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Abstract

Despite significant progress in image-based 3D scene

flow estimation, the performance of such approaches has

not yet reached the fidelity required by many applications.

Simultaneously, these applications are often not restricted to

image-based estimation: laser scanners provide a popular

alternative to traditional cameras, for example in the context

of self-driving cars, as they directly yield a 3D point cloud.

In this paper, we propose to estimate 3D motion from such

unstructured point clouds using a deep neural network. In

a single forward pass, our model jointly predicts 3D scene

flow as well as the 3D bounding box and rigid body motion

of objects in the scene. While the prospect of estimating 3D

scene flow from unstructured point clouds is promising, it is

also a challenging task. We show that the traditional global

representation of rigid body motion prohibits inference by

CNNs, and propose a translation equivariant representation

to circumvent this problem. For training our deep network,

a large dataset is required. Because of this, we augment real

scans from KITTI with virtual objects, realistically modeling

occlusions and simulating sensor noise. A thorough compar-

ison with classic and learning-based techniques highlights

the robustness of the proposed approach.

1. Introduction

For intelligent systems such as self-driving cars, the pre-

cise understanding of their surroundings is key. Notably, in

order to make predictions and decisions about the future,

tasks like navigation and planning require knowledge about

the 3D geometry of the environment as well as about the 3D

motion of other agents in the scene.

3D scene flow is the most generic representation of this

3D motion; it associates a velocity vector with 3D motion

to each measured point. Traditionally, 3D scene flow is

estimated based on two consecutive image pairs of a cali-

brated stereo rig [17, 39, 40]. While the accuracy of scene

flow methods has greatly improved over the last decade [24],

image-based scene flow methods have rarely made it into

robotics applications. The reasons for this are two-fold. First

of all, most leading techniques take several minutes or hours

to predict 3D scene flow. Secondly, stereo-based scene flow

methods suffer from a fundamental flaw, the “curse of two-

view geometry”: it can be shown that the depth error grows

quadratically with the distance to the observer [20]. This

causes problems for the baselines and object depths often

found in self-driving cars, as illustrated in Fig. 1 (top).

Consequently, most modern self-driving car platforms

rely on LIDAR technology for 3D geometry perception. In

contrast to cameras, laser scanners provide a 360 degree

field of view with just one sensor, are generally unaffected

by lighting conditions, and do not suffer from the quadratic

error behavior of stereo cameras. However, while LIDAR

provides accurate 3D point cloud measurements, estimat-

ing the motion between two such scans is a non-trivial task.

Because of the sparse and non-uniform nature of the point

clouds, as well as the missing appearance information, the

data association problem is complicated. Moreover, charac-

teristic patterns produced by the scanner, such as the circular

rings in Fig. 1 (bottom), move with the observer and can

easily mislead local correspondence estimation algorithms.

To address these challenges, we propose PointFlowNet,

a generic model for learning 3D scene flow from pairs of

unstructured 3D point clouds. Our main contributions are:

• We present an end-to-end trainable model for joint 3D

scene flow and rigid motion prediction and 3D object

detection from unstructured LIDAR data, as captured

from a (self-driving) car.

• We show that a global representation is not suitable for

rigid motion prediction, and propose a local translation-

equivariant representation to mitigate this problem.

• We augment the KITTI dataset with virtual cars, taking

into account occlusions and simulating sensor noise, to

provide more (realistic) training data.

• We demonstrate that our approach compares favorably

to the state-of-the-art.

Our code and dataset are available at the project webpage1.

1https://github.com/aseembehl/pointflownet

7962



IS
F

[3
]

P
o

in
tF

lo
w

N
et

Figure 1: Motivation. To motivate the use of LIDAR sensors in the context of autonomous driving, we provide a qualitative

comparison of the state-of-the-art image-based scene flow method ISF [3] (top) to our LIDAR-based PointFlowNet (bottom)

using a scene from the KITTI 2015 dataset [24]. The left column shows the output of the two methods. The right column shows

a zoomed-in version of the inlet. While the image-based result suffers from the “curse of two-view geometry” (with noisy

geometry, and non-uniform background movement), our LIDAR-based approach is also accurate in distant regions. Moreover,

ISF relies on instance segmentation in the image space for detecting objects: depth estimation errors at the boundaries lead to

objects being split into two 3D clusters (e.g., the red car). For clarity, we visualize only a subset of the points.

2. Related Work

In the following discussion, we first group related meth-

ods based on their expected input; we finish this section with

a discussion of learning-based solutions.

Scene Flow from Image Sequences: The most common

approach to 3D scene flow estimation is to recover corre-

spondences between two calibrated stereo image pairs. Early

approaches solve the problem using coarse-to-fine varia-

tional optimization [2, 17, 37, 39–41, 44]. As coarse-to-fine

optimization often performs poorly in the presence of large

displacements, slanted-plane models which decompose the

scene into a collection of rigidly moving 3D patches have

been proposed [22, 24, 25, 42]. The benefit of incorporating

semantics has been demonstrated in [3]. While the state-of-

the-art in image-based scene flow estimation has advanced

significantly, its accuracy is inherently limited by the geomet-

ric properties of two-view geometry as previously mentioned

and illustrated in Figure 1.

Scene Flow from RGB-D Sequences: When per-pixel

depth information is available, two consecutive RGB-D

frames are sufficient for estimating 3D scene flow. Initially,

the image-based variational scene flow approach was ex-

tended to RGB-D inputs [15, 30, 45]. Franke et al. [11] in-

stead proposed to track KLT feature correspondences using

a set of Kalman filters. Exploiting PatchMatch optimiza-

tion on spherical 3D patches, Hornacek et al. [16] recover

a dense field of 3D rigid body motions. However, while

structured light scanning techniques (e.g., Kinect) are able to

capture indoor environments, dense RGB-D sequences are

hard to acquire in outdoor scenarios like ours. Furthermore,

structured light sensors suffer from the same depth error

characteristics as stereo techniques.

Scene Flow from 3D Point Clouds: In the robotics com-

munity, motion estimation from 3D point clouds has so far

been addressed primarily with classical techniques. Sev-

eral works [6, 34, 36] extend occupancy maps to dynamic

scenes by representing moving objects via particles which

are updated using particle filters [6, 34] or EM [36]. Others

tackle the problem as 3D detection and tracking using mean

shift [1], RANSAC [7], ICP [26], CRFs [38] or Bayesian

networks [14]. In contrast, Dewan et al. [8] propose a 3D

scene flow approach where local SHOT descriptors [35] are

associated via a CRF that incorporates local smoothness and
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rigidity assumptions. While impressive results have been

achieved, all the aforementioned approaches require signifi-

cant engineering and manual model specification. In addi-

tion, local shape representations such as SHOT [35] often

fail in the presence of noisy or ambiguous inputs. In contrast,

we address the scene flow problem using a generic end-to-

end trainable model which is able to learn local and global

statistical relationships directly from data. Accordingly, our

experiments show that our model compares favorably to the

aforementioned classical approaches.

Learning-based Solutions: While several learning-based

approaches for stereo [19, 21, 46] and optical flow [9, 18, 33]

have been proposed in literature, there is little prior work

on learning scene flow estimation. A notable exception

is SceneFlowNet [23], which concatenates features from

FlowNet [9] and DispNet [23] for image-based scene flow

estimation. In contrast, this paper proposes a novel end-

to-end trainable approach for scene flow estimation from

unstructured 3D point clouds. More recently, Wang et al.

[43] proposed a novel continuous convolution operation and

applied it to 3D segmentation and scene flow. However, they

do not consider rigid motion estimation which is the main

focus of this work.

3. Method

We start by formally defining our problem. Let Pt ∈
R

N×3 and Pt+1 ∈ R
M×3 denote the input 3D point clouds

at frames t and t+ 1, respectively. Our goal is to estimate

• the 3D scene flow vi ∈ R
3 and the 3D rigid motion

Ri ∈ R
3×3, ti ∈ R

3 at each of the N points in the

reference point cloud at frame t, and

• the location, orientation, size and rigid motion of every

moving object in the scene (in our experiments, we

focus solely on cars).

The overall network architecture of our approach is illus-

trated in Figure 2. The network comprises five main com-

ponents: (1) feature encoding layers, (2) context encoding

layers (3) scene flow estimation, ego-motion estimation and

3D object detection layers, (4) rigid motion estimation layers

and (5) object motion decoder. In the following, we provide

a detailed description for each of these components as well

as the loss functions.

3.1. Feature Encoder

The feature encoding layers take a raw point cloud as

input, partition the space into voxels, and describe each voxel

with a feature vector. The simplest form of aggregation is

binarization, where any voxel containing at least one point

is set to 1 and all others are zero. However, better results

can be achieved by aggregating high-order statistics over the

voxel [5,27–29,32,48]. In this paper, we leverage the feature

encoding recently proposed by Zhou et al. [48], which has

demonstrated state-of-the-art results for 3D object detection

from point clouds.

We briefly summarize this encoding, but refer the reader

to [48] for more details. We subdivide the 3D space of each

input point cloud into equally spaced voxels and group points

according to the voxel they reside in. To reduce bias with

respect to LIDAR point density, a fixed number of T points

is randomly sampled for all voxels containing more than T

points. Each voxel is processed with a stack of Voxel Feature

Encoding (VFE) layers to capture local and global geometric

properties of its contained points. As more than 90% of the

voxels in LIDAR scans tend to be empty, we only process

non-empty voxels and store the results in a sparse 4D tensor.

We remark that alternative representations, e.g., those

that directly encode the raw point cloud [13, 43], could be a

viable alternative to voxel representations. However, as the

representation is not the main focus of this paper, we will

leave such an investigation to future work.

3.2. Context Encoder

As objects in a street scene are restricted to the ground

plane, we only estimate objects and motions on this plane:

we assume that 3D objects cannot be located on top of each

other and that 3D scene points directly above each other

undergo the same 3D motion. This is a valid assumption

for our autonomous driving scenario, and greatly improves

memory efficiency. Following [48], the first part of the

context encoder vertically downsamples the voxel feature

map by using three 3D convolutions with vertical stride 2.

The resulting 3D feature map is reshaped by stacking the

remaining height slices as feature maps to yield a 2D feature

map. The resulting 2D feature map is provided to three

blocks of 2D convolutional layers. The first layer of each

block downsamples the feature map via a convolution with

stride 2, followed by a series of convolution layers with

stride 1.

3.3. 3D Detection, Egomotion and 3D Scene Flow

Next, the network splits up in three branches for respec-

tively ego-motion estimation, 3D object detection and 3D

scene flow estimation. As there is only one observer, the

ego-motion branch further downsamples the feature map by

interleaving convolutional layers with strided convolutional

layers and finally using a fully connected layer to regress a

3D ego-motion (movement in the ground-plane and rotation

around the vertical). For the other two tasks, we upsample

the output of the various blocks using up-convolutions: to

half the original resolution for 3D object detection, and to the

full resolution for 3D scene flow estimation. The resulting

features are stacked and mapped to the training targets with

one 2D convolutional layer each. We regress a 3D vector per
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Figure 2: Network Architecture. The feature encoder takes a raw LIDAR point cloud as input, groups the points into

W × H × 10 voxels, and outputs 128D feature maps (for clarity, the size of the feature maps is not shown in the figure)

which are concatenated and passed to the context encoder. The context encoder learns a global representation by interleaving

convolution with strided convolution layers and “flattening” the third dimension (height above ground), i.e., we assume that

3D objects cannot be located on top of each other and that 3D scene points that project to the same location in the ground

plane undergo the same 3D motion. Feature maps at different resolutions are upsampled, stacked and fed into the decoding

branches. 3D scene flow is computed for every input voxel in the scene flow decoder and the result is passed to the rigid

motion decoder, which infers a rigid body transformation for every point. In parallel, the ego-motion regressor, further

downsamples the feature map by interleaving convolutional layers with strided convolutional layers and a fully connected

layer at the end to regress rigid motion for the ego vehicle. In addition, the object decoder predicts the location and size (i.e.,

3D bounding box) of objects in the scene. Finally, the object motion decoder takes the point-wise rigid body motions as

input and predicts the object rigid motions by pooling the rigid motion field over the detected 3D objects.

voxel for the scene flow, and follow [48] for the object detec-

tions: regressing likelihoods for a set of proposal bounding

boxes and regressing the residuals (translation, rotation and

size) between the positive proposal boxes and correspond-

ing ground truth boxes. A proposal bounding box is called

positive if it has the highest Intersection over Union (IoU, in

the ground plane) with a ground truth detection, or if its IoU

with any ground truth box is larger than 0.6, as in [48].

3.4. Rigid Motion Decoder

We now wish to infer per-pixel and per-object rigid body

motions from the previously estimated 3D scene flow. For a

single point in isolation, there are infinitely many rigid body

motions that explain a given 3D scene flow: this ambiguity

can be resolved by considering the local neighborhood.

It is unfortunately impossible to use a convolutional neu-

ral network to regress rigid body motions that are represented

in global world coordinates, as the conversion between scene

flow and global rigid body motion depends on the location in

the scene: while convolutional layers are translation equiv-

ariant, the mapping to be learned is not. Identical regions of

flow lead to different global rigid body motions, depending

on the location in the volume, and a fully convolutional net-

work cannot model this. In the following, we first prove that

the rigid motion in the world coordinate system is not trans-

lation equivariant. Subsequently, we introduce our proposed

rigid motion representation in local coordinates and show it

to be translation equivariant and therefore amenable to fully

convolutional inference.

Let us assume a point p in world coordinate system W

and let A denote a local coordinate system with origin oA as

illustrated in Fig. 3a. A scene flow vector v is explained by

rigid body motion (RA, tA), represented in local coordinate

system A with origin oA, if and only if:

v = [RA (p− oA) + tA)]− (p− oA) (1)

Now assume a second world location q, also with scene

flow v as in Fig. 3a. Let B denote a second local coordinate

system with origin oB such that p and q have the same

local coordinates in their respective coordinate system, i.e.,

p− oA = q− oB . We now prove the following two claims:

1. There exists no rigid body motion RW , tW represented

in world coordinate system W that explains the scene

flow v for both p and q, unless RW = I.

2. Any rigid body motion (RA, tA) explaining scene flow

v for p in system A also does so for q in system B.
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Figure 3: Rigid Motion Estimation. In (a), indices A and B denote the coordinate system of points p and q at origin oA and

oB , respectively. The same scene flow v can locally be explained with the same rigid body motion (RL, tL), but requires

different translations t
p

W 6= t
q

W in the global coordinate system. A simple example (b) provides empirical evidence that

translation cannot be learned in global coordinates with a CNN. Using global coordinates, the translation error increases

significantly with the magnitude of rotation (green). There is no such increase in error when using local coordinates (orange).

Towards this goal, we introduce the notation (Rp

W , t
p

W ) to

indicate rigid motion in world coordinates W induced by vp.

Claim 1

∀p,q ∈ R
3,p− oA = q− oB ,oA 6= oB :

vp = vq =⇒ R
p

W 6= R
q

W or

t
p

W 6= t
q

W or

R
p

W = R
q

W = I

(2)

Proof of Claim 1 From vp = vq we get

R
p

Wp+ t
p

W − p = R
q

Wq+ t
q

W − q

R
p

Wp+ t
p

W = R
q

W (p−∆o) + t
q

W +∆o

(Rp

W −R
q

W )p = (I−R
q

W )∆o+ (tqW − t
p

W )

where ∆o = oA − oB . Now, we assume that R
p

W = R
q

W

and that t
p

W = t
q

W (in all other cases the claim is already

fulfilled). In this case, we have ∆o = R
p

W∆o. However,

any rotation matrix representing a non-zero rotation has no

real eigenvectors. Hence, as oA 6= oB , this equality can

only be fulfilled if R
p

W is the identity matrix. �

Claim 2

∀p,q ∈ R
3, p− oA = q− oB ,oA 6= oB :

v = R (p− oA) + t+ (p− oA)

=⇒ v = R (q− oB) + t+ (q− oB)

(3)

Proof of Claim 2 Trivially from p− oA = q− oB . �

The first proof shows the non-stationarity of rigid body

motions represented in global coordinates, while the sec-

ond proof shows that the rigid motion represented in local

coordinates is stationary and can therefore be learned by a

translation equivariant convolutional neural network.

We provide a simple synthetic experiment in Figure 3

to empirically confirm this analysis. Towards this goal, we

warp a grid of 10× 10 points by random rigid motions, and

then try to infer these rigid motions from the resulting scene

flow: as expected, the estimation is only successful using

local coordinates. Note that a change of reference system

only affects the translation component while the rotation

component remains unaffected. Motivated by the preceding

analysis, we task our CNN to predict rigid motion in local

coordinates, followed by a deterministic layer which trans-

forms local coordinates into global coordinates as follows:

RL = RW tL = (RW − I)oL + tW
RW = RL tW = (I−RW )oL + tL

(4)

In our case, the origin of the world coordinate system W

coincides with the LIDAR scanner and the origin of the local

coordinate systems is located at the center of each voxel.

3.5. Object Motion Decoder

Finally, we combine the results of 3D object detection and

rigid motion estimation into a single rigid motion for each

detected object. We first apply non-maximum-suppression

(NMS) using detection threshold τ , yielding a set of 3D

bounding boxes. To estimate the rigid body motion of each

detection, we pool the predicted rigid body motions over the

corresponding voxels (i.e., the voxels in the bounding box

of the detection) by computing the median translation and

rotation. Note that this is only possible as the rigid body

motions have been converted back into world coordinates.

3.6. Loss Functions

This section describes the loss functions used by our

approach. While it seems desirable to define a rigid motion

loss directly at object level, this is complicated by the need

for differentiation through the non-maximum-suppression

step and the difficulty associating to ground truth objects.
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Furthermore, balancing the influence of an object loss across

voxels is much more complex than applying all loss functions

directly at the voxel level. We therefore use auxiliary voxel-

level loss functions. Our loss comprises four parts:

L = αLflow + βLrigmo + γLego + Ldet (5)

Here, α, β, γ are positive constants for balancing the rela-

tive importance of the task specific loss functions. We now

describe the task-specific loss functions in more detail.

Scene Flow Loss: The scene flow loss is defined as the

average ℓ1 distance between the predicted scene flow and

the true scene flow at every voxel

Lflow =
1

K

∑

j

∥

∥vj − v∗

j

∥

∥

1
(6)

where vj ∈ R
3 and v∗

j ∈ R
3 denote the regression estimate

and ground truth scene flow at voxel j, and K is the number

of non-empty voxels.

Rigid Motion Loss: The rigid motion loss is defined as the

average ℓ1 error between the predicted translation tj ∈ R
2

and its ground truth t∗j ∈ R
2 in the local coordinate system

and the average ℓ1 error between the predicted rotation θj
around the Z-axis and its ground truth θ∗j at every voxel j.

Lrigmo =
1

K

∑

j

∥

∥tj − t∗j
∥

∥

1
+ λ

∥

∥θj − θ∗j
∥

∥

1
(7)

where λ is a positive constant to balance the relative impor-

tance of the two terms. The conversion from world coordi-

nates to local coordinates is given by (see also Eq. 4)

RL = RW (θj) tL = (RW (θj)− I)pj + tW (8)

where pj ∈ R
2 specifies the position of voxel j in the XY-

plane in world coordinates and RW (θj) is the rotation matrix

corresponding to rotation θj around the Z-axis.

Ego-motion Loss: Similarly, the ego-motion loss is de-

fined as the ℓ1 distance between the predicted background

translation tBG ∈ R
2 and its ground truth t∗BG ∈ R

2 and

the predicted rotation θBG and its ground truth θ∗BG:

Lego = ‖tBG − t∗BG‖1 + λ‖θBG − θ∗BG‖1 (9)

Detection Loss: Following [48], we define the detection

loss as follows:

Ldet =
1

Mpos

∑

k

Lcls(p
pos
k , 1) + Lreg(rk, r

∗

k)

+
1

Mneg

∑

l

Lcls(p
neg
l , 0)

(10)

Figure 4: Augmentation. Simulating LIDAR measure-

ments based on 3D meshes would result in measurements

at transparant surfaces such as windows (left), wheres a

real LIDAR scanner measures interior points instead. Our

simulation replicates the behavior of LIDAR scanners by tak-

ing into account model transparency and learning the noise

model from real KITTI scans (right).

where p
pos
k and p

neg
l represent the softmax output for posi-

tive proposal boxes a
pos
k and negative proposal boxes a

neg
l ,

respectively. rk ∈ R
7 and r∗k ∈ R

7 denote the regression

estimates and ground truth residual vectors (translation, rota-

tion and size) for the positive proposal box k, respectively.

Mpos and Mneg represent the number of positive and nega-

tive proposal boxes. Lcls denotes the binary cross entropy

loss, while Lreg represents the smooth ℓ1 distance function.

We refer to [48] for further details.

4. Experimental Evaluation

We now evaluate the performance of our method on the

KITTI object detection dataset [12] as well as an extended

version, which we have augmented by simulating virtual

objects in each scene.

4.1. Datasets

KITTI: For evaluating our approach, we use 61 sequences

of the training set in the KITTI object detection dataset [12],

containing a total of 20k frames. As there is no pointcloud-

based scene flow benchmark in KITTI, we perform our ex-

periments on the original training set. Towards this goal, we

split the original training set into 70% train, 10% validation,

20% test sequences, making sure that frames from the same

sequence are not used in different splits.

Augmented KITTI: However, the official KITTI object

detection datasets lacks cars with a diverse range of motions.

To generate more salient training example, we generate a

realistic mixed reality LiDAR dataset exploiting a set of

high quality 3D CAD models of cars [10] by taking the

characteristics of real LIDAR scans into account.

We discuss our workflow here. We start by fitting the

ground plane using RANSAC 3D plane fitting; this allows us

to detect obstacles and hence the drivable region. In a second

step, we randomly place virtual cars in the drivable region,

and simulate a new LIDAR scan that includes these virtual

cars. Our simulator uses a noise model learned from the real

KITTI scanner by fitting a Gaussian distribution conditioned
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Eval. Training
Scene Flow (m) Object Motion Ego-motion

Dataset Dataset FG BG All Rot.(rad) Tr.(m) Rot.(rad) Tr.(m)

K K 0.23 0.14 0.14 0.004 0.30 0.004 0.09

K K+AK 0.18 0.14 0.14 0.004 0.29 0.004 0.09

K+AK K 0.58 0.14 0.18 0.010 0.57 0.004 0.14

K+AK K+AK 0.28 0.14 0.16 0.011 0.48 0.004 0.12

Table 1: Ablation Study on our KITTI and Augmented KITTI validation datasets, abbreviated with K and AK, respectively.

Eval.
Method

Scene Flow (m) Object Motion Ego-motion

Dataset FG BG All Rot.(rad) Tr.(m) Rot.(rad) Tr.(m)

K ICP+Det. 0.56 0.43 0.44 0.22 6.27 0.004 0.44

K 3DMatch+Det. 0.89 0.70 0.71 0.021 1.80 0.004 0.68

K FPFH+Det. 3.83 4.24 4.21 0.299 14.23 0.135 4.27

K Dewan et al.+Det. 0.55 0.41 0.41 0.008 0.55 0.006 0.39

K Ours 0.29 0.15 0.16 0.004 0.19 0.005 0.12

K+AK ICP+Det. 0.74 0.48 0.50 0.226 6.30 0.005 0.49

K+AK 3DMatch+Det. 1.14 0.77 0.80 0.027 1.76 0.004 0.76

K+AK FPFH+Det. 4.00 4.39 4.36 0.311 13.54 0.122 4.30

K+AK Dewan et al.+Det. 0.60 0.52 0.52 0.014 0.75 0.006 0.46

K+AK Ours 0.34 0.18 0.20 0.011 0.50 0.005 0.15

Table 2: Comparison to Baselines on test sets of KITTI and Augmented KITTI, abbreviated with K and AK, respectively.

on the horizontal and vertical angle of the rays, based on

KITTI LIDAR scans. Our simulator also produces missing

estimates at transparent surfaces by ignoring them with a

probability equal to their transparency value provided by the

CAD models, as illustrated in Figure 4. Additionally, we

remove points in the original scan which become occluded

by the augmented car by tracing a ray between each point and

the LIDAR, and removing those points whose ray intersects

with the car mesh. Finally, we sample the augmented car’s

rigid motion using a simple approximation of the Ackermann

steering geometry, place the car at the corresponding location

in the next frame, and repeat the LIDAR simulation. We

generate 20k such frames with 1 to 3 augmented moving

cars per scene. We split the sequences into 70% train, 10%
validation, 20% test similar to our split of the original KITTI

dataset.

4.2. Baseline Methods

We compare our method to four baselines: a point cloud-

based method using a CRF [8], two point-matching methods,

and an Iterative Closest Point [4] (ICP) baseline.

Dewan et al. [8] estimate per-point rigid motion. To arrive

at object-level motion and ego-motion, we pool the estimates

over our object detections and over the background. As they

only estimate valid scene flow for a subset of the points, we

evaluate [8] only on those estimates and the comparison is

therefore inherently biased in their favor.

Method Matching 3D Descriptors yield a scene flow esti-

mate for each point in the reference point cloud by finding

correspondences of 3D features in two timesteps. We eval-

uate two different descriptors: 3D Match [47], a learnable

3D descriptor trained on KITTI and Fast Point Feature His-

togram features (FPFH) [31]. Based on the per-point scene

flow, we fit rigid body motions to each of the objects and to

the background, again using the object detections from our

pipeline for a fair comparison.

Iterative Closest Point (ICP) [4] outputs a transformation

relating two point clouds to each other using an SVD-based

point-to-point algorithm. We estimate object rigid motions

by fitting the points of each detected 3D object in the first

point cloud to the entire second point cloud.

Evaluation Metrics: We quantify performance using sev-

eral metrics applied to both the detected objects and the

background. To quantify the accuracy of the estimates in-

dependently from the detection accuracy, we only evaluate

object motion on true positive detections.

• For 3D scene flow, we use the average endpoint error

between the prediction and the ground truth.

• Similarly, we list the average rotation and translation

error averaged over all of the detected objects, and

averaged over all scenes for the observer’s ego-motion.
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(a) Ground Truth (b) Our result

(c) Dewan et al. [8]+Det. (d) ICP+Det.

Figure 5: Qualitative Comparison of our method with the best performing baseline methods on an example from the

Augmented KITTI. For clarity, we visualize only a subset of the points. Additional results can be found in the supplementary.

4.3. Experimental Results

The importance of simulated augmentation: To quantify

the value of our proposed LIDAR simulator for realistic aug-

mentation with extra cars, we compare the performance of

our method trained on the original KITTI object detection

dataset with our method trained on both KITTI and Aug-

mented KITTI. Table 1 shows the results of this study. Our

analysis shows that training using a combination of KITTI

and augmented KITTI leads to significant performance gains,

especially when evaluating on the more diverse vehicle mo-

tions in the validation set of Augmented KITTI.

Direct scene flow vs. object motion: We have also evalu-

ated the difference between estimating scene flow directly

and calculating it from either dense or object-level rigid

motion estimates. While scene flow computed from rigid

motion estimates was qualitatively smoother, there was no

significant difference in overall accuracy.

Comparison with the baselines: Table 2 summarizes the

complete performance comparison on the KITTI test set.

Note that the comparison with Dewan et al. [8] is biased in

their favor, as mentioned earlier, as we only evaluate their ac-

curacy on the points they consider accurate. Regardless, our

method outperforms all baselines. Additionally, we observe

that the ICP-based method exhibits large errors for object

motions. This is because of objects with few points: ICP

often performs very poorly on these, but while their impact

on the dense evaluation is small they constitute a relatively

larger fraction of the object-based evaluation. Visual exam-

ination (Fig. 5) shows that the baseline methods predict a

reasonable estimate for the background motion, but fail to

estimate motion for dynamic objects; in contrast, our method

is able to estimate these motions correctly. This further rein-

forces the importance of training our method on scenes with

many augmented cars and challenging and diverse motions.

Regarding execution time, our method requires 0.5 sec-

onds to process one point cloud pair. In comparison, Dewan

et al. (4 seconds) and the 3D Match- and FPFH-based ap-

proaches (100 and 300 seconds, respectively) require signifi-

cantly longer, while the ICP solution also takes 0.5 seconds

but performs considerably worse.

5. Conclusion

In this paper, we have proposed a learning-based solution

for estimating scene flow and rigid body motion from un-

structured point clouds. Our model simultaneously detects

objects in the point clouds, estimates dense scene flow and

rigid motion for all points in the cloud, and estimates object

rigid motion for all detected objects as well as the observer.

We have shown that a global rigid motion representation is

not amenable to fully convolutional estimation, and propose

to use a local representation. Our approach outperforms all

evaluated baselines, yielding more accurate object motions

in less time.
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