision that is extensible to various scenarios, noise factors,

and other imperfections of the computer vision pipeline. We

hope to inspire future work along these lines, for instance,

by incorporating more complex BRDF models, joint ge-

ometric refinement and completion, and further stochastic

regularizations and variance reduction techniques.
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