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Abstract

A method called, σ-consensus, is proposed to elimi-

nate the need for a user-defined inlier-outlier threshold in

RANSAC. Instead of estimating the noise σ, it is marginal-

ized over a range of noise scales. The optimized model is

obtained by weighted least-squares fitting where the weights

come from the marginalization over σ of the point like-

lihoods of being inliers. A new quality function is pro-

posed not requiring σ and, thus, a set of inliers to deter-

mine the model quality. Also, a new termination criterion

for RANSAC is built on the proposed marginalization ap-

proach. Applying σ-consensus, MAGSAC is proposed with

no need for a user-defined σ and improving the accuracy of

robust estimation significantly. It is superior to the state-of-

the-art in terms of geometric accuracy on publicly available

real-world datasets for epipolar geometry (F and E) and

homography estimation. In addition, applying σ-consensus

only once as a post-processing step to the RANSAC output

always improved the model quality on a wide range of vi-

sion problems without noticeable deterioration in process-

ing time, adding a few milliseconds.1

1. Introduction

The RANSAC (RANdom SAmple Consensus) algo-

rithm proposed by Fischler and Bolles [5] in 1981 has be-

come the most widely used robust estimator in computer

vision. RANSAC and its variants have been successfully

applied to a wide range of vision tasks, e.g. motion seg-

mentation [25], short baseline stereo [25, 27], wide baseline

stereo matching [18, 13, 14], detection of geometric primi-

tives [21], image mosaicing [7], and to perform [28] or ini-

tialize multi-model fitting [10, 17]. In brief, the RANSAC

approach repeatedly selects random subsets of the input

point set and fits a model, e.g. a plane to three 3D points

or a homography to four 2D point correspondences. Next,

1The source code is at https://github.com/danini/magsac

the quality of the estimated model is measured, for instance

by the size of its support, i.e. the number of inliers. Finally,

the model with the highest quality, polished e.g. by least

squares fiting on its inliers, is returned.

Since the publication of RANSAC, a number of modi-

fications has been proposed. NAPSAC [16], PROSAC [1]

and EVSAC [6] modify the sampling strategy to increase

the probability of selecting an all-inlier sample early.

NAPSAC assumes that the inliers are spatially coherent,

PROSAC exploits an a priori predicted inlier probability

of the points and EVSAC estimates a confidence in each

of them. MLESAC [26] estimates the model quality by a

maximum likelihood process with all its beneficial proper-

ties, albeit under certain assumptions about inlier and out-

lier distributions. In practice, MLESAC results are often

superior to the inlier counting of plain RANSAC and they

are less sensitive to the user-defined inlier-outlier threshold.

In MSAC [24], the robust estimation is formulated as a pro-

cess that estimates both the parameters of the data distribu-

tion and the quality of the model in terms of maximum a

posteriori. timates the model quality by a maximum likeli-

hood process with all its beneficial properties, albeit under

certain assumptions about inlier and outlier distributions.

One of the highly attractive properties of RANSAC is

its small number of control parameters. The termination

is controlled by a manually set confidence value η and the

sampling stops as soon as the probability of finding a model

with higher support falls below 1−η.2 The setting of η is not

problematic, the typical values are 0.95 or 0.99, depending

on the required confidence in the solution.

The second, and most critical, parameter is the inlier

noise scale σ that determines the inlier-outlier threshold

τ(σ) which strongly influences the outcome of the proce-

dure. In standard RANSAC and its variants, σ must be

provided by the user which limits its fully automatic out-

of-the-box use and requires the user to acquire knowledge

about the problem at hand. In Fig. 1, the inlier residuals

2Note that the probabilistic interpretation of η holds only for the stan-

dard {0, 1} cost function.
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are shown for four real datasets demonstrating that σ varies

scene-by-scene and, thus, there is no single setting which

can be used for all cases.

To reduce the dependency on this threshold, MIN-

PRAN [22] assumes that the outliers are uniformly dis-

tributed and finds the model where the inliers are least likely

to have occurred randomly. Moisan et al. [15] proposed a

contrario RANSAC, to optimize each model by selecting

the most likely noise scale.

As the major contribution of this paper, we propose an

approach, σ-consensus, that eliminates the need for σ, the

noise scale parameter. Instead of σ, only an upper limit is

required. The final outcome is obtained by weighted least-

squares fitting, where the weights are given for marginal-

izing over σ, using likelihood of the model given data and

σ. Besides finessing the need for a precise scale param-

eter, the novel method, called MAGSAC, is more precise

than previously published RANSACs. Also, we propose

a post-processing step applying σ-consensus to the so-far-

the-best-model without noticeable deterioration in process-

ing time, i.e. at most a few milliseconds. In our experi-

ments, the method always improved the input model (com-

ing from RANSAC, MSAC or LO-RANSAC) on a wide

range of problems. Thus we see no reason for not applying

it after the robust estimation finished. As a second contribu-

tion, we define a new quality function for RANSAC. It mea-

sures the quality of a model without requiring σ and, there-

fore, a set of inliers to measure the model quality. Moreover,

as a third contribution, due to not having a single inlier set

and, thus, an inlier ratio, the standard termination criterion

of RANSAC is marginalized over σ to be applicable to the

proposed method.

2. Notation

In this paper, the input points are denoted as P =
{p | p ∈ R

k, k ∈ N>0}, where k is the dimension, e.g.

k = 2 for 2D points and k = 4 for point correspondences.

The inlier set is I ⊆ P . The model to fit is represented

by its parameter vector θ ∈ Θ, where Θ = {θ | θ ∈
R

d, d ∈ N>0} is the manifold, for instance, of all possi-

ble 2D lines and d is dimension of the model, e.g. d = 2 for

2D lines (angle and offset). Fitting function F : P∗ → Θ
calculates the model parameters from n ≥ m points, where

P∗ = expP is the power set of P and m ∈ N>0 is the min-

imum point number for fitting a model, e.g. m = 2 for 2D

lines. Note that F is a combined function applying different

estimators on the basis of the input set, for example, a min-

imal method if n = m and least-squares fitting otherwise.

Function D : Θ × P → R is the point-to-model residual

function. Function I : P∗×Θ×R→ P∗ selects the inliers

given model θ and threshold σ. For instance, if the origi-

nal RANSAC approach is considered, IRANSAC(θ, σ,P) =
{p ∈ P | D(θ, p) < σ}, for truncated quadratic dis-
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(a) homogr dataset
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(b) EVD dataset
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(c) AdelaideRMF dataset
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(d) kusvod2 dataset

Figure 1: The average residuals (RMSE in pixels; vertical

axis) of manually annotated inliers given the ground truth

model for each scene (horizontal) of four datasets.

Notation

P - Set of data points σ - Noise standard deviation

θ - Model parameters D - Residual function

I - Inlier selector function Q - Model quality function

F - Fitting function m - Minimal sample size

τ(σ) - Inlier-outlier threshold σmax - Upper bound of σ

tance of MSAC, IMSAC(θ, σ,P) = {p ∈ P | D2(θ, p) <
9/4σ2}. The quality function is Q : P∗ × Θ × R → R.

Higher quality is interpreted as better model. For RANSAC,

QRANSAC(θ, σ,P) = |I(θ, σ,P)| and for MSAC, it is

QMSAC(θ, σ,P) =

|I(θ,σ,P)|
∑

i=1

(

1−
D2(θ, Ii(θ, σ,P))

9/4σ2

)

,

where Ii(θ, σ,P) is the ith inlier.

3. Marginalizing sample consensus

A method called MAGSAC is proposed in this section

eliminating the threshold parameter from RANSAC-like ro-

bust model estimation.

3.1. Marginalization over σ

Let us assume the noise σ to be a random variable with

density function f(σ) and let us define a new quality func-

tion for model θ marginalizing over σ as follows:

Q∗(θ,P) =

∫

Q(θ, σ,P)f(σ)dσ. (1)
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Having no prior information, we assume σ being uniformly

distributed, σ ∼ U(0, σmax). Thus

Q∗(θ,P) =
1

σmax

∫ σmax

0

Q(θ, σ,P)dσ. (2)

For instance, using Q(θ, σ,P) of plain RANSAC, i.e. the

number of inliers, where σ is the inlier-outlier threshold

and {D(θ, pi)}
|P|
i=1 are the distances to model θ such that

0 ≤ D(θ, p1) < D(θ, p2) < .... < D(θ, pK) < σmax <
D(θ, pK+1) < ... < D(θ, p|P|) we get a quality function

Q∗(θ,P) = K−
1

σmax

K
∑

k=1

D(θ, pk) =
K
∑

k=1

(

1−
D(θ, pk)

σmax

)

.

Assuming the distribution of inliers and outliers to be

uniform (inlier ∼ U(0, σ); outlier ∼ U(0, l)) and using log-

likelihood of model θ as its quality function Q, we get

Q∗(θ,P) = K(ln
l

σmax
+ 1)

−
1

σmax

K
∑

k=1

D(θ, pk)(1 + ln
l

D(θ, pk)
)− |P| ln l.

(3)

Typically, the residuals of the inliers are calculated as the

Eucledian-distance from the model in some ρ-dimensional

space. In case of assuming errors of the distances along

each axis of this ρ-dimensional space to be indepen-

dent and normally distributed with the same variance σ2,

(residuals)2/σ2 have chi-squared distribution with ρ de-

grees of freedom. Therefore,

g(r | σ) = 2C(ρ)σ−ρ exp (−r2/2σ2)rρ−1

is a density of residuals of inliers with

C(ρ) =
1

2ρ/2Γ(ρ/2)
,

where

Γ(a) =

∫ +∞

0

ta−1 exp (−t)dt

for a > 0 is the gamma function.

In MAGSAC, the residuals of the inliers are described

by a distribution with density g(r | σ), and the outliers by

a uniform one on the interval [0, l]. Note that, for images, l
can be set to the image diagonal. The inlier-outlier thresh-

old τ(σ) is set to the 0.95 or 0.99 quantile of the distribu-

tion with density g(r | σ). Consequently, the likelihood of

model θ given σ is

L(θ,P | σ) =
1

l|P|−|I(σ)|

∏

p∈I(σ)

[

2C(ρ)σ−ρDρ−1(θ, p) exp

(

−D2(θ, p)

2σ2

)]

.

(4)

MAGSAC, for a given σ, uses log-likelihood of model θ as

its quality function as follows: Q(θ, σ,P) = lnL(θ,P|σ).
Thus, the quality marginalized over σ is the following.

Q∗
MAGSAC(θ,P) =

1

σmax

∫ σmax

0

lnL(θ,P|σ)dσ

≈ −|P| ln l +
1

σmax

K
∑

i=1

[i(ln 2C(ρ)l − ρ lnσi)

−
Ri

σ2
i

+ (ρ− 1)Lri](σi − σi−1),

(5)

where {D(θ, pi)}
|P|
i=1 are the distances to model θ, σ0 = 0

and 0 ≤ D(θ, p1) = τ(σ1) < D(θ, p2) = τ(σ2) <
... < D(θ, pK) = τ(σK) < τ(σmax) < D(θ, pK+1) <

... < D(θ, p|P|), Ri = 1
2

∑i
j=1 D(θ, pj)

2 and Lri =
∑i

j=1 lnD(θ, pj). As a consequence, the proposed new

quality function Q∗
MAGSAC does not depend on a manually

set noise level σ.

3.2. σ­consensus model fitting

Due to not having a set of inliers which could be used to

polish the model obtained from a minimal sample, we pro-

pose to use weighted least-squares fitting where the weights

are the point probabilities of being inliers.

Suppose that we are given model θ estimated from a min-

imal sample. Let θσ = F (I(θ, σ,P)) be the model implied

by the inlier set I(θ, σ,P) selected using τ(σ) around the

input model θ. It can be seen from Eq. 4 that the likelihood

of point p ∈ P being inlier given model θσ is

L(p | θσ, σ) = 2C(ρ)σ−ρDρ−1(θσ, p) exp

(

−D2(θσ, p)

2σ2

)

.

For finding the likelihood of a point being an inlier

marginalized over σ, the same approach is used as before:

L(p | θ) ≈
2C(ρ)

σmax

K
∑

i=1

(σi − σi−1)

σ−ρ
i Dρ−1(θσi

, p) exp

(

−D2(θσi
, p)

2σ2
i

)

.

(6)

and the polished model θ∗MAGSAC is estimated using

weighted least-squares, where the weight of point p ∈ P
is L(p | θ).

3.3. Termination criterion

Not having an inlier set and, thus, at least a rough es-

timate of the inlier ratio, makes the standard termination

criterion of RANSAC [8] inapplicable, which is as follows:

k(θ, σ,P) =
ln(1− η)

ln
(

1−
(

|I(θ,σ,P)|
|P|

)m) , (7)
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where k is the iteration number, η a manually set confidence

in the results, m the size of the minimal sample needed for

the estimation, and |I(θ, σ,P)| is the inlier number of the

so-far-the-best model.

In order to determine k without using a particular σ, it

is a straightforward choice to marginalize similarly to the

model quality. It is as follows:

k∗(P, θ) =
1

σmax

∫ σmax

0

k(θ, σ,P)dσ

≈
1

σmax

K
∑

i=1

(σi − σi−1) ln(1− η)

ln
(

1−
(

|I(θ,σi,P)|
|P|

)m) .
(8)

Thus the number of iterations required for MAGSAC is cal-

culated during the process and updated whenever a new so-

far-the-best model is found, similarly as in RANSAC.

4. Algorithms using � -consensus

In this section, we propose two algorithms applying

σ-consensus. First, MAGSAC will be discussed incor-

porating the proposed marginalizing approach, weighted

least-squares and termination criterion. Second, a post-

processing step is proposed which is applicable to the output

of every robust estimator. In the experiments, it always im-

proved the input model without noticeable deterioration in

the processing time, adding maximum a few milliseconds.

4.1. Speeding up the procedure

Since plain MAGSAC would apply least-squares fitting

a number of times, the implied computational complexity

would be fairly high. Therefore, we propose techniques for

speeding up the procedure. In order to avoid unnecessary

operations, we introduce a σmax value and use only the σs

smaller than σmax in the optimization procedure. Thus, from

σ1 < σ2 < ... < σK < σmax < σK+1 < ... < σn

only σ1, σ2, ..., and σi are used. This σmax can be set to a

fairly big value, for example, 10 pixels. In the case when

the results suggest that σmax is too low, e.g. if the density

mode of the residuals is close to σmax, the computation can

be repeated with a higher value.

Instead of calculating θσi
for every σi, we divide the

range of σs uniformly into d partitions. Thus the pro-

cessed set of σs are the following: σ1 + (σmax − σ1)/d,

σ1 +2(σmax− σ1)/d, ..., σ1 + (d− 1)(σmax− σ1)/d, σmax.

By this simplification, the number of least-squares fittings

drops to d from K, where d ≪ K. In the experiments, d
was set to 10.

Also, as it was proposed for USAC [19], there are several

ways of skipping early the evaluation of models which do

not have the chance of being better than the previous so-far-

the-best. For this purpose, we apply SPRT [2] with a τref

threshold. Threshold τref is not used in the model evaluation

(a) Homography; homogr dataset. Errors: � LO-MSC = 4 :3
(2nd) and � MAGSAC = 2 :9 pixels (1st).

(b) Homography; EVD dataset. Errors: � LO-RSC = 9 :1 (2nd)

and � MAGSAC = 4 :4 pixels (1st).

(c) Fundamental matrix; kusvod2 dataset. Errors: � MSC =
14:3 (2nd) and � MAGSAC = 0 :5 pixels (1st).

(d) Essential matrix; Strecha dataset. Errors: � MSC = 4 :2
(2nd) and � MAGSAC = 2 :5 pixels (1st).

(e) Essential matrix; Strecha dataset. Errors: � MSC = 5 :6
(2nd) and � MAGSAC = 3 :9 pixels (1st).

Figure 2: Example results of MAGSAC where it was sig-

nificantly more accurate than the second most accurate

method. Average errors (in pixels) are written in the cap-

tions. Inlier correspondences are drawn by color and out-

liers by black crosses.

or inlier selection steps, but is used merely to skip applying

σ-consensus when it is unnecessary. In the experiments, τref
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