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Abstract

Manually annotating object segmentation masks is very

time consuming. Interactive object segmentation methods

offer a more efficient alternative where a human annota-

tor and a machine segmentation model collaborate. In this

paper we make several contributions to interactive segmen-

tation: (1) we systematically explore in simulation the de-

sign space of deep interactive segmentation models and re-

port new insights and caveats; (2) we execute a large-scale

annotation campaign with real human annotators, produc-

ing masks for 2.5M instances on the OpenImages dataset.

We released this data publicly, forming the largest exist-

ing dataset for instance segmentation. Moreover, by re-

annotating part of the COCO dataset, we show that we can

produce instance masks 3× faster than traditional polygon

drawing tools while also providing better quality. (3) We

present a technique for automatically estimating the quality

of the produced masks which exploits indirect signals from

the annotation process.

1. Introduction

Propelled by the increased computing power, the last

years have seen a dramatic growth in the size of models for

computer vision tasks. These larger models are evermore

demanding of larger training sets to reach performance sat-

uration [32]. This demand for data often becomes a bottle-

neck for practitioners. While computers become cheaper,

faster, and able to handle larger models, the cost of humans

manually annotating data remains very high. Hence, we

need new strategies to scale-up human annotations.

Amongst the traditional image understanding tasks, in-

stance segmentation is considered one of the most expen-

sive to annotate [8, 19, 6, 37]. For each object instance in

each class of interest, it requires annotating a mask indicat-

ing which pixels belong to the instance.

In this work we explore an interactive segmentation ap-

proach to annotate instance masks, where the human an-

notator focuses on correcting the output of a segmentation

model, rather than spending time blindly creating full an-

notations that might be redundant or already captured by

the model. Across multiple rounds the annotator provides

corrections to the current segmentation, and then the model

incorporates them to refine the segmentation.

Albeit the idea of interactive segmentation was estab-

lished already a decade ago [4, 30], we make two key

Figure 1. Example of corrective clicks and their effect on the seg-

mentation mask. Starting from a bounding box, the annotator pro-

vides up to 4 corrective clicks in each round. See section 2.

contributions: (1) through extensive simulations we sys-

tematically explore the design space of deep interactive

segmentations models and report new insights and caveats

(Sec. 3). (2) while most previous works report only sim-

ulation experiments [36, 35, 17, 20, 10, 22], we execute

a large-scale annotation campaign with real human anno-

tators (2.5M instances, Sec. 4), we analyse the annotators

behavior (Sec. 5.2) and the resulting annotations (Sec. 5.3).

Our results show that we can make instance segmenta-

tion 3× faster than traditional polygon drawing tools [19]

while also providing better quality (Sec. 5.3). Additionally

our method can produce masks across different time bud-

gets, and we present a new technique for automatically es-

timating the quality of the produced masks which exploits

indirect signals from the annotation process (Sec. 5.4).

To the best of our knowledge this is the first work ex-

ploring interactive annotations at scale. We apply our ap-

proach to collect 2.5M new masks over 300 categories of

the OpenImages dataset [14]. We released this data, mak-

ing it the largest public dataset for instance segmentation (in

the number of instances).

1.1. Related work

Dataset annotations. A flurry of techniques have been

explored to annotate the location of objects in images:

bounding box annotations [8], clicks on the object extremes

[26, 22], clicks on the object centre [3, 27], bounding box

followed by edits to a generated segment [4, 30], scribbles

[3, 18], hierarchical super-pixel annotations [21], polygon

annotations [8, 9, 19], interactive polygons [1], eye gaze

[25], and touch interfaces [28], just to name a few.

Despite many explored ideas, the current most popular

datasets for object instances localization were all obtained

using purely manual annotations of boxes or (layered) poly-

gons [8, 31, 9, 19, 6, 24, 11, 37].
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Figure 2. High level overview of our interactive annotation system (Mr not shown). See description in section 2.

This work aims at changing the status quo by showing the

interest of interactive instance segmentation as main anno-

tation strategy for large scale instance segmentation.

Weakly supervised segmentation. Weakly supervised

segmentation methods reconstruct approximate segmenta-

tion masks starting from weaker supervision input. For se-

mantic/instance segmentation the following sources of su-

pervision have been explored: image level label only [38],

point clicks [3, 36], boxes only [7, 12, 35], scribbles only

[18, 3], boxes plus clicks [4, 30, 35, 26, 22].

Most interactive segmentation techniques build upon

weakly supervised methods. Our work starts from segments

generated from boxes, and then moves into an interactive

mode by adding corrective clicks as additional supervision.

Interactive segmentation. The idea of interactive image

segmentation is decades old [4, 30]. It has been revis-

ited in the recent years under the deep learning umbrella

[36, 20, 10, 34, 22, 16, 15, 1], focusing on how to best

use clicks and scribbles corrections. Most of these work

share structural similarities but diverge in their finer design

choices (e.g. annotation type, input encoding, etc.). Section

3 revisits some of these choices in an unified experimental

setup and draws new conclusions.

Despite the theme of human-machine interaction, most

previous work in this area report purely simulation exper-

iments [35, 17, 20, 22] or only small scale human experi-

ments (≤ 50 instances [15, 16, 1]). We instead collect 2.5M

masks over 300 categories using a team of 100 annotators,

share the learned lessons, and analyse the resulting annota-

tions when considering interactive segmentation at scale.

2. Overall system design

We propose a design that involves three types of mod-

els Mb, Mb+c, Mr. Starting from existing bounding

boxes for each instance, we generate initial masks via

an "image+box→mask" model Mb. We then show these

masks to human annotators, which indicate corrections.

These corrections are used as supervision to generate new

improved masks, via an "image+box+corrections→mask"

model Mb+c. The annotators iteratively correct the outputs

of Mb+c over multiple rounds (figure 2). The final instance

segmentation model is thus trained using as privileged in-

formation the initial bounding boxes and the corrections

provided throughout the process.

Models Mb and Mb+c are implemented using convnets,

while Mr is a decision forest. Compared to previous work

on interactive segmentation such as [20, 16, 1] we use a

different design for Mb / Mb+c, and introduce the use of a

ranking model Mr. This ranking model uses the time se-

quence of annotator corrections on an instance to predict

the expected quality of the generated mask. This ranking

can be used to prioritise further corrections on low quality

instances, or as weighting signal when training an instance

segmentation model. In section 3 we study the design of Mb

and Mb+c; and in section 4 we describe a concrete instanti-

ation of our approach. The ranking model Mr is described

in section 4.2.

Since annotators spend their time solely on corrections,

the data collected is directly focused on areas not yet cor-

rectly captured by the Mb/Mb+c models. Easy instances

will need zero edits from the get go, while hard instances

might need multiple revisits.

3. Simulations

The generic system described in section 2 has many

free design parameters, and previous related works have re-

ported contradicting results. Section 3.1 describes an imple-

mentation blueprint of our system, and section 3.2 reports

simulation results exploring its design space.

3.1. Experiments blueprint

Evaluation set. For these experiments we use COCO [19],

which is considered the gold standard amongst existing

instance segmentation datasets. COCO was annotated

by manually drawing polygons on object instances. Al-

beit some previous interactive segmentation works report

COCO results [36, 17, 16, 10], they only consider ≤ 20
instances per class; here we consider a larger set of ∼88k
instances.

COCO objects have a median size of 53× 62 pixels. Small

objects tend to have blob-like shapes, while larger objects

show more detail. We thus focus training and evaluation

only on instances larger than 80 × 80 pixels. We evaluate
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results over the large instances in the COCO 2014 valida-

tion set (41k images), which we denote as COCOtest
L .

Training set. The training set of Mb and Mb+c will have

a direct impact on the effectiveness of the interactive an-

notation system. We train our models over a subset of

the ADE20k training set [37]. We picked the 255 largest

classes representing objects (window, leg, lamp, etc.) and

left out stuff classes (wall, sky, sidewalk, etc.). In total

these have ∼ 400k instances. After filtering by size, we

are left with ∼134k instances with ground-truth segmenta-

tions. We name this training set ADEtrain
L . Unless otherwise

specified, we train our models on it in a class-agnostic way:

considering all instances as belonging to a single generic

object class. We split ADEtrain
L in two halves to train Mb

over ADEtrain
L 1/2 , and Mb+c over ADEtrain

L 2/2.

Unless otherwise specified all instances are cropped and

scaled to fit inside a 193 × 193 pixels box (keeping their

aspect ratio) centred in a 385× 385 pixels image (capturing

some of the instance context, or padding borders with black

pixels if outside of source image).

The ranking model Mr is trained over a small set of real

corrective click annotations and ground-truth masks (§4.2).

We treat both training and testing on a per-instance basis,

and ignore class labels (i.e. we average across instances).

We use the traditional mean intersection-over-union (mIoU)

as our main evaluation metric.

Annotator simulation. Training Mb requires ground-

instance segmentations, and training Mb+c additionally re-

quires annotator corrections. These training corrections can

be collected by running annotation campaigns over data

with already available ground-truth segmentations, or can

be generated by simulating the expected annotator behav-

ior. In the latter case, the details of the simulations mat-

ter. The assumptions underlying the simulated corrections

should match the expected behavior of annotators. More-

over, depending on how much error we expect from the

annotators (noise model), the simulation results will have

higher or lower IoU. This is a confounding factor when

comparing results amongst related works. Also, if we train

with a certain annotator noise model, and test with the same

model, results might be over-optimistic (compared to using

actual human annotators).

Our simulations include noise both on the boxes and the

clicks. We generate object bounding boxes by perturbing

the corners of a perfect bounding box fit to the ground-truth

segmentation with N (0, 60 pixels) noise. We keep bound-

ing boxes with IoU ≥ 0.7 with the tight ground-truth box.

We use such loose boxes because: a) depending on their

source, not all boxes are expected to be very tight; b) we

expect to encounter cases where there is a drift between

the box annotation policies and the segmentation policies

(section 4.3). Furthermore, we perturb corrective clicks

with N (0, 3 pixels). The initial click location is also

randomly sampled following a probability distributions

specific to the click type (section 3.2.2). Also, some error

regions might be ignored if deemed too small (section

3.2.3).

Unless otherwise stated, each simulation runs for 3 rounds

of interaction, with the simulated annotator providing up to

3 clicks per round (which we denote as 3×3). Section 3.2.5

studies how to distribute corrective clicks across rounds.

Models. Both Mb and Mb+c use the same architecture. We

train Deeplabv2 ResNet101 [5] for per-pixel binary classi-

fication (instance foreground/background). See supplemen-

tary material for training parameters. The Deeplab model

is augmented to accept N-channels input instead of only an

RGB image. Mb uses 4 channels, RGB plus a binary bound-

ing box image (inside/outside). Mb+c uses 5 or more chan-

nels, RGB + box + corrections. Previous works have used

different strategies to encode the corrections, which we ex-

plore in section 3.2.4. Our ranking model Mr is a decision

forest described in section 4.2.

By default, we train Mb+c to handle 3 × 3 rounds. We do

this by training a single model to use as inputs the cropped

RGB image, the binary bounding box, and a variable num-

ber of clicks between 1 and 9 (random, uniform discrete dis-

tribution). Clicks are encoded as small binary disks (section

3.2.4). We first train the Mb model over ADEtrain
L 1/2. Then we

train Mb+c using simulated corrective clicks on ADEtrain
L 2/2

over masks generated by Mb.

3.2. Simulation results

Most experiments in this section require re-training both

Mb and Mb+c. Together they represent over 9 GPU-months

of training time.

3.2.1 Mb baselines

When training Mb over ADEtrain
L 1/2 we obtain a mean IoU of

65% on COCOtest
L . This is the starting point for our annota-

tions. For comparison using the raw (noisy) bounding boxes

as masks, we obtain 50% mIoU. A well-tuned Grabcut im-

plementation reaches 59% mIoU [26]. Overall our class-

agnostic transfer from ADE20k to COCO via Mb seems to

perform well in comparison.

3.2.2 Boundary click or region click?

When considering which corrective clicks should be done

over a mask, the existing literature is split between clicks

at the object border [26, 22, 15, 1] or clicks inside the error

regions [36, 17, 16].

For boundary clicks we train Mb+c with all clicks pasted

into a single channel, whereas region clicks are encoded in

two separate channels depending if the click was done in-

side or outside the current mask.
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At test time, we iteratively simulate the clicks by first

adding 3 corrective clicks over the mask created by Mb,

then applying Mb+c, then adding 3 additional corrective

clicks, then re-applying Mb+c, etc. The corrective clicks

are applied simulating either clicks on the boundary of the

error regions or in their centre. The likelihood of a click in

a error region is proportional to its area. If multiple clicks

fall in the same error region, they are spread out to roughly

partition it in equal areas (or the boundary in equal lengths).

Result. Both type of clicks bring clear improvements in

every round. After three rounds, region clicks reach

80% mIoU while boundary clicks reach only 77% mIoU.

This trend is consistent across different type of input encod-

ing and number of clicks/rounds. We thus move forward

with corrective clicks in the centre of error regions as our

main correction strategy.

This result can be explained via: 1) centre region clicks

are more robust: after a small perturbation the click is still

roughly at the region centre, while noisy boundary clicks

are often off, 2) region clicks provide more explicit infor-

mation about what needs to be added or removed.

3.2.3 Annotation noise

We report the effect of two aspects of the annotator behavior

model: (1) how precise is the click of the annotator (click

noise)?, (2) which error regions will be considered too small

to be clicked on (minimum region size)? If the goal is to

get masks annotated as fast as possible, small error regions

should be ignored by the annotator since they will have mi-

nor impact on mask quality.

Result. We consider the mIoU reached at the end of 3 × 3
simulations. Compared to zero click noise, adding an

isotropic Gaussian click noise with standard deviation 3 or

6 pixels causes a 3% and 7% drop in mIoU, respectively.

Similarly, if the annotator ignores regions smaller than x2

pixels, we observe a drop of 3% or 8% mIoU at x = 20
or x = 30, respectively (using click noise 3 pixels). Com-

pounded, these two effects can easily explain away ∼ 5%
differences between two reported systems (if the annotation

noise model is not specified).

Understanding the sensitivity of the model to annotator

noise helps decide how much effort should be put into train-

ing the annotators to be precise versus fast.

3.2.4 Clicks encoding

Multiple choices are available for encoding corrective clicks

as input to Mb+c. Previous works considered using a dis-

tance transform from the clicks [36, 35, 17, 10, 34, 16], a

Gaussian centred on each click [15, 22, 20], or a simple

binary disk [3] (see supplementary material for examples).

Compared to a binary disk, the distance transform makes it

easier for the convnet to reason about relative distances to
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Figure 3. Effect of clicks encoding on the resulting masks. Mb

indicates the masks obtained with zero clicks (bounding box only).

Simple binary disks behave better than the alternatives.
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Figure 4. Effect of varying the number of clicks per round. Each

curve show three simulated rounds (number of rings = rounds

done). If ~9 clicks are to be collected, it is better to do 3 × 3,

4 × 2, or 5 × 2; than to do 1 × 8 or 1 × 9. This highlights the

benefit of doing clicks that respond to the model error.

the clicks. The Gaussian might make it easier for the conv-

net to localise the exact click centre and to handle cases

where two nearby clicks overlap.

Result. The results from figure 3 indicate that using a

Gaussian or distance transform, surprisingly, underper-

forms compared to using a simple binary disk to encode in-

put clicks. The disk diameter seems make little difference.

In our setup, simplest is best.

We also tried to add the mask generated from the previ-

ous round as an additional input channel, however this did

not improve results.

3.2.5 Number of clicks and rounds

Region clicks provide direct supervision for the clicked pix-

els with a foreground or background label. The more clicks

the better the resulting masks (with diminishing returns).

However it is unclear how to distribute those clicks across

rounds. As masks are updated inbetween rounds, it might

be good to gather as many clicks as possible per round.

However if too many are done before updating the mask

presented to the annotator, we under-use the extrapolation

power of Mb+c. One click typically affects the whole re-

gion around it and can have global corrective effect on the

generated mask (figure 1).

We explore here this trade-off by evaluating three an-
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notation rounds with different number of clicks per round.

They all start from the masks generated by the Mb model

(65% mIoU).

Result. Figure 4 shows a clear gain in mIoU when increas-

ing the total number of corrective clicks, reaching dimin-

ishing returns after ~15 clicks. At that point the limits of

the Mb+c model start to cap the progress of each click. The

figure also shows that if one is, for example, aiming for ~9

clicks total, it is better to do 3 × 3, 4 × 2, or 5 × 2 clicks;

than to do 8 or 9 clicks all in one round. This highlights the

benefits of the interaction between the human annotator and

the machine generating the masks; rather than having the

annotator blindly clicking on all errors of the initial mask.

3.2.6 Class-agnostic or class-specific?

Up to now Mb and Mb+c have been trained in a class-

agnostic manner. When the target class to annotate is

known one might that suspect that using class-specific mod-

els might result in higher quality masks.

We experimented training car- and giraffe-specific mod-

els and evaluate them over car/giraffes or over all categories.

We also trained models from ADEtrain
L (out-of-domain) as

well as COCOtrain
L (in-domain).

Result. As expected class-specific Mb models generate

better initial results. Similarly in-domain models perform

slightly better than out-of-domain models. However, when

adding annotations the gap between models closes rapidly.

After three rounds all variants are within 2 percent points

mIoU. Even training ADE or COCO models without car

or giraffe seem to have negligible effect after three rounds.

From these results we conclude that there is no need to have

class-specific models. Instead a model trained with a large

number of instances covering diverse categories performs

essentially just as well.

4. Large-scale annotation campaign

Beyond the simulations of section 3, to study the benefits

of corrective clicks we also executed a large-scale annota-

tion campaign over the recently released OpenImages V4

dataset [14]. This dataset provides bounding box annota-

tions for 600 object categories. We selected 300 categories

for which we make instance masks, based on 1) whether the

class exhibits one coherent appearance over which a pol-

icy could be defined (e.g. "hicking equiment" is rather ill-

defined), 2) whether a clear annotation policy can be defined

(e.g. which pixels belong to a nose?, see section 4.3), and 3)

whether we expect current segmentation models to be able

to capture the shape adequately (e.g. jellyfish contains thin

structures that are hard for state-of-the-art models). In total,

we annotate 2.5M instances over the 300 OpenImages cate-

gories considered. 65 of these overlap with the existing 80

COCO categories. We also re-annotate COCO images for

Figure 5. The annotation web interface. Left side shows the object

to annotate, the original bounding box (yellow), the current mask

(magenta), and the corrective clicks (green and red dots). The right

side shows the class-specific policy for the class being annotated.

Figure 6. Example of corrective click masks results (top), and free-

painting manual annotations (bottom, used as ground-truth refer-

ence for evaluations). See supp. material for more examples.

these 65 classes, which allow us to compare with COCO’s

manual polygon drawing.

In addition to the annotations generated via corrective

clicks, we also make a smaller set of extremely accurate

masks fully manually with a free-painting tool (~100 in-

stances per class, for a total of 60k masks). We use these as

reference for quality evaluation.

Both corrective clicks and the free-painting annotations

are made by a pool of 100 human annotators. These are ded-

icated full-time annotators, that have a bias towards quality

rather than speed.

Section 4.1 describes the exact Mb and Mb+c models

setup for collecting corrective clicks. Section 4.2 describes

the ranking model Mr. Section 4.3 discusses the annotation

policies used, and section 4.4 describes the free-painting an-

notations. We analyse the collected data in section 5.

4.1. Corrective clicks setup

For each considered class, we annotate instances from

the OpenImages V4 training set with size ≥ 80×40 (or

≥40×80) pixels. Based on the simulation results from sec-

tion 3 we opt to do three rounds of annotations with up to 4
clicks in each round (i.e. 4 × 3 setup). Each round is sepa-

rated by multiple days. We use section’s 3.1 blueprint with
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region clicks, minimal click region of 102 pixels, and in-

put clicks encoded in two channels (foreground/background

clicks) using binary disks of radius 5 pixels.

To improve the model quality we: (1) increased the resolu-

tion of the crops fed into Mb and Mb+c to 513×513 pixels

(object inside 385×385 pixels box); (2) adjusted the clicks

noise to mimic the observed annotators behaviour (i.e. near-

uniform clicks inside the error regions); (3) added a bound-

ary refinement stage based on [2].

Qualification test. Before starting the main corrective

clicks task, each annotator must first pass an automated

qualification test to verify the annotator understands the

task, how to use the web interface (figure 5), and that he/she

is able to perform the task in adequate time. In our expe-

rience, using only detailed documentation without an au-

tomated qualification test leads to a slow ramp-up towards

producing quality annotations.

4.2. Ranking model Mr

As discussed in section 2, we would like to automati-

cally rank the generated masks from highest quality to low-

est quality via a model Mr. We train our Mr model to

regress to the IoU of the ground-truth masks. We use a ran-

dom decision forest with five input features: f1) the number

of clicks in the last round; f2) the round number; f3) the

∆IoU between the mask from previous round and the one

from the current round; f4) the maximum distance between

any of the clicks made in the current round and the mask

from previous round; and f5) the average distance between

the clicks and said mask. The regressor is trained using col-

lected annotations over 1% of COCOL instances. We ob-

serve that Mr training is robust to the volume of training

data and the hyper-parameters of the decision forest. Once

the ranker Mr is trained, we apply it over the full set of

COCO and OpenImages corrective click annotations. Ex-

amples of ranked masks can be seen in the supp. material.

Out of the five features used, ∆IoU and average click

distance provide the strongest predictive power. ∆IoU en-

codes how much change happened in the last round. Small

changes indicate the mask is already close to its best quality.

The average click distance to the mask is a loose indication

of the size of the regions being corrected, since annotator

are instructed to click near the centre of the error regions.

The smaller the error region, the higher the mask quality.

Note that our masks ranker relies solely on indirect sig-

nals from the annotation process itself. Since Mr does not

use class labels (to avoid capturing class biases) nor image

features, it generalises well across categories and datasets.

4.3. Annotation policies

An important consideration when dealing with human

annotators is that the task must be well specified, oth-

erwise miscommunication could lead to inconsistent out-

comes. Compared to drawing bounding boxes, labelling

segmentations has many more ambiguities. Defining an-

notation policies is difficult because it is subject to the mis-

match between our self-perceived simplicity of categorisa-

tion and the complexity of the real world1.

We created three types of documents: 1) a manual

explaining the task at hand; 2) a class-agnostic policy,

which discusses how to handle transparency, occlusion,

fragmented objects, etc.; 3) class-specific policies, which

answer questions such as "are belts part of pants?", "is the

collar part of a cat?", "are ice-cubes in a drink part of it?".

These policies purely specify what the desired segmen-

tation of an object should include and exclude. They are de-

fined independently of the annotation technique. The class-

specific policies are defined aiming to: a) be feasible for the

annotators, b) result in masks useful to train models, c) be

coherent (so annotators can leverage knowledge built across

classes). The automated qualification tests validates that

documents 1&2 have been understood. The class-specific

annotation policy is shown directly in the annotation inter-

face for fast consulting (figure 5).

In practice defining annotation policies can become a

bottleneck for deployment. They are not trivial to define

coherently, it takes time to find and annotate illustrative ex-

amples, and to find clear concise wording. We thus re-use

policies across groups of similar looking classes (e.g. cat

policy for dogs and bears). In total we created 150+ slides

of policies, defining 42 class-specific policies covering 200

classes. The class-agnostic policy was considered sufficient

for 100 classes such as frisbee, volleyball, etc.

We ran a small scale experiment with 30 novice annota-

tors. After validating that the task is well understood, we

presented common but non-trivial cases (e.g. bottle with

handle, box truck with visible load). Without providing de-

tailed policies, we observed a near 50/50 split between de-

cision such as "is the handle part of the bottle?", "is the load

part of the truck?" (see supplementary material). This anec-

dotal evidence supports the need for well-defined policies.

4.4. Free­painting masks

We also created a smaller set of purely manual anno-

tations over COCO and OpenImages (~100 per class). We

use these in order to do evaluations beyond the COCO poly-

gons (which have known inaccuracies). These annotations

are made using the same policies as for corrective clicks.

We provide the annotators with a free-painting tool, that

provides a resizeable circular brush, a "straight lines" mode,

a "fill closed region" mode, erase, and unlimited undo-redo.

The free-drawing brush allows to conveniently delineate

curved objects parts (e.g. on animals), while the "straight

lines" mode allows to conveniently delineate straight parts

1Simple questions like "what are clothes?" are subject of debate for the

USA Supreme Court [33].
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(e.g. on man-made objects). The output of the annotation is

not a polygon, but rather a binary bitmap image.

Like before, we design an automated qualification test,

and the annotation interface shows the per-class policy. We

request the annotators to dedicate about 180 seconds (s) per

instance and aim towards near-perfect quality masks. Ex-

amples of the produced masks can be seen in figure 6.

5. Analysis of human annotations

This section investigates the results of the large scale an-

notation campaign described in section 4.

5.1. Free­painting annotations

In total we made free-painting manual annotations for

45k instances of 300 classes on OpenImage, and 15k in-

stances of 65 classes on COCO (figure 6).

Time. For the large instances considered (≥ 80 × 40 pix-

els) COCO polygons have an average of 33.4 vertices per

instance (compared to 24.5 overall). Assuming linear time

in the number of vertices, we estimate the time taken to orig-

inally annotate COCO with polygons at 108s per large in-

stance (based on the speed reported in [19]). We requested

our annotators to spend at least 180s per instance with free-

paining. In practice they took on average 136s per instance.

Quality. For quality control we double-annotated 5k in-

stances. The average agreement between two annotations

of the same instance is very high at 90% mIoU. This is

well above the ∼80% mIoU human agreement previously

reported for COCO polygons [13]. Moreover, compared

to polygons, our annotation tool allows to better annotate

curved objects, our annotators focused on quality rather

than speed, and the resulting masks appear extremely accu-

rate (e.g. pointy tips of the axe, fine details of the flower’s

boundaries, and thin connecting bars in the boat in Fig. 6).

We conclude from all of the above that our manual free-

painting annotations are of even higher quality than the

original COCO annotations, and are thus particularly suited

for evaluating results of segmentation algorithms.

5.2. Corrective clicks: Annotators behaviour

Our 100 annotators generated 20M+ clicks, spread over

5M+ mask corrections. Let us inspect these.

5.2.1 Annotated clicks

Clicks per round. For each instance visited in a round the

annotators are allowed to provide 0 to 4 corrective clicks,

as well as to click a "skip" button to indicate that a mask

should not be created for that instance (according to policy,

e.g. because the image is blurry, the object shape is not vis-

ible, the box covers multiple objects, etc.). Zero clicks in-

dicate that the mask is already good enough and no further

corrections are needed. Neither skips nor 0-clicks masks are

sent to the next round. Overall we observe 2.7% of skips,

2.1% of 0-clicks, and 4.8%, 8.4%, 12.3%, 70.0% of 1, 2,

3, 4-clicks respectively. By observing the area distribution

of the regions clicked and the masks IoU (see supp. mate-

rial) we conclude that annotators under-use the 0-clicks op-

tion and correct minuscule missing details instead. We also

observe they become stricter as rounds progress. Besides,

we attribute the high percentage of 4-clicks to the annota-

tors’ bias towards quality, and to the fact that it is easier to

click on anything wrong (albeit small) than to judge whether

the mask is good enough (see discussion in section 5.2.2).

Across the three rounds each instance accumulates 3.5, 7.1,

and 10.7 clicks on average.

Clicks order. We expect annotators in each round to first

click on large error regions, and then on smaller ones. For

each annotated instance we computed the area of the error

region corresponding to each click. We observe that 60%
of the clicks are in approximately large-to-small order (and

30% are exactly so). Additionally, we observe that the av-

erage area of the 1st, 2nd, 3rd, and 4th clicked error region

are in strictly decreasing order (see supplementary mate-

rial). Overall, annotators click first the largest error region

and then proceed to finer details.

Clicks distribution. Annotators are instructed to do one

click per error region, unless it is rather big, in which case

the clicks should be spread across the region. We measure

the area of the error region as a function of number of re-

ceived clicks. We observe that indeed only the smallest re-

gions are left without clicks, and that the number of clicks

grows almost linearly with the area of the error region (at

about ~222 pixels per click). About 80% of the clicked re-

gions received 1 click, 15% 2 clicks, 4% 3 clicks, 1% 4

clicks. Overall, annotators indeed only do multiple clicks if

the region to correct is rather large.

5.2.2 Annotation time

Time per instance. The annotation interface shows both

the instance to annotate as well as the class-specific policy

(figure 5). The motion of the mouse is continuously logged.

If we measure the time spent on the annotation interface

we obtain an average of 11.4s per instance (averaged over

all classes and rounds). We observe a significant variance

across classes: the fastest 0.1 quantile of the classes take

< 8.7s per round on average, while the slowest 0.9 quantile

averages > 12.7s per round.

Time vs number of clicks. Figure 7 shows the average

time as a function of the number of clicks in a round. De-

ciding if the mask is good enough (0-clicks) takes about

4s, after which the average time continuously grows until 3

clicks. Curiously, doing 4 clicks is faster than doing 3. We

hypothesize this is because masks with large obvious errors

need all 4 clicks, and these can be done fast, whereas a 3

click answer requires extra time to decide to withhold the
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fraction of top ranked samples.

Mr allows to select high quality

subsets of the data.

4th click. Furthermore, the delay between the moment the

instance is shown and the first action is taken suggests that

annotation time can be split between "scene parsing" and

"click actions". After the first click is done (8s), it takes

about 3s per additional click.

Time vs area. For first clicks done under 10s, we see a

direct relation between speed and the area of the clicked

error region. Faster first clicks are done on larger areas (412

pixels for a ~3s first click), and slower first clicks are done

on smaller areas (332 for a ~8s first click). For first clicks

done above 10s there is no clear relation. These are cases

where annotators wonder what should be clicked.

Time per round. The average time increases over rounds,

with 10.8, 11.7, and 11.9 seconds for rounds 1, 2, 3, respec-

tively. This is consistent with the mask errors becoming

smaller and thus taking more time to find.

5.3. Corrective clicks: Time versus quality

Each annotation method presents a different trade-off be-

tween speed and quality. Fig. 9 summarizes this for our

corrective clicks, COCO polygon annotations, and our free-

painted masks. In all cases mIoU is measured w.r.t. the free-

painted annotations on the COCO dataset (§4.4 and 5.1).

After three rounds of corrective clicks, we obtain masks

with 84% mIoU in an average human annotation time of

34s per instance. In comparison, COCO polygons reach

82% mIoU, while taking an estimated 108s per instance

(section 5.1). For reference, our free-painted masks take

138s and have a self-agreement of 90% mIoU. We observe a

similar trend when comparing boundary quality (F-measure

at 5 pixels [23, 29]): 75% for our corrective click masks

versus 65% for COCO polygons, and 79% for the reference

free-painted masks. We thus conclude that our corrective

click masks are of higher quality than the COCO polygon

annotations, while being 3× faster to make.

Coincidentally, COCO annotations average 33.4 vertices

per instance on the instances considered, and our annota-

tor do an average of 10.7 clicks per instance over all three

rounds of interactive segmentation. Thus the 3× factor also

holds in number of clicks. Some examples of our corrective

click masks can be seen in figure 6.
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Figure 9. Masks quality versus time for different annotation

schemes (section 5.3). Our corrective click masks reach better

quality than COCO polygons, while being 3× faster to make.

Semantic segmentation training. To further validate the

utility of the generated corrective click masks, we train from

them a DeeplabV3 Xception65 model for semantic segmen-

tation over COCOtrain
L . For comparison, we also train a

second model from the original COCO polygon annota-

tions. Since we only annotated large objects (> 80×40 pix-

els), we ignore small instances during both training and test-

ing. We then evaluate over COCOtest
L and observe that both

models perform comparably (52% mIoU COCO masks,

versus 53% ours).

5.4. Corrective clicks: Masks ranking

Once all our annotations are produced, the Mr model

can be used to rank them. We train this model on 1% of

COCO ground-truth (section 4.2) and then use it to rank all

corrective click masks.

Fig. 8 shows mIoU over COCOL when selecting the top

N% ranked masks (bottom N% plot in supp. material). The

slanted shape indicates that Mr is effective at sorting the

masks. A random ranker would result in a horizontal line.

Thanks to Mr we can select a higher quality subset of the

data (the top 70% masks have 90% mIoU), target annota-

tion efforts on the lowest ranking instances (the bottom 30%

have 70% mIoU), or weight training samples based on their

rank. This self-diagnosing capability is a side-effect of us-

ing corrective clicks rather than directly drawing the masks.

6. Conclusion

We have shown that interactive segmentation can be a

compelling approach for instance segmentation at scale. We

have systematically explored the design space of deep inter-

active segmentation models. Based on the gained insights,

we executed a large-scale annotation campaign, producing

2.5M instance masks on OpenImages. These masks are of

high quality (84% mIoU, 75% boundary quality). Addition-

ally, we proposed a technique for automatically estimating

the quality of individual masks. We publicly released these

new annotations hoping they will help further develop the

field of instance segmentation.
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