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Abstract

We present here a method for computational color con-

stancy in which a deep convolutional neural network is

trained to detect achromatic pixels in color images after

they have been converted to grayscale. The method does not

require any information about the illuminant in the scene

and relies on the weak assumption, fulfilled by almost all

images available on the Web, that training images have

been approximately balanced. Because of this requirement

we define our method as quasi-unsupervised. After training,

unbalanced images can be processed thanks to the prelimi-

nary conversion to grayscale of the input to the neural net-

work. The results of an extensive experimentation demon-

strate that the proposed method is able to outperform the

other unsupervised methods in the state of the art being, at

the same time, flexible enough to be supervisedly fine-tuned

to reach performance comparable with those of the best su-

pervised methods.

1. Introduction

Computational color constancy is a longstanding prob-

lem which consists in correcting images to make them ap-

pear as if they were taken under a neutral illuminant. Com-

putational color constancy can benefit the solution to many

computer vision problems such as visual recognition [14],

surveillance [22], etc., where color is an important feature

for distinguishing objects. Despite its apparent simplicity,

this problem is very challenging for both human and com-

puter vision systems [25, 20].

The last decade has witnessed a remarkable improve-

ment in our capability of addressing many computer vision

problems. The main factor behind this is the development

of deep learning algorithms that make it possible to follow

a very effective data-driven approach [35]. It is not sur-

prising therefore that several attempts have been made to

exploit this machine learning paradigm for computational

color constancy as well [7, 37, 28, 38]. In our opinion, how-

ever, these approaches only partially took advantage of the

potential of deep learning.

The main difficulty in applying deep learning methods

to color constancy consists in the lack of large data sets

annotated with ground truth illuminants. In fact, data sets

used for this purpose are usually obtained by taking pic-

tures of scenes where a standard object of known chromatic

properties (e.g. a color target) has been placed. This pro-

cedure is clearly impractical for the collection of the large

data sets needed by supervised deep learning. Another issue

with color constancy methods based on machine learning is

that the learned models are often specialized for images ac-

quired with the same devices used to collect the training

set. Their application to images taken with other devices

requires some form of adaptation or retraining [2].

We present here a method for computational color con-

stancy that is based on a deep convolutional neural net-

work1. The method leverages large datasets of pub-

licly available images to train the network in a quasi-

unsupervised setup. No ground truth about the color of

the illuminant is needed. Instead, the method exploits the

assumption that training images have been approximately

balanced either manually or by unspecified automatic pro-

cessing pipelines. Because of this assumption (that, as we

will see, is easily fulfilled in practice) we define our method

as “quasi-unsupervised”, instead of just “unsupervised”.

More in detail, the neural network is trained to detect

achromatic pixels. To do so, only a grayscale version of the

input image is taken into account. This way, the output is

independent on the actual color of the illuminant and, there-

fore, the network can be later applied to both balanced and

unbalanced images. The weighted average of the detected

pixels is the estimate of the illuminant that is finally used to

correct the input color image.

We verified the feasibility of the approach by training

several neural networks on three large datasets commonly

used for image recognition and retrieval. The evaluation

on two annotated datasets of raw images demonstrates that

very accurate results can be obtained even if no images from

those datasets were used for training.

The novel design of the proposed method determines re-

1Source code and trained models available at � https://

claudio-unipv.github.io/quasi-unsupervised-cc/
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markable advantages over competing methods in the state

of the art: (i) the method exploits a complex neural network

architecture, without requiring a large training set of anno-

tated images; (ii) the trained model can be applied to unbal-

anced images acquired with any camera without the need

of any kind of adaptation. Despite the complexity of the

setup, the accuracy in estimating the illuminant compares

favorably with respect to those reported in the literature. In

particular, the proposed method is able to outperform the

other unsupervised methods in the state of the art. More-

over, it optionally supports a supervised fine tuning on spe-

cific datasets that makes it possible to reach performance

comparable with those of the best supervised methods.

2. Related work

The computational color constancy methods in the state

of the art are usually divided into two categories: statistics-

based and learning-based. Methods in the former category

make assumptions about the statistical properties of natu-

ral scenes, and estimate the color of the illuminant as the

deviation from such assumptions [46]. Methods in the lat-

ter category estimate the color of the illuminant using a

model learned from training data. The great majority of

recent methods are learning-based, because this approach

allows to reach a generally higher accuracy with respect to

statistics-based methods. Many of these methods employ

models trained on handcrafted features extracted from the

input image, e.g [18, 11, 21, 41, 16], while the most recent

works learn features by using deep convolutional neural net-

works, e.g. [7, 37, 8, 44, 28].

The main difficulty in applying the above deep learning

methods consists in the lack of large scale data sets anno-

tated with ground truth illuminants. As a reference, the

largest data set available for color constancy is three orders

of magnitude smaller than those available for other com-

puter vision tasks such as visual class recognition [42]. Fur-

thermore, such methods tend to degrade their performance

when used in a cross-dataset setup, requiring a fine-tuning

phase to adapt to the new dataset.

These reasons motivate the research of new algorithms

that do not need a dataset with annotated illuminant ground

truths, that we call unsupervised methods, and that produce

results comparable to learning-based methods in the state

of the art. To this end, we propose an alternative catego-

rization of color constancy algorithms into three different

classes: parametric, including methods that rely on a very

small set of parameters to be tuned, e.g. [4, 19, 46]; super-

vised, including methods that need a proper training phase,

e.g. [23, 12, 6]; unsupervised, including methods that do

not need an annotated dataset and can be readily applied to

new datasets without any form of adaptation, e.g. [34, 9].

In the following we review these latter works, which are

the most relevant to the aim of this paper. We refer the

readers to the surveys [26, 25] for additional background.

Interestingly, the first color constancy algorithms that

have been proposed in the state of the art are unsupervised

algorithms. For example the White Point (or MaxRGB)

[34] algorithm assumes that the maximum values obtained

independently from each of the three color channels repre-

sents the color of the illumination. Gray World [9] is based

on the assumption that the average color in the image is

gray and that the illuminant color can be estimated as the

shift from gray of the averages in the image color chan-

nels. Recently Buzzelli et al. [10] proposed a deep learning

method that is not trained with illuminant annotations, but

with the objective of improving performance on an auxil-

iary task such as object recognition. The method therefore

learns to predict illuminant color in absence of any illumi-

nation ground truth data, but it requires label information

for the auxiliary task. Banic and Loncaric [3] proposed an

heuristic named green stability assumption, that can be used

to fine-tune the values of the parameters of the statistics-

based methods by using only raw images without known

ground-truth illumination. In [2] an unsupervised learning-

based method is proposed that learns its parameter values

after approximating the unknown ground-truth illumination

of the training images. Therefore [2] and [3] do not need the

illuminant ground-truth information to be available, but re-

quire a raw training dataset. The same data is also needed by

Qian et al. [40] that proposed a statistical color constancy

method that relies on a novel gray pixel detection followed

by mean shift clustering.

3. Method

Computational color constancy is usually tackled in two

steps: first the color of the illuminant is estimated, then the

estimate is used to correct the input image. In this work we

propose an illuminant estimation method based on a convo-

lutional neural network trained on large datasets of pictures.

The method is “quasi-unsupervised” since its training pro-

cess does not rely on the knowledge of the actual color of

the illuminant in the scene. The method, instead, is based

on the assumption that the training images have been ap-

proximately balanced by their owners before publication.

As a consequence of that, we expect that in most cases the

color of the illuminant appears close to gray. We define the

method as “quasi-unsupervised” (instead of just “unsuper-

vised”) because the assumed preliminary color correction

entails some form of weak supervision, even though such

a correction has not been performed explicitly to achieve

color constancy.

After the training, in order to make it possible to apply

the resulting model to unbalanced raw images, two main

issues need to be addressed: (i) these images will be of dif-

ferent kind with respect to those used for training, and (ii)

an actual ground truth will be available for the evaluation,
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Figure 1. Schematic view of the proposed method. The input image x is first converted to grayscale and then fed to a convolutional neural

network. Then, the color of the illuminant is estimated as the sum of the input RGB pixels, weighted by the output w of the network.

During training the estimate is evaluated with an achromatic loss function.

but not for training. We solve the first issue by converting

the images to grayscale before passing them to the network,

so that they are almost independent on the color of the scene

illuminant. The lack of a ground truth is addressed by train-

ing the network to solve a problem that can be considered a

proxy of illuminant estimation: the detection of achromatic

pixels. An overview of the method is given in Figure 1,

details are explained in the following sections.

Once an estimate of the color of the illuminant has been

computed, it can be used to correct the input image. To do

so we apply the von Kries model [47], that consists in scal-

ing the color components of the pixels by the corresponding

components of the estimate.

3.1. Illuminant estimation

Many illuminant estimation methods are based on the

simple fact that the color of the illuminant directly con-

tributes to the color of the image pixels. These methods

expect that by averaging all or some of the pixels the corre-

sponding reflectances in the scene cancel out, leaving as a

result the color of the light source. Examples of this strat-

egy are the Gray World algorithm (that takes the average

over the whole image), the White Patch algorithm (that av-

erages a group of the brightest pixels), and the White Point

algorithm (that takes just the pixel with the highest level of

brightness).

Here we propose to train a convolutional neural network

to select which pixels should be used to estimate the color

of the illuminant. More precisely, the estimate will be a

weighted sum of the input pixels where the weights are the

output of the network. For a H × W input RGB image

x (xij ∈ R
3) the network yields a weight map w (wij ∈

[0, 1]) which is used to compute the scene illuminant I as:

I =

∑H

i=1

∑W

j=1
xijwij

Z
, (1)

where Z is a factor that normalizes the vector to make it

have unit Euclidean norm.

When fed with public images, taken from the web or

from datasets used by the computer vision community, in

accordance with the balancing assumption we want the net-

work to produce an achromatic estimate. The divergence

of the estimated color from the gray axis can then be used

as a loss function to train the network. We call this loss

the achromatic loss LA(I), and we define it in terms of

the cosine of the angle between the network estimate I =
(Ir, Ig, Ib)

T and the gray axis:

LA(I) = 1−
Ir + Ig + Ib

ǫ+
√

3(I2r + I2g + I2b )
, (2)

where ǫ = 10−4 is a small quantity used to stabilize the

ratio. It can be easily shown that the loss is non-negative,

and that it is close to zero only when Ir ≃ Ig ≃ Ib.

The key idea is that by minimizing LA(I) the network

will learn to assign high weights to the pixels that are likely

to be achromatic. Of course this task would be trivial if the

network was able to see the input RGB image. To force

the network to learn a more elaborate strategy we feed it,

instead, with a gray-level version of the image. In fact, it

has already been shown that is possible to train a network

to predict colors from gray-level images (i.e. to perform an

automatic colorization [49]). Here, through the achromatic

loss, we implicitly train it to identify gray pixels.

The advantage of this approach is that what the network

learns can be used to estimate the illuminant even when the

balancing assumption does not hold. In particular it is pos-

sible to apply it to the unbalanced images that form the

datasets commonly used to evaluate color constancy algo-

rithms. For these images we expect that the network selects

pixels that appear with the same color of the illuminant be-

cause they are part of matte gray objects in the scene, of

highlights reflecting the light source, etc. In other words, by

making use of information that is substantially independent

on the color of the illuminant, we expect that the network

will learn to make accurate estimates for both balanced and

unbalanced images.
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However, to make this possible care has to be taken to

make the network work equally well for both the public bal-

anced images used for training and the unbalanced images

used for the evaluation. In fact, the two kind of images usu-

ally have a very different dynamic range, may have clipped

values or not, etc. Moreover, public images are likely to

be in the sRGB color space, while test images are in the

raw format of the acquisition device. To make their gray-

level versions comparable we compute them as the average

of the RGB color channels (that, with respect to more so-

phisticated conversions, makes as less assumptions as pos-

sible), and we apply a histogram equalization. Equalization

adaptively distorts the gray levels, reducing the differences

between images taken with different devices, or processed

by different pipelines.

Moreover, before their conversion to grayscale training

images, that are assumed to be in the sRGB color space, are

preliminary processed with a gamma removal to make their

pixels’ values linear with respect to energy:

c′ =

{

c/12.92 if c ≤ 0.04045,

((c+ 0.055)/1.055)
2.4

otherwise,
(3)

where c and c′ represent one of the three color channels

before and after the transformation [29].

A difficulty in minimizing LA(I) is that, due to the nor-

malization in (1), the estimate I is invariant under scalings

of w. A consequence of this invariance is that the neural

network is not encouraged to use the whole [0, 1] range for

w, since it can assign tiny weights to the pixels without

changing the final estimate. This negatively affects the sta-

bility of the optimization algorithm. To push the network to

use larger weights we introduced an additional noise term

n ∈ R
3 in Equation (1):

I =
n+

∑H

i=1

∑W

j=1
xijwij

Z
, (4)

where the three components of n are normally distributed

with zero mean and σ2 variance. The larger the variance,

the larger the average weight assigned by the network to

make the contribution of noise negligible. The noise term

also acts as regularizer and is used only during training.

3.2. Extensions and variations

The proposed method is quite flexible, and can easily ac-

commodate several variations. In particular, the grayscale

image can be replaced by, or combined with other informa-

tion, provided that it is independent on the color of the il-

luminant. We experimented with information derived from

the spatial gradient computed on each color channel. Since

the magnitude of the gradient is strongly correlated with

the color of the illuminant, we consider only the direction.

More precisely, for each color channel we compute the hor-

izontal and the vertical spatial derivatives by applying the

Sobel operators [45]. Then, the two derivatives are nor-

malized to form a unit-length vector. This procedure yields

a six-channel image (two derivatives times three channels)

that can be used as input of the neural network.

3.3. Supervised fine tuning

Even though the main focus of this work is the quasi-

unsupervised setting, it is possible to adapt the method to

supervised learning as well. To do so it is sufficient to re-

place the achromatic loss in (2) with a chromatic loss LC ,

defined in terms of the cosine of the angle between the esti-

mated illuminant I and the target illuminant Î = (Îr, Îg, Îb):

LC(I, Î) = 1−
Ir · Îr + Ig · Îg + Ib · Îb

ǫ+
√

(I2r + I2g + I2b )(Î
2
r + Î2g + Î2b )

. (5)

Supervised training of a deep learning model requires a

large dataset annotated with a suitable ground truth. Since

this is hard to achieve, we propose to follow a fine tuning

procedure [36]. In this case, the parameters of the network

are initialized by the quasi-unsupervised learning on a large

dataset. Then the training process continues with super-

vised learning over a smaller annotated dataset with a small

learning rate.

3.4. Neural network architecture

The architecture of the neural network used in this work

is an adaptation of that proposed by Isola et al. [30] for

image-to-image translation. We chose to take inspiration

from that architecture because it demonstrated to be suit-

able for image colorization, a task that is somewhat related

to the detection of achromatic pixels.

The network takes as input a 256× 256 graylevel image

(possibly augmented with gradient information) and pro-

duces as output a 256 × 256 weight map. The layers form

a U-shaped encoder/decoder with skip connections. There

are eight convolutions with kernel size 4 × 4 and stride 2

that are paired to eight deconvolutions (transposed convolu-

tions) with the same kernel size and stride. All these oper-

ations (with exception of the first and the last) are followed

by a batch normalization and other non-linearities (leaky

ReLUs with slope 0.2 for convolutions and conventional

ReLUs for deconvolutions). For the last deconvolution the

ReLU is replaced by a sigmoid that yields the weights as-

signed to the input pixels. During training, the first three de-

convolutional blocks include dropout with probability 0.5.

The entire net include about 54 millions of learnable param-

eters. Preliminary tests shown that simplifying the architec-

ture slightly reduces the final accuracy.
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Input Output
⊕

C64l D1σ C512bl D512br

⊕ ⊕

C128bl D64br C512bl D512bdr

⊕ ⊕

C256bl D128br C512bl D512bdr

⊕ ⊕

C512bl D256br C512bl D512bdr

Figure 2. Structure of the neural network. In the diagram Ck de-

notes a convolution with k output channels. Similarly, Dk repre-

sents a deconvolution (transposed convolution). All convolutions

and deconvolutions have a kernel size of 4 × 4 and stride 2. The

other operations are denoted by: l → leaky ReLU, r → ReLU,

b → batch normalization, d → dropout, σ → sigmoid, ⊕ →

concatenation along channels. Operations in the same group are

executed from left to right.

4. Experimentation

The neural network has been trained by running 300 000
iterations of the Adam optimization algorithm [33]. The ob-

jective function was the achromatic loss, as defined in Equa-

tion (4), with the standard deviation of the noise term set to

100. Each iteration analyzed a mini-batch of 16 images; the

learning rate was 10−4 and the coefficient for weight decay

was 10−5. All the parameters have been empirically set on

the basis of a few preliminary experiments.

For deep learning applications the quality of training data

is of paramount importance. In this work we decided to

adopt three large datasets widely used to train image recog-

nition and retrieval systems. The Ilsvrc12 is the dataset

that has been made publicly available for the Internet Large

Scale Visual Recognition Challenge [42] which probably

represents the most popular benchmark for image recog-

nition. The dataset consists of approximately 1.2 millions

samples taken from of 1000 different categories among

those collected for the ImageNET initiative [17].

The second dataset is Places365 [50] which includes

about 1.8 millions images representing 365 different cate-

gories of scenes. Images were obtained by querying several

search engines with terms taken from WordNet, and then

manually annotated. The main purpose of the dataset is to

serve as benchmark for scene recognition systems.

The last dataset we considered is the Flickr100k

dataset [39]. It consists of 100 071 images collected from

the Flickr photo sharing service by searching for the 146

most popular tags. The dataset has been collected to evalu-

ate image retrieval algorithms.

We chose three diverse datasets with the aim of assessing

how much the nature of the training images influences the

quality of the learned model. Ilsvrc12 and Places365 con-

sist of images taken from search engines, while Flickr100k

includes images from a single source. Ilsvrc12 includes

many “object centric” images with little or no background,

while Places365 focuses on whole scenes. Images from

Flickr100k seem, on average, of higher quality than those

from the other two datasets.

Figure 3 reports some examples of images from the

three datasets processed by the trained networks (images

have been taken from the validation sets of Ilsvrc12 and

Places365 and from the training set of Flickr100k). The

strategy followed in selecting the pixels for the estimation

of the illuminant can be inferred by looking at the weights.

The network often selects light sources such as lamps, the

sky or the sun. Windows are often selected in indoor scenes

with the light coming from outside. The network seems also

quite good in identifying highlights and surfaces diffusing

the light directly from the source. It is quite common the

case in which dark areas are selected: this is due to their

limited impact on the sum in Equation (1).

Figure 3 also shows that not all the images are well bal-

anced. Some of them present a strong non-neutral color cast

which is very evident in the case of sunsets and nighttime

images, and for some indoor images. However, the illumi-

nant estimate provided by the method seems coherent with

the content of the images. Even though we cannot quanti-

tatively evaluate the estimates due to the lack of a ground

truth, we can observe that the images balanced according to

the estimates look pleasantly natural. This suggests that the

network learned how to balance the outliers by modeling a

large number of “almost balanced” images.

4.1. Evaluation

The aim of the proposed method is to achieve a high

accuracy in estimating the color of the illuminant in un-

balanced pictures. To assess this we processed two dif-

ferent datasets of raw images commonly used to evaluate

color constancy algorithms. Both datasets contain high-

resolution photographs, representing scenes including a

color calibration target (the Macbeth ColorChecker). For

each image a ground truth illuminant has been computed by

analyzing the gray patches in the color target.

The first test dataset is the Color Checker (CC), in the

variant reprocessed by Shi and Funt [23, 43]. It consists

of 568 images acquired with a Canon 1D, and a Canon

5D cameras. The second dataset has been collected by

a research group in the National University of Singapore

(NUS) [15] and includes 1853 images acquired with 9 dif-
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Ilsvrc12 Ilsvrc12 Ilsvrc12 Places365 Places365 Places365 Flickr100k Flickr100k Flickr100k
0.4 2.7 12.5 0.4 0.1 0.4 0.4 5.1 13.2

Figure 3. Examples of images from the training sets, processed by the trained networks. The top row shows the input images, each one with

superimposed a circle representing the estimated color of the illuminant. Inside the circle is reported the angular difference (in degrees)

between the estimate and the gray axis. The second row reports the weights assigned by the network to the pixels (blue → 0, yellow → 1).

The third row reports the images balanced with the estimated illuminant.

ferent cameras. As suggested by Hordley and Finlayson the

error metric we considered is the angle between the esti-

mated and the ground truth illuminants [27].

The results we obtained by applying the trained models

to the two test datasets are summarized in Table 1. The

mean and median angular errors are quite uniform over the

three training sets with differences of about 0.2 degrees or

less. This is very important since it demonstrates that the

type of photographs used for training is not of primary im-

portance. It also suggests that our method is relying on

assumptions (i.e. that training images have been balanced)

that are easily met in practice.

For each combination of training and test datasets we

evaluated three variants differing in the kind of data pro-

cessed by the network. The first processes equalized

grayscale images, the second analyzes gradient directions,

and the third is based on a combination of the two. In all the

cases using gradient directions, alone or in combination, al-

lowed to obtain better results than using just the grayscale

image. For the CC dataset the lowest median angular error

has been obtained by the model trained on Ilsvrc12 using

both grayscale and directions. For NUS the best combina-

tion in terms of median angular error was to use the model

trained on Flickr100k using just the gradient directions. For

the rest of the experiments we consider as reference version

the one trained on Ilsvrc12 with grayscale and directions.

Figure 4 shows the result of processing some images

from the test sets. It can be noticed how, even in the case of

unbalanced images, the network selects meaningful regions

such as those representing the light sources or highlights.

Differently than with training images, this time the selected

pixels are not achromatic. They appear, instead, approxi-

Training set Test set Input Mean Median Max

Ilsvrc12 CC Grayscale 4.04 2.67 27.88

CC Directions 3.67 2.53 17.62

CC Both 3.46 2.23 21.17

Places365 CC Grayscale 4.01 2.60 27.72

CC Directions 3.43 2.38 18.31

CC Both 3.60 2.45 21.47

Flickr100k CC Grayscale 4.09 2.67 27.09

CC Directions 3.70 2.48 20.86

CC Both 3.59 2.25 20.04

Ilsvrc12 NUS Grayscale 3.14 2.24 22.39

NUS Directions 2.97 2.15 15.89

NUS Both 3.00 2.27 19.16

Places365 NUS Grayscale 3.24 2.32 22.66

NUS Directions 2.91 2.24 16.05

NUS Both 3.07 2.20 17.12

Flickr100k NUS Grayscale 3.27 2.38 21.28

NUS Directions 2.95 2.12 16.40

NUS Both 2.98 2.16 15.86

Table 1. Statistics of angular errors (in degrees) obtained by varia-

tions of the proposed method on the CC and NUS datasets. Train-

ing has been performed on three datasets with different inputs:

equalized grayscale, gradient directions, and their combination.

mately with the color of the ground truth illuminant. As a

result, the images balanced according to the estimates ap-

pear as if they were taken under a neutral illuminant.

4.2. Fine tuning

When an annotated training set is available it is possible

to improve the performance of the neural network by fine

tuning its parameters. This is done by continuing the train-
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CC CC CC CC NUS NUS NUS NUS NUS
5.2 0.2 10.4 5.3 2.7 2.8 3.9 0.9 0.6

Figure 4. Examples of test images processed by the network trained on ILSVRC12 (grayscale version). From top to bottom the rows show

the input image, the weights assigned to the pixels, and the images balanced according to the illuminant estimates. The colors of the circle

over the input images show the illuminant estimate (upper half) and the ground truth (lower half). The number in the circle is the angular

error expressed in degrees. For visualization purposes, input and balanced images have been gamma corrected.

Dataset Mean Median Max

CC 2.91 (-0.55) 1.98 (-0.25) 19.9 (-1.2)

NUS 1.97 (-1.03) 1.41 (-0.86) 20.5 (+1.6)

Table 2. Statistics of angular errors (in degrees) obtained by the

network trained on Ilsvrc12 and fine tuned on the two test datasets.

The values in brackets report the difference with respect to those

obtained in the quasi-unsupervised setting.

ing in a supervised way using a small learning rate. Here

we performed 250 000 additional iterations, with a learning

rate of 10−7, and without the noise term in Equation (4).

We repeated the experiment for both the Color Checker and

the NUS datasets. In both cases we evaluated the final per-

formance with a three-fold cross validation.

Table 2 reports the results we obtained by fine-tuning the

neural network trained on Ilsvrc12 processing the combina-

tion of grayscale image and gradient directions (for the sake

of brevity we omit the performance obtained by the other

variants). For both test datasets the mean and the median

angular error decreased. In the case of the NUS dataset the

improvement was particularly noticeable, with more than

one degree of difference in the mean error.

4.3. Comparison with the state of the art

Table 3 reports the statistics of the angular errors for sev-

eral methods in the state of the art. The values have been

taken from the literature or obtained by executing publicly

available implementations. The methods are divided in un-

supervised, parametric and supervised ones. The three cat-

egories are further split into: “in dataset”, meaning that the

method is trained/tuned with cross validation on the same

color constancy dataset on which is tested; “cross dataset”,

meaning that the method is trained/tuned on one color con-

stancy dataset and tested on a different one; “no dataset”,

meaning that the method is not trained/tuned on any color

constancy dataset.

From the results reported in Table 3 and Figure 5 it is

possible to notice that the proposed method is able to out-

perform all the purely unsupervised algorithms (i.e. Un-

supervised no-db) in the state of the art by a large margin

with a reduction of the median angular error by 37.9% and

9.6% on the CC and NUS datasets respectively, showing at

the same time a more stable performance across all the dif-

ferent cameras. In the cross-dataset setting, the proposed

method is able to outperform all the supervised methods.

Concerning parametric methods, our method outperforms

all of them on all the error statistics considered except for

the median error on NUS. Interestingly, parametric methods

have shown to perform better than supervised methods in

this setting. In the completely supervised setting, the fine-

tuned version of the proposed method is able to outperform

all the parametric methods and to compete with the super-

vised ones obtaining the best mean error in the state of the

art on NUS, and the second best median.

5. Conclusions

We presented here a method for computational color

constancy which exploits a deep convolutional neural net-

work and leverages large unannotated datasets thanks to a

quasi-unsupervised learning procedure. We trained several

variants of the method differing in the kind of information

processed and in the training dataset. The experimental re-

sults showed that the proposed method is able to outperform

12218



20mm 20mm 20mm

Figure 5. Visual summary of the median errors of the proposed method, with and without fine tuning, on CC, NUS and individual NUS

cameras. The method is compared with three groups of algorithms. From left to right: unsupervised (no-db), parameteric (cross-db) and

supervised (cross-db). For each group are drawn the best and worst median error, the interquartile range, the median ad the mean.

Color Checker NUS NUS median, camera-by-camera

Method Mean Med. Max Mean Med. Max C1 C600 Fuj. N52 Oly. Pan. Sam. Son. N40

Unsupervised (in-db)

SoG [19] with GSA [3] 4.05 2.54 21.87 3.31 2.58 21.01 2.37 2.57 2.38 2.54 2.51 2.51 2.51 2.54 2.46

gGW [4] with GSA [3] 4.05 2.58 21.15 3.45 2.68 22.48 2.45 2.61 2.61 2.59 2.71 2.77 2.63 2.55 2.66

GE1[46] with GSA [3] 4.03 3.08 18.89 3.18 2.48 24.16 2.26 2.72 2.33 2.70 2.72 2.62 2.33 2.36 2.36

GE2[46] with GSA [3] 4.13 3.34 17.78 3.41 2.52 31.21 2.27 2.59 2.39 2.66 2.71 2.61 2.63 2.45 2.37

Banic and Loncaric [2] 2.96 1.70 1.79 1.66 1.72 1.70 1.71 1.63 1.61 1.60

Unsupervised (no-db)

WP [34] 5.97 3.74 45.00 3.57 2.49 26.87 2.28 2.24 2.74 2.48 2.07 2.62 2.61 2.44 3.67

GW [9] 4.76 3.59 24.92 4.17 3.17 22.34 3.84 3.13 3.29 3.39 2.63 3.07 2.98 2.94 3.50

Buzzelli et al. (gl. norm)[10] 4.84 4.12 20.80 4.88 4.17 18.70 4.12 4.00 3.43 4.19 3.83 3.87 4.37 4.34 5.37

Buzzelli et al. (ch. norm)[10] 5.48 4.81 19.88 4.32 3.37 22.36 3.18 3.15 3.06 3.08 3.06 3.26 3.77 3.02 4.76

Proposed 3.46 2.23 21.17 3.00 2.25 19.16 2.27 2.09 2.24 2.21 2.36 1.98 2.01 2.27 2.97

Parametric (in-db)

SoG [19] 3.85 2.43 20.89 3.42 2.45 26.27 2.28 2.24 2.69 2.36 2.17 2.42 2.53 2.39 3.71

gGW [4] 4.12 2.52 22.51 3.37 2.49 23.73 2.43 2.35 2.50 2.29 2.50 2.39 2.61 2.58 3.69

GE1 [46] 4.06 2.67 23.05 3.18 2.18 21.81 2.37 2.00 2.06 2.23 1.98 2.02 2.13 2.34 2.70

GE2 [46] 4.18 2.68 24.05 3.19 2.18 24.29 2.29 1.86 2.13 2.16 1.94 2.01 2.07 2.31 2.72

BP[32] 3.98 2.61 2.48 2.45 2.48 2.67 2.30 2.18 2.15 2.49 2.62 3.13

Cheng et al.[15] 3.52 2.14 28.35 3.02 2.12 23.28 2.01 1.89 2.15 2.08 1.87 2.02 2.03 2.33 2.72

Grey Pixel (edge) [48] 4.60 3.10 3.15 2.20

Parametric (cross-db)

SoG [19] 6.08 3.85 37.24 3.44 2.59 18.40 2.73 2.43 2.70 2.58 2.47 2.41 2.41 2.68 2.94

gGW [4] 4.66 2.84 31.59 3.53 2.71 19.87 2.71 2.53 2.81 2.67 2.62 2.56 2.48 2.75 3.14

GE1 [46] 4.06 2.67 23.05 3.18 2.18 21.81 2.37 2.00 2.06 2.23 1.98 2.02 2.13 2.34 2.70

GE2 [46] 4.26 2.82 23.45 3.53 2.62 23.00 2.92 2.62 2.58 2.62 2.63 2.33 2.34 2.66 3.20

Qian et al. [40] 3.65 2.38 26.12 3.16 2.15 21.93 2.22 2.07 1.91 2.18 2.06 2.11 2.14 2.14 3.05

Supervised (in-db)

Bayesian [23] 4.70 3.44 2.81 2.80 2.35 3.20 3.10 2.81 2.41 3.00 2.36 3.53

Spatio-Spectral (ML) [13] 3.55 2.93 2.54 2.80 2.32 2.70 2.43 2.24 2.28 2.51 2.70 2.99

Spatio-Spectral (GP) [13] 3.47 2.90 2.39 2.67 2.03 2.45 2.26 2.21 2.22 2.29 2.58 2.89

Natural Image Statistics [24] 4.09 3.13 2.69 3.04 2.46 2.95 2.40 2.17 2.28 2.77 2.88 3.51

Exemplar-based [31] 2.89 2.27

Chakrabarti (Empirical)[12] 2.89 1.89

Chakrabarti (End-to-end)[12] 2.56 1.67

Cheng et al. [16] 2.42 1.65 1.58 1.57 1.62 1.58 1.65 1.41 1.61 1.78 1.48

Color Dog [1] 1.49 1.76 1.72 1.85 1.81 1.94 1.46 1.69 1.89 1.77

Bianco et al. [8] 2.36 1.44 16.98 1.77 1.71 1.85 1.75 1.88 1.65 1.59 1.88 1.63 2.00

FFCC [6] 1.78 0.96 16.25 1.99 1.34 19.80 1.34 1.33 1.35 1.45 1.16 1.28 1.47 1.35 1.36

Oh and Kim [38] 2.16 1.47 2.41 2.15 2.18 1.75 2.75 2.00 2.22 1.53 1.65 3.11 2.68

CCC (dist+ext) [5] 1.95 1.22 2.38 1.48

FC4(AlexNet) [28] 1.77 1.11 2.12 1.53

DS-Net (HypNet+SelNet) [44] 1.90 1.12 2.24 1.46

Proposed + Fine Tuning 2.91 1.98 19.9 1.97 1.41 20.50 1.59 1.26 1.34 1.52 1.35 1.29 1.30 1.52 1.84

Supervised (cross-db)

Bayesian [23] 4.75 3.11 3.65 3.08

Exemplar-based [31] 6.50 5.10

Chakrabarti (Empirical) [12] 3.87 3.25 3.49 2.87 2.39 3.03 3.72 3.07 4.30 2.00 3.15 3.92

Chakrabarti (End-to-end) [12] 3.89 3.10 3.52 2.71 2.18 2.42 3.01 3.17 3.29 2.33 3.13 4.32

Cheng et al. [16] 5.52 4.52 4.86 4.40

FFCC [6] 3.91 3.15 3.19 2.33

Table 3. Performance comparison with the state of the art in terms of angular error on the CC and NUS datasets.

the other unsupervised methods in the state of the art, being

at the same time flexible enough to be supervisedly fine-

tuned on a specific dataset reaching performance compara-

ble with those of the top supervised methods. In this work

we focused on the quasi-unsupervised setting. In the fu-

ture we plan to explore more thoroughly the supervised fine

tuning step, possibly by experimenting with more complex

techniques taken from the literature on transfer learning and

on domain adaptation.
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