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Abstract

We present in this work the first end-to-end deep learn-

ing based method that predicts both 3D hand shape and

pose from RGB images in the wild. Our network consists

of the concatenation of a deep convolutional encoder, and a

fixed model-based decoder. Given an input image, and op-

tionally 2D joint detections obtained from an independent

CNN, the encoder predicts a set of hand and view param-

eters. The decoder has two components: A pre-computed

articulated mesh deformation hand model that generates

a 3D mesh from the hand parameters, and a re-projection

module controlled by the view parameters that projects the

generated hand into the image domain. We show that us-

ing the shape and pose prior knowledge encoded in the

hand model within a deep learning framework yields state-

of-the-art performance in 3D pose prediction from images

on standard benchmarks, and produces geometrically valid

and plausible 3D reconstructions. Additionally, we show

that training with weak supervision in the form of 2D joint

annotations on datasets of images in the wild, in conjunc-

tion with full supervision in the form of 3D joint annotations

on limited available datasets allows for good generalization

to 3D shape and pose predictions on images in the wild.

1. Introduction

Human hand pose estimation and reconstruction in 3D

is a long standing problem in the computer vision and

graphics communities that has applications in various do-

mains such as virtual and augmented reality and human-

machine interaction [35, 15, 46, 13]. With the abundance

of affordable commodity depth cameras, the research liter-

ature focused naturally more on estimating 3D hand pose

through depth observations (e.g. [62, 66, 10, 36, 61]), and

many works also explored this problem in multi-view setups

[33, 65, 41, 8, 31, 50]. When it comes to a monocular color

input, the problem becomes inherently ill posed due to the

increased depth and scale ambiguities, but that did not pre-

vent several researchers [4, 9, 51, 57, 63, 39] from attempt-

ing to solve it in the past albeit with limited results. More

recently, the unprecedented success of deep learning on

similar tasks motivated new work with encouraging results

for 3D hand pose from single images [68, 27, 7, 47, 14].

Nevertheless, this task remains particularly difficult: Un-

like clothed human bodies or faces, hands have an almost

uniform appearance and lack characteristic local features

such as eyes and mouths in faces. Unlike bodies, they

can have more complex pose configurations and they can

be captured from a much wider range of views. Further-

more when observed in the wild, as in dataset MPII+NZSL

[44] (Figure 9), their images usually contain external oc-

clusion, self-occlusion, clutter and blur due to their motion.

Besides, hands are often small in size compared to the scene

so cropped patches around them have low resolutions.

The main obstacles for 3D hand pose estimation from

images with deep learning include: (i) The lack of large

datasets annotated with reliable 3D ground-truth and (ii) the

incapability of the current 3D annotated datasets to make

networks generalize greatly to challenging images in the

wild.

The first point is tackled by the literature through train-

ing with synthetic images [68], populating datasets by trans-

forming synthetic images into real looking ones [27], or

leveraging auxiliary types of data in training like depth

[7, 47]. We propose a different and simple yet efficient

approach to alleviate both challenges (i) and (ii) by cir-

cumventing heavy dependence of 3D data in training: In-

stead of relying on images paired with 3D joint annotations

to learn a prior on hand geometry, we exploit a recently

proposed differentiable articulated mesh deformation hand

model [40] built with linear blend skinning [18], and we

reformulate the prediction problem into a learning-based

model fitting, that can be trained using both 3D and 2D

joint annotations. Training with 2D annotated images al-
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Figure 1: Our pipeline takes as input a hand image and optionally 2D joint heat-maps from an independent CNN. The encoder

generates the shape, pose and view parameters. The hand parameters are fed to the hand model that generates a triangulated

3D mesh and its underlying 3D skeleton. The latter are re-projected into the image domain using a weak perspective camera

model controlled by the view parameters. This network is trained end-to-end with a combination of weak 2D and full 3D

joint supervision. The hand and view parameters are not supervised.

lows access to larger datasets (e.g. PANOPTIC [44]) with a

fair share of annotated images in the wild (e.g. MPII+NZSL

[44]) compared to datasets with 3D ground-truth, thus help-

ing improve generalization to this type of challenging data.

Given an input image, and optionally 2D joint detections

obtained from an independent CNN, a deep convolutional

encoder predicts the hand shape and pose parameters and

view parameters. The model-based decoder uses the latter

to generate a 3D triangulated hand mesh and its underly-

ing skeleton, along with their re-projection in image domain

(see Figure 1).

Our contributions in this paper are as follows: This work

is the first to propose end-to-end learning of both 3D hand

shape and pose from a single RGB image. We also show

for the first time that the prior knowledge of factored hand

shape and pose in a pre-computed linear blend skinning [18]

hand model [40] combined with a deep-convolutional en-

coder yields state-of-the-art performance in 3D pose pre-

diction from images, and produces geometrically valid and

plausible 3D reconstructions, without the need for post-

processing optimizations [27]. We show that this strategy

combined with training on 2D annotated datasets of images

in the wild produces good generalization in 3D hand recon-

struction for challenging images in uncontrolled environ-

ments.

We evaluate our work both quantitatively in terms of

3D pose estimation and qualitatively using various public

datasets. These evaluation sets account for cases of hand

interaction with objects, occlusion and clutter, and contain

egocentric view images, third person view images, and im-

ages in the wild. Our method obtains state of-the-art results

on standard benchmarks, even compared to methods us-

ing additional depth information in training [7, 47], camera

intrinsics [27, 34], and post-processing optimization [27].

Our method shows superior qualitative results on a chal-

lenging dataset of images in the wild (Figure 9 & supple-

mentary material).

2. Related work

There is a rich literature on 3D hand pose and reconstruc-

tion from depth [62, 66, 10, 36, 61, 11, 43, 45, 19, 20, 24,

30, 37, 48, 52, 53, 59, 64], image and depth [26, 32, 49, 28],

stereo [33, 65, 41] and multiple images [8, 31, 50]. We fo-

cus hereby on research material that solely considers a sin-

gle color input image.

3D hand pose from a single image

Pre-deep learning There have been attempts to solve

3D hand pose estimation from a monocular color input prior

to deep learning with both discriminative and generative ap-

proaches [4, 9, 51, 57, 63, 39]. However, most of these

methods have limited performance and depend on various

requirements such as careful initialization and prior knowl-

edge of the background.

Deep learning The work of [68] was the first to pro-

pose 3D hand pose estimation from single images using

deep learning. Their method consists of the concatenation

of three networks that segment the hand, predict 2D joints,

and then predict 3D joints subsequently. The work of [27]

shows that the previous method generalizes poorly to real

world images since a major part of their training data is

synthetic. In turn, they ([27]) propose to use Cycle-GAN

[67] to transform synthetic 3D annotated images of hands

into real looking ones. The resulting data is used to train

a regressor to predict 2D and 3D hand joints. A final op-

timization step fits a 3D skeleton to the former 2D and 3D

predictions using the camera intrinsics. The method in [34]

consists in an optimization that fits a hand model to 2D joint

detections obtained from a state-of-the-art CNN [44]. We

also use a pre-defined hand model [40] but within a pipeline

trained end-to-end.

Depth regularization Recent works tackle depth am-

biguity in 3D hand pose prediction from images by lever-

aging depth maps in training. [7] proposes to reduce the

10844



dependency on noisy 3D annotations in real datasets by in-

troducing a network that predicts full depth maps from the

3D joints. This depth regularizer is trained with ground-

truth depth data for both real and synthetic training images,

while the 3D predictions are only supervised by the reli-

able synthetic labels. The authors in [47] use multiple vari-

ational auto-encoders sharing the same latent space each

auto-encoding a separate hand data modality (e.g. images,

2D joints, 3D joints). They show that the auxiliary auto-

encoders help regularize the latent space and produce im-

proved cross-modal predictions (e.g. image to 3D joints).

[14] shows that predicting an implicit 2.5D heat-map repre-

sentation yields improved 3D predictions even without ex-

plicit full depth-map supervision.

Hand models Many hand models have been proposed in

the literature primarily aiming at tracking depth and color

data, where the hand is modelled using various techniques

such as assembled geometric primitives [32], sum of Gaus-

sians [50], sphere meshes [58] or loop subdivision of a con-

trol mesh [20]. In order to better capture the shape of the

hand, [32] defines scaling terms to allow bone length to

vary, while [54] pre-calibrates the shape to fit the hand of

interest. The work in [20] was the first to learn hand shape

variation from scans with linear blend skinning [18]. The

model proposed recently in [40] and referred to as MANO

improves on the latter by learning pose dependent correc-

tive blend shapes [25], thus modelling both hand shape and

pose and generating more realistic posed meshes. We use

the MANO [40] model in this work.

Model-based decoders Several works propose to com-

bine deep convolutional encoders with generative models as

decoders for human face [56, 55] and body [17, 60] 3D re-

construction. In many of these works, the decoder is a com-

bination of a parametric model (e.g. linear face model [6],

SMPL [25]) and a re-projection/rendering module. While

most works fix these decoders, some propose to tune them

after a supervised initialization [2, 22, 55]. This is the first

work to propose a combination of a CNN encoder with a

fixed generative hand model [40] for the problem of 3D

hand reconstruction from images.

3. Overview

As illustrated in Figure 1, our pipeline takes as input an

image of a hand and optionally 2D joint heat-maps from an

independent hand detector. A deep convolutional encoder

processes the input and generates a set of hand shape β and

pose θ parameters, and a set of view parameters R, t and s.

The hand parameters are fed to a differentiable articulated

mesh deformation hand model that generates a triangulated

3D mesh and its underlying 3D skeleton. These outputs

are then re-projected into the image domain through a weak

perspective camera model controlled by the view parame-

ters. The re-projection module and the hand model together

form a model-based decoder whose parameters are fixed

and do not require training. The encoder is pre-trained with

synthetic examples that we created as elaborated in Section

6. We note that the training of our pipeline is done end-to-

end using 2D and 3D joint annotations without supervision

on the hand and view parameters, except for a regularization

on the hand parameters to ensure their magnitude is small.

We detail and explain the functioning of the various parts of

the pipeline in the following.

4. Hand model

We use the MANO hand model [40] which is based on

the SMPL model for human bodies [25]. It is an articulated

mesh deformation model represented with a differentiable

function M(β,θ) taking as input two sets of parameters β

and θ that control the shape and pose of the generated hand

respectively:

M(β,θ) = W (T (β,θ), J(β),θ,W), (1)

where W is a linear blend skinning [18] function applied

to a template hand triangulated mesh T rigged with a kine-

matic tree of K = 16 joints. J represents the joint locations

and it is learned as a sparse linear regressor from mesh ver-

tices, and W are the blend weights.

In order to reduce the artifacts of linear blend skinning

such as overly smooth outputs and mesh collapse around

joints, the hand template T is obtained by deforming a mean

mesh T̄ with both shape and pose corrective blend shapes,

Sn and Pn respectively, as follows:

T (β,θ) = T̄+

|β|∑

n=1

βnSn+

9K∑

n=1

(Rn(θ)−Rn(θ
∗))Pn, (2)

where Rn(θ) is the nth element of a vector concatenating

rotation matrix coefficients from all joints for pose θ and

θ∗ is the rest pose. The model constants {T̄,S,P, J,W}
are learned using registered hand scans from 31 subjects

performing roughly 51 hand poses.

In the SMPL model, the pose vector θ stacks the angle-

axis values of the joints. To help the hand model generate

physically plausible poses, the authors in [40] reduce this

pose representation to a linear embedding by performing

Principal Component Analysis on angle-axis values of the

joints in the data collected to build the model. The pose

vector θ contains the resulting main coefficients from PCA

instead of the angle-axis values. 10 coefficients are retained

for the pose (θ ∈ IR10), and 10 coefficients are used to

represent the shape as well (β ∈ IR10).

Given input shape and pose parameters, we obtain a hand

mesh M(β,θ) of N = 778 vertices and 1538 faces, along

with the corresponding 3D joints J(β,θ) = Rθ(J(β))
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where Rθ is the global rigid transformation induced by pose

θ. As the hand skeleton in MANO does not contain finger

tip joints, we append J with 5 vertices from the hand mesh

that correspond to these key-points. The final 3D joint out-

put J(β,θ) counts 21 key-points.

5. Camera model

In order to re-project the 3D hand mesh vertices M(β,θ)
and 3D joints J(β,θ) into the 2D image plane, we use

the weak perspective model. This approximation allows

us to train with annotated images even in the absence of

camera intrinsics, which is the case of images in the wild

obtained from Youtube videos for instance (e.g. dataset

MPII+NZSL). Given a global rotation matrix R ∈ SO(3),
a translation t ∈ IR2 and a scaling s ∈ IR+, the projection

writes:

x̂ = sΠ(RJ(β,θ)) + t, (3)

ŷ = sΠ(RM(β,θ)) + t, (4)

where Π is the orthographic projection.

6. Encoder

Given an input hand image, the goal of the encoder is

to predict the corresponding hand pose and shape param-

eters {β,θ} and camera parameters {R, t, s}. We use the

ResNet-50 network [12] and we adjust the final fully con-

nected layer to output a vector v = {R, t, s,β,θ} ∈ IR26.

We note that global rotation R is encoded with axis-angle

values and is hence represented with 3 parameters. We also

experiment with feeding 2D hand joint heat-maps obtained

with a state of the art method [44] as additional channel in-

put to the hand RGB image.

Figure 2: Examples from our synthetic dataset created to

pre-train the encoder.

Network pre-training We pre-train the encoder to en-

sure that the camera and hand parameters converge to-

wards acceptable values. For this purpose, we create a

synthetic dataset of paired hand images with their ground-

truth camera and hand parameters using the same gener-

ative model that we use as a decoder. Hand geometries

are obtained by sampling poses θ ∈ [−2, 2]10 and shapes

β ∈ [−0.03, 0.03]10 then applying rotations R, translations

t and scalings s. Although the work of [40] does not model

hand appearance, the authors provide the scans used to build

the geometry model with their registered counterparts. The

original scans come with 3D coordinates and RGB values

for each vertex. We create example hand appearances using

the registered scan topology: To each vertex in a registered

mesh, we assign the RGB value of the closest vertex in the

original corresponding scan, and we interpolate these values

inside faces. The textured hands are finally rendered on top

of random background images. Figure 2 shows examples

from the resulting dataset.

7. Training objective

We combine multiple losses to train our pipeline: A 2D

joint re-projection loss L2D, a 3D joint loss L3D, a hand

mask loss Lmask and a model parameter regularization loss

Lreg .

L = L2D + α3DL3D + αmaskLmask + αregLreg, (5)

where α3D = 102, αmask = 102 and αreg = 101 are

weighting factors.

2D joint re-projection loss This loss ensures that the re-

projected hand joints in the image plane coincide with the

ground-truth 2D hand joint annotations:

L2D = ‖x̂− x‖1, (6)

where x is a vector containing the ground-truth 2D hand

joint coordinates. We use the L1 loss to account for inaccu-

racies in hand annotations in our training datasets.

3D joint loss When ground-truth 3D hand joint annota-

tions are available (e.g STEREO dataset), this loss minimises

the distance between the latter and the 3D hand joints gen-

erated by the hand model:

L3D = ‖RJ(β,θ)− x3D‖
2
2, (7)

where x3D is a vector containing the ground-truth 3D hand

joint coordinates.

Hand mask loss We introduce this novel loss to help

speed up the convergence of our training and refine hand

shape predictions. This loss penalizes re-projected hand

vertices that lie outside of the hand region in a binary mask,

which is pre-computed prior to training:

Lmask = 1−
1

N

∑

i

H(ŷi), (8)

where H is an occlusion-aware hand mask, i.e H(u) = 1
if pixel u is inside the hand region even if the hand is oc-

cluded in the image, and H(u) = 0 otherwise. Notice that
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(a) (b) (c)

Figure 3: GrabCut [42] hand segmentation initialized with

2D joint annotation. (a) Input image, (b) foreground, back-

ground and undecided regions from 2D joints, (c) final seg-

mentation.

these masks cannot be obtained with hand skin segmenta-

tion methods (e.g.[23, 5]) as they are sensitive to occlusions.

We obtain an approximation of these masks (Figure 3)

for training images using the GrabCut [42] algorithm, by

initializing the foreground, background and probable fore-

ground/background regions using the 2D hand joint annota-

tions: As illustrated in Figure 3b, we create an initial fore-

ground by drawing lines of 1 pixel width connecting joints

according to the hand skeleton hierarchy. Pixels inside tri-

angles formed by joints that belong anatomically to the hand

surface are appended to the foreground as well. The unde-

cided area is defined as the region within 70 pixels at most

from the foreground, and the remaining pixels are assigned

to the initial background.

Regularization loss This loss acts on the hand model pa-

rameters at the encoder output by reducing their magnitude

for physically plausible hand reconstructions and reduced

mesh distortions:

Lreg = ‖θ‖22 + αβ‖β‖
2
2, (9)

where αβ = 104 is a weighting factor.

8. Evaluation

We evaluate our method’s 3D pose estimates quantita-

tively and its 3D reconstructions qualitatively on several

datasets and with respect to state-of-the-art methods. With-

out access to camera intrinsics, and trained merely with

2D and 3D joint annotations, our method outperforms deep

learning based competing methods, including those using

additional depth information in training or camera intrin-

sics in evaluation. We show particularly superior 3D recon-

structions on images in the wild that present challenging

situations such as blur, low resolution, occlusion, extremely

varying viewpoints and hand pose configurations.

Similar to [44], input images are assumed to be crops

of fixed size around the hand. To achieve this, we use a

hand key-point detector [44] to find the tightest rectangular

box of edge size l containing the hand. Images are then

cropped with a square patch of size 2.2l centred at the same

2D location as the previously detected box. The resulting

cropped images are subsequently resized to have a width

and height of 320. As done in [44], we use the right hand

model and images of left hands are flipped horizontally.

Finally, we train our pipeline (Figure 1) using the Adam

solver [21] with a learning rate of 10−4 and weight decay

of 10−5.

Datasets Our training set is made of dataset PANOP-

TIC [44] that counts 14847 images, the training set of

MPII+NZSL [44] that counts 1912 images following the

split in [44], and the training set of STEREO [65] that

counts 15000 images following the split in [68]. This

amounts to 31729 training images, 15000 (STEREO) with

3D joint annotations, and the remaining 16729 (PANOPTIC

& MPII+NZSL) with 2D joint annotations only.

The PANOPTIC dataset [44] contains hands in various

poses observed from multiple views in the Panoptic stu-

dio [16]. The MPII+NZSL dataset [44] is a combination

of manually annotated images from The MPII Human Pose

dataset [3] containing images from YouTube videos, and

images from the New Zealand Sign Language (NZSL) Ex-

ercises of the Victoria University of Wellington [38]. The

STEREO dataset [65] shows an actor’s hand in third person

view counting with the fingers and moving the hand ran-

domly.

For evaluation, we use the DEXTER+OBJECT dataset

[49] which shows interactions of an actor’s hand with a

cuboid object from a third person view. To evaluate ro-

bustness to occlusions and clutter, we use the EGODEXTER

dataset [28] that displays a hand from an egocentric view

interacting with various objects. We finally use the testing

set of MPII+NZSL [44] to asses performance in the pres-

ence of blur, low resolution, varying viewpoints and hand

pose configurations, among other characteristics of datasets

of images in the wild.

Metrics To quantitatively evaluate 3D hand pose estima-

tions, we report the percentage of correct points in 3D (3D

PCK) and the average 3D Euclidean distance between the

estimated 3D joints and the ground-truth when the latter

is available, where distances are expressed in millimeters

(mm). When only ground-truth 2D joint annotations are

available (dataset MPII+NZSL), we report 2D PCK and the

average 2D Euclidean distance between the estimated 2D

re-projected joints and the ground-truth, where distances are

expressed in pixels (px).
Comparison to competing methods We compare our re-

sults on the STEREO dataset to state-of-the-art methods in

terms of 3D PCK in Figures 4 and 5, and we show 3D joint
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 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20  25  30  35  40  45  50

3
D

 P
C

K

Error Thresholds (mm)

PSO
ICPPSO

CHPR
Panteleris et al.

2D fit
Ours 2D

Ours RGB+2D
Ours RGB

Figure 5: 3D PCK for STEREO.

Ours

RGB

Ours

RGB+2D

Ours

2D
2D fit

3D distance 9.76 10.18 10.46 23.21

Table 1: Average 3D joint distance (mm) to ground-truth

for STEREO.

errors in Table 1. Figure 4 shows deep learning based meth-

ods (Cai et al. [7], Iqbal et al. [14], Spurr et al. [47], Mueller

et al. [27], Zimm. et al [68]) and Figure 5 shows methods

that do not rely on deep learning (Panteleris et al. [34], PSO,

ICPPSO, CHPR [65] ). For this experiment, we add a key-

point at the center of the hand palm in the MANO model

[40] as an interpolation of several mesh vertices to match

the annotation of the STEREO dataset. We reproduce the

evaluation protocol initially introduced in [68] by training

on 10 sequences and testing on the remaining 2 and align-

ing predictions to the ground-truth hand root joint. Addi-

tionally, for a fair comparison to works [7, 47, 14], we crop

the hand images for this experiment such that the final im-

age size is 150% the size of the hand. Using RGB image in-

put only, we obtain state-of-the results even though some of

the competing methods use depth data in training ([7, 14])

in addition to images, while others ([27]) post-process their

output with an optimization that fits their hand skeleton to

their 3D and 2D joint predictions, and which uses the cam-

era intrinsics as an additional input.
Figure 6 shows the performance of our method under oc-

clusions and clutter with 3D PCK on the DEXTER+OBJECT

dataset, and Table 2 shows 3D joint errors. Additionally,
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Figure 6: 3D PCK for DEXTER+OBJECT.
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Spurr

et al.

Zimm.

et al.

3D distance 33.16 25.53 25.93 41.18 40.20 34.75

Table 2: Average 3D joint distance (mm) to ground-truth

for DEXTER+OBJECT.
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Figure 7: 3D PCK for EGODEXTER.

Ours

RGB

Ours

RGB+2D

Ours

2D
2D fit

Spurr

et al.

Zimm.

et al.

3D distance 51.87 45.58 45.33 56.59 56.92 52.77

Table 3: Average 3D joint distance (mm) to ground-truth

for EGODEXTER.

Figure 7 shows our results on a hand in ego-centric view

and in interaction with various objects in terms of 3D PCK

on the EGODEXTER dataset, and Table 3 shows 3D joint

errors. Our method outperforms the competition in these

settings as illustrated in the Figures. We note that we show

relative 3D pose estimates for all methods except [14] where

the authors report absolute values.

Ours

RGB

Ours

RGB+2D

Ours

2D
2D fit

Zimm.

et al.

2D distance 23.04 18.95 20.65 22.36 59.40

Table 4: Average re-projected 2D joint distance (px) to

ground-truth for MPII+NZSL

We expect our method to perform particularly well on

datasets of images in the wild, as our training set contains

this type of data and accounts for hands in low resolution,

blurry, occluded and in challenging views and pose configu-
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rations. In fact, we compare our results to [68] on the testing

set of MPII+NZSL dataset in Figure 8 and Table 4 through

2D PCK and 2D joint error respectively. We outperform

[68] with a substantial margin as the Figure shows. The su-

periority of our method on this dataset is visually confirmed

in Figure 9.

Comparison to 2D fitting In the case where 2D joint de-

tections are used as input, an alternative way of solving 3D

hand pose estimation is to perform a 2D fitting between the

re-projected hand model joints and the key-points detected

on the image, in a similar fashion to the work proposed by

[34]. Our implementation of this strategy consists in mini-

mizing the following objective function with respect to the

weak perspective camera parameters {R, t, s} and the hand

shape and pose parameters {β,θ}:

E(R, t, s,β,θ) =
∑

i

pi (sΠ(RJi(β,θ)) + t− xi)
2

+ αβ‖β‖
2
2 + ‖θ‖22,

(10)

where pi is the ith hand joint estimate confidence provided

by the detector CNN [44]. Similarly to the loss in Equation

9, regularization in the second line of Equation 10 is impor-

tant to ensure plausible 3D hand reconstructions. We per-

form this optimization using Powell’s Dogleg method [29]

within the Chumpy [1] framework.

We compare this method (2D fit) to our proposed

approach on datasets STEREO, DEXTER+OBJECT and

EGODEXTER with 3D PCK in Figures 5, 6 and 7 and 3D

joint error in Tables 1, 2 and 3 respectively, and also on

dataset MPII+NZSL with 2D PCK in Figure 8 and 2D joint

error in Table 4. Results show that our approach outper-

forms the 2D fitting based strategy for all datasets. We ob-

serve that while the optimization catches up slightly with

our method in 2D (MPII+NZSL), its performance drops

considerably in 3D. Our method benefits clearly from solv-

ing the fitting problem in a learning framework and lever-

ages visual cues in predicting the 3D hand position and con-

figuration, while the 2D fitting relies merely on the 2D joint

detection information. We also outperform the 2D fitting

based method in [34] that uses a similar hand model to [32]

and a perspective projection model on dataset STEREO in

Figure 5.

Ablation study We evaluate the difference between us-

ing images only (Ours RGB), using 2D joint heat-maps

obtained from a state-of-the-art hand detector [44] only

(Ours 2D), and finally using both together as input (Ours

RGB+2D). We carry comparisons on datasets STEREO,

DEXTER+OBJECT and EGODEXTER with 3D PCK in Fig-

ures 5, 6 and 7 and 3D joint error in Tables 1, 2 and 3 re-

spectively, and also on dataset MPII+NZSL with 2D PCK in

Figure 8 and 2D joint error in Table 4. On dataset STEREO,

training on images alone yields the best performance, while

training with a combination of images and 2D joint heat-

maps is generally the most suitable approach for the other

datasets that we tested on.

Qualitative Figure 9 shows our 3D hand reconstructions

on the challenging testing set of MPII+NZSL. As shown in

this Figure, the input data (9a) displays images of hands that

are sometimes blurry, low resolved, occluded, viewed from

varying viewpoints and in varying pose configurations. We

show our 3D mesh overlaid on the input image (9b) and

in alternative views (9c, 9d). We also compare our hand

skeleton (9e) to the 2D and 3D pose predictions of [68] (9f,

9g) and the 3D predictions of [47] (9h). Our method obtains

visually plausible results while the methods in [68] and [47]

fail to predict good 3D pose estimates for many cases in

the MPII+NZSL dataset. We show more examples in the

supplementary material.

9. Conclusion

We presented a method to predict 3D hand pose and

shape from a single RGB image. We combine a deep con-

volutional encoder with a generative hand model as decoder

and train the resulting network end-to-end with 2D and 3D

hand joint annotated images. The encoder predicts hand pa-

rameters that are inputted to the hand model, and view pa-

rameters that are used to re-project the generated 3D hand

into the image domain. We generate state-of-the-art results

on 3D pose benchmarks and show compelling 3D recon-

struction on a challenging set of images in the wild. This

method could benefit greatly from a hand appearance model

by leveraging a photometric loss in training as proposed in

[56, 55] for faces. One possible extension to this work could

be to allow some components of the MANO [40] model

such as the corrective blend shapes S and P (Equation 2) to

be fine-tuned in training for improved performance.
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(a) Input (b) Our mesh (c) Back view (d) Side view (e) Our skeleton (f) [68]2D

(g) [68]3D (h) [47]

Figure 9: Our 3D hand reconstruction on examples from the challenging testing set of MPII+NZSL compared to the 3D hand

pose predictions of [68] and [47].
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