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Abstract

Capturing the interesting components of an image is a

key aspect of image understanding. When a speaker anno-

tates an image, selecting labels that are informative greatly

depends on the prior knowledge of a prospective listener.

Motivated by cognitive theories of categorization and com-

munication, we present a new unsupervised approach to

model this prior knowledge and quantify the informative-

ness of a description. Specifically, we compute how knowl-

edge of a label reduces uncertainty over the space of labels

and use this uncertainty reduction to rank candidate labels

for describing an image. While the full estimation prob-

lem is intractable, we describe an efficient algorithm to ap-

proximate entropy reduction using a tree-structured graph-

ical model. We evaluate our approach on the open-images

dataset using a new evaluation set of 10K ground-truth rat-

ings and find that it achieves ∼ 65% agreement with human

raters, close to the upper bound of inter-rater agreement

and largely outperforming other unsupervised baselines.

1. Introduction

How would you label the photo in Figure 1? If you

answered “a dog”, your response agrees with what most

people would answer. Indeed, people are surprisingly

consistent when asked to describe what an image is

“about” [16]. They intuitively manage to focus on what is

“informative” or “relevant” and select terms that reflect this

information. In contrast, automated classifiers can produce

a large number of labels that are perhaps technically

correct, but are often non-interesting (Fig. 1 top right).

A natural approach to ascertain importance lies in the

context of the specific task. For instance, classifiers can be

efficiently trained to identify dog breeds or animal species.

More generally, each task defines importance through a su-

pervision signal provided to the classifier [1, 20, 14]. Here

we are interested in a more generic setup, where no down-

stream task dictates the scene interpretation. This represents

the challenge that people face when describing a scene to

another person, without any specific task at hand.

Label, confidence
Golden retriever, 0.9
Grass 0.8
Animal, 1
Dog toy, 0.6
Mammal, 0.9
Skin, 0.5
Green, 0.7
Lawn, 0.7
Dog,1
Nature, 0.9
Goldendoodle, 0.6
Tennis ball, 0.8

M
ulticlass 
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Figure 1. The problem of informative labeling. An image is au-

tomatically annotated with multiple labels. A “speaker” is then

given these labels and their confidence scores and has to select k

labels to transmit to a listener, such that the listener finds them

informative given his prior knowledge. The prior knowledge is

assumed to be common to both the speaker and the listener.

The principles that govern informative communication

have long been a subject of research in various fields from

philosophy of language and linguistics to computer science.

In the discipline of pragmatics, Grice’s maxims state that

“one tries to be as informative as one possibly can.” [9]. But

the question remains, “Informative about what?” How can

we build a practical theory of informative communication

that can be applied to concrete problems with real-world

data?

In this paper, we address the following concrete learning

setup (Figure 1). A speaker receives a set of labels pre-

dicted automatically from an image by a multiclass classi-

fier. It also receives the confidence that the classifier assigns

to each prediction. Then, it aims to select a few labels (say,

one label) to be transmitted to a listener, such that the lis-

tener will find those labels informative. The speaker and

listener also share the same prior knowledge in the form of

the distribution of labels in the image dataset.
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We put forward a quantitative theory of how speakers

select terms to describe an image. The key idea is that

communicated terms are aimed to reduce the uncertainty

that a listener has about the semantic space. We show how

this “theory-of-mind” can be quantitatively computed using

information-theoretic measures. In contrast with previous

approaches that focused on visual aspects and their impor-

tance [8, 2, 18, 13, 3], our measures focus on information

about the semantics of labels.

To compute information content of a label, we build a

probabilistic model of the full label space and use it to quan-

tify how transmitting a label reduces uncertainty. Specif-

ically, we compute the entropy of the label distribution as

a measure of uncertainty, and also quantify how much this

entropy is reduced when a label is set to be true.

Importantly, computing these measures over the full dis-

tribution of labels is not feasible because it requires to ag-

gregate an exponentially-large set of label combinations.

We show how the entropy and other information theoretic

measures can be computed efficiently by approximating the

full joint distribution with a tree-structured graphical model

(a Chow-Liu tree). We then treat entropy-reduction as a

scoring function that allows us to rank all labels of an im-

age, and select those that reduce the entropy most. We name

this approach IOTA, for Informative Object Annotations.

We test this approach on a new evaluation dataset: 10K

images from the open-images dataset [11] were annotated

with informative labels by three raters each. We find that

human annotations are in strong agreement (∼ 65%) with

the uncertainty-reduction measures, just shy of inter-rater

agreement and superior to 4 other unsupervised baselines.

Our main contributions are: (1) We describe a novel

learning setup of selecting important labels without di-

rect supervision about importance. (2) We develop an

information-theoretic framework to address this task, and

design scoring functions that can be used to solve it. (3) We

further describe an efficient algorithm for computing these

scoring functions, by approximating the label distribution

using a tree-structured graphical model. (4) We provide a

new evaluation set of ground-truth importance ratings based

on 10K images from the open-images dataset. (5) We show

that IOTA achieves high agreement with human judgment

on this dataset.

Learning a measure of importance over the space of vi-

sual labels could have wide implications as it allows us to

automate what until now required costly human evaluation.

By focusing on labels that matter to people, one could, for

example, design more relevant loss functions and evaluation

metrics for object recognition or steer image captioning to-

ward meaningful descriptions.

2. Related work

Image importance and object saliency. The problem of

deciding which components in an image are important has

been studied intensively. The main approaches involved

identifying characteristics of objects and images that could

contribute to importance, and use labeled data for predicting

object importance. Elazary and Itti [8] considered the or-

der of object naming in the LabelMe dataset [17] as a mea-

sure of the interest of an object and compare that to salient

locations predicted by computational models of bottom-up

attention. The elegant work of Spain and Perona [18] ex-

amined which factors can predict the order in which objects

will be mentioned given an image. Berg et al. [2] char-

acterized factors related to semantics, to composition and

to the likelihood of attribute-object, and investigated how

these affected the measures of importance. [15] focused on

predicting entry-level classes using a supervised approach.

These studies also make it clear that the object saliency is

strongly correlated with its perceived importance [13, 3].

These studies differ from the current work in two signif-

icant ways. First, they largely focus on visual properties of

objects in images, while our current approach focuses on

modeling the labels structure, and only uses image-based

information in the form of label confidence as predicted by

a classifier. Second, they largely take a supervised approach

using measures of importance in a training set to build pre-

dictive models of label importance. In contrast, our ap-

proach is unsupervised, because our model is not directly

exposed to labeled information about object importance.

Information theory and measures of relevance The prob-

lem of extracting informative components from a com-

plex signal was studied from an information-theoretic per-

spective through the information bottleneck principle (IB)

[19, 4, 23]. In contrast to the current work, in IB, a signal,

X , is compressed into T such that it maximizes information

about another variable Y , that can be viewed as a supervi-

sion variable. In [12], information gain was used to select

questions in a goal-oriented dialog setup.

Pragmatics, Relevance theory. In pragmatics, effective

communication has been characterized by the cooperative

principle [9], which views communication as a cooperative

interaction between a speaker and a listener. These prin-

ciples were phrased in Grice’s maxims, stating that “one

tries to be as informative as one possibly can” and “does

not give information that is false or that is not supported by

evidence”. Our approach provides a concrete quantitative

realization to these principles. Inspired by Grice’s work,

Sperber and Wilson proposed a framework called relevance

theory [21, 22]. They highlighted that a speaker provides

cues to a listener, who then interprets them in the context of

what she already knows and what the speaker may intended

to transmit.
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3. Our approach

The key idea of our approach is to quantify the relevant-

information content of a message, by modelling what the

listener does not know, and find labels that reduce this un-

certainty. To illustrate the idea, consider a label that ap-

pears in most of the images in a dataset (e.g., nature). If the

speaker selects to transmit that label, it provides very little

information to the listener, because they can already assume

that a given image is annotated with that label. In contrast, if

the speaker transmits a label that is less common, appearing

in only half of the images, more of the listener’s uncertainty

would be removed.

A more important property of multi-label uncertainty is

that labels are interdependent: transmitting one label can

reduce the uncertainty of others. This property is evi-

dent when considering label hierarchy, for example, golden-

retriever = true implies that dog = true. As a result transmit-

ting a fine-grained label removes more entropy than a more

general label. Very importantly however, this effect is not

limited to hierarchical relations. For instance, because the

label street tends to co-occur with car and other vehicles,

transmitting street would reduce the overall uncertainty by

reducing uncertainty in correlated co-occurring terms.

Going beyond these examples, we aim to calculate how

a revealed label affects the listener’s uncertainty. For this

purpose, the Shannon entropy is a natural choice to quan-

tify uncertainty, pending that we can estimate the prior joint

distribution of labels. Clearly, modelling the entire prior

knowledge about the visual world of a listener is beyond our

current reach. Instead, we show how we can approximate

the entire joint distribution by building a compact graphi-

cal model with a tree structure. This allows us to efficiently

compute properties of the joint distribution over labels and

more specifically, estimate listener uncertainty and label-

conditioned uncertainty.

We start by describing an information-theoretic approach

for selecting informative labels by estimating uncertainty

and label-conditioned uncertainty. We then describe an al-

gorithm to effectively compute these quantities in practice.

3.1. The problem setup

Assume that we are given a corpus of images, each an-

notated with multiple labels from a vocabulary of d terms

L = (l1, ..., ld). Since we operate in a noisy labeling

setup, we treat the labels as binary random variables li ∈
{true, false}. We also assume that for each image I , la-

bels are accompanied with a score reflecting the classifier’s

confidence in that label, which we denote by q(li|I). Such

confidence scores can be obtained from classifier predic-

tions, assuming that these confidence scores are calibrated,

namely, reflect the true fraction of correct labels. In prac-

tice, many large-scale models indeed calibrate their scores,

as we discuss in the experimental section. The goal of the

speaker is to select k labels to be transmitted to the listener,

such that they are most “useful” or informative.

3.2. Information­theoretic measure of importance

Let us first assume that we can estimate the distribution

over labels that a listener has in mind. Clearly, this is a

major assumption, and we discuss below how we relax this

assumption and approximate this distribution. Given this

distribution, we wish to measure the uncertainty it reflects,

as well as how much this uncertainty is reduced when the

speaker reveals a specific label. A principled measure of the

uncertainty about random variables is the Shannon entropy

of their joint distribution H(L1, ..., Ld) [6]. We use a nota-

tion that makes it explicit that the entropy depends on the

distribution, where the entropy is defined as

H[p(l1, ..., ld)]=−
∑

l1,...,ld

p(l1, ..., ld) log p(l1, ..., ld). (1)

Here, summation is over all possible assignments of the d

labels, an exponential number of terms that cannot be com-

puted in practice. We show below how to approximate it.

The amount of entropy that is reduced when the speaker

transmits a subset of the labels L′ = {li, lj , lk, . . .}, is

∆H(L′) = H[p(l1, ..., ld)]−H[p(l1, ..., ld|L
′ = true)] ,

where L′ = true means that all labels in L′ are assigned

a true value. For simplicity, we focus here on the case of

transmitting a single label li (see also [7]), and define the

per-label entropy-reduction

∆H(i) = H[p(l1, ..., ld)]−H[p(l1, ..., ld|li= true)]. (2)

This measure has several interesting properties. It

has a similar form to the Shannon mutual information,

MI(X;Y ) = H(X)−H(X|Y ), which is always positive.

However, the condition on the second term is only over a

single value of the label (li = true). As a result, Eq. (2) can

obtain both negative and positive values. When the random

variables are independent, ∆H(i) is always positive, be-

cause the entropy can be factored using the chain rule, and

obeys H(L1, ..., Ld)−H(L1, ..., Ld|Li) =
∑

j 6=i H(Lj) >
0 (Sec 2.5 [6]). However, when the variables are not inde-

pendent, collapsing one variable to a True value can actually

increase the entropy of other co-dependant variables. As an

intuitive example, the base probability of observing a lion

in a city is very low, and has low entropy. However, once

you see a sign “zoo”, the entropy of facing a lion rises.

The second important property of ∆H(i) is that it is

completely agnostic to the image and only depends on the

label distribution. To capture image-specific label rele-

vance, we note that the accuracy of annotating an image
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Figure 2. Uncertainty over labels can be estimated through measuring the entropy of its joint distribution, and computed efficiently

using a tree-structured probabilistic graphical model (PGM). (a) An image corpus is used for collecting pairwise label co-occurrence.

Then, a tree-structured graphical model is learned using the Chow-Liu algorithm. Computing the entropy of the approximated distribution

p̂ has a run-time that is linear in the number of labels. (b) To compute the entropy conditioned on a label ldog = true, the marginal of

that node is set to [0,1]. Then, the graph edges are redirected and rest of the distribution is updated using the conditional probability tables

represented on the edges. Finally, we compute the entropy of the resulting distribution.

with a label may strongly depend on the image. For exam-

ple, some images may have key aspects of the object oc-

cluded. We therefore wish to compute the expected reduc-

tion in entropy based on the likelihood that a label is correct

q(li|I). When an incorrect label is transmitted, we assume

here that no information is passed to the listener (there is

an interesting research question about negative information

value in this case, which is outside the scope of this paper).

The expected entropy-reduction is therefore

E(∆H) = q(li|I)∆H + (1− q(li|I)) · 0

this expectation is equivalent to the confidence-weighted

entropy reduction measure:

cw-∆H(i) = q(li|I) [H(L)−H[L|li = true])] , (3)

where q(li|I) is the probability that li is correct and L is a

random variable that holds the distribution of all labels. We

propose that this is a good measure of label information in

the context of a corpus.

3.3. Other measures of informative labels

Confidence-weighted entropy reduction, Eq. (3), is an

intuitive quantification of label informativeness, but other

properties of the label distribution may capture aspects of

label importance. We now discuss two such measures: in-

formation about images, and probabilistic surprise.

Information about images. Informative labels were

studied in the context of an image reference game. In this

setup, a speaker provides labels about an image, and a lis-

tener needs to identify the target image among a set of dis-

tractor images. Recent versions used natural language cap-

tioning for the same purpose [1, 20].

It is natural to define entropy-reduction for that setup.

Similar to Eq. (2), compute the difference between the

full entropy over images, and the entropy after transmit-

ting a label. When the distribution over images is uni-

form the entropy reduction is simply log(num. images) −

log(num. matching images), where the second term is the

number of images annotated by a label. Considering the

confidence of a label we obtain

cw-Image∆H(i) = q(li|I) [log(q(li)] , (4)

where q(li|I) is again the probability that li is correct and

q(li) is the fraction of images with the label i. This measure

is fundamentally different from Eq. (3) in that it focuses

on the distribution of labels over images, not their on joint

distribution.

Probabilistic surprise. Transmitting a label changes the

label distribution, the “belief” of the listener. This change

can be quantified by the Kullback-Liebler divergence of the

label distribution with and without transmission:

cw-DKL(i)=q(li|I)DKL(p(l1, ..., ld|li=true)||p(l1, ..., ld)) .
(5)

We can use this measure as a scoring function to rank

labels by how strongly they affect the distribution. As

in the entropy reduction approach (Eq. 3), here we ex-

ploit the cross-label relationships but provide a different

information-theoretic measure for how transmitting a label

affects the distribution.

Entropy reduction in a singleton model. An interesting

approximation to the joint distribution used in Eq. (1) is

provided by the singleton model, which models the joint

distribution as the product of the marginals p(l1, ..., ld) =
∏

i p(li). Here, the joint entropy is simply the sum of per-

label entropies. The entropy reduced when transmitting a

label is simply its entropy cw-Singleton(i) = q(li|I)H(li).
Importantly, entropy reduction in this model ignores inter-

label relationships.

The entropy is a function that grows monotonically with

p for (p < 0.5). This means that if all labels are rare (p <

0.5), then ranking labels by their empirical frequency, yields

the same ranking as by their singleton entropy reduction.
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3.4. Entropy reduction in large label spaces

Given a corpus of images, we wish to compute the joint

distribution of label co-occurrence in an image p(l1, ..., ld).
The scoring functions described above assume that we can

estimate and represent the joint distribution over labels. Un-

fortunately, even for a modest vocabulary size d, the distri-

bution cannot be estimated in practice since it has 2d param-

eters. Instead, we approximate the label distribution using

a probabilistic graphical model called a Chow-Liu tree [5].

We first describe the graphical model, and then how it is

learned from data.

As any probabilistic graphical model, A Chow-Liu tree

has two components: First, a tree G(V,E) with d nodes

and d − 1 edges, where the nodes V correspond to the d

labels, and the edges E connect the nodes to form a fully-

connected tree. The tree is directed, and each node li, ex-

cept a single root node, has a single parent node lj .

As a second component, every edge in the graph, con-

necting nodes i and j is accompanied by a conditional dis-

tribution, p(li|parent(li)). Note that this conditional dis-

tribution involves only two binary variables, namely a total

of four parameters. The full model therefore has only O(d)
parameters and can be estimate efficiently from data. With

these two components, the Chow-Liu model can be used to

represent a joint distribution over all labels, which factor-

izes over the graph

log p(l1, ..., ld) =

d
∑

i=1

log p
(

li|lparent(i)
)

. (6)

While any tree structure can be used to represent a factored

distribution as in Eq. (6), the Chow-Liu algorithm finds one

specific tree structure: The distribution that is closest to

the original full distribution terms of the Kullback-Liebler

divergence DKL( ˆp(L)||p(L)). That tree is found in two

steps: First, for every pair of labels i, j, compute their 2× 2
joint distribution in the image corpus, then compute the mu-

tual information of that distribution.

MIij =
∑

li=T,F

∑

lj=T,F

pij(li, lj)
pij(li, lj)

pi(li)pj(lj)
(7)

where the summation is over all combination of True and

False value for the two variables, pij is the joint distribution

over label co-occurrence, and pi and pj are the marginals of

that distribution.

As a second step, assign MIij as the weight of the edge

connecting the nodes of labels i and j and find the maxi-

mum spanning tree on the weighted graph. Importantly, the

particular directions of the edges of the model are not im-

portant. Any set of directions that forms a consistent tree

(having at most one parent per node), defines the same dis-

tribution over the graph [5]. In practice, since committing

to a single tree may be sensitive to small perturbations in

the data, we model the distribution as a mixture of k trees,

which are created by a bootstrap procedure.

Representing the joint distribution of labels using a tree

provides great computationally benefits, since many prop-

erties of the distribution can be computed very efficiently.

Importantly, when the joint distribution factorizes over a

tree, the entropy can be computed exactly using the entropy

chain rule:

H[p(l1, ..., ld)]=H

[

d
∏

i=1

p(li|A(li))

]

=

d
∑

i=1

H[p(li|A(li))],

(8)

where A(li) is the parent of the label li. We abused the no-

tation slightly, the root node does not have a parent hence

its entropy is not conditioned on a parent but should be

H[p(lroot)].

Furthermore, in a tree-structured probabilistic model,

one can redirect the edges by selecting any node to be a root,

and conditioning all other nodes accordingly [10]. This al-

lows us to compute the labeled-conditioned entropy using

the following steps. First, given a new root label li, iter-

atively redirect all edges in the tree to make all nodes its

descendents. Update the conditional density tables on the

edges. Second, assign a marginal distribution of [0, 1] to the

node li, reflecting the fact that the label is assigned to be

true. Third, propagate the distribution throughout the graph

using the conditional probability functions on the edges. Fi-

nally, compute the entropy of the new distribution using the

chain rule as in Eq. (8).

3.5. Selecting labels for transmission

Given the above model, we can compute the expected

entropy reduction for each label for a given image. We then

take an information-retrieval perspective, rank the labels by

their scores and emit the highest rank label.

This process can be repeated for transmitting multiple

labels. For example, given that label li was transmitted first,

we compute how much each of the remaining labels reduces

the entropy further. Formally, to decide about a second label

to transmit, we compute for every label lj 6= li:

∆Hi(j) = H[p(l1, ..., ld|li= true)] (9)

−H[p(l1, ..., ld|li= true, lj= true)]

Intuitively, selecting a second label that maximizes this

score tends to select labels that are semantically remote

from the first emitted labels. If a second label (say, lj =pet)

is semantically similar to the first label (say, li =dog), the

residual entropy of pet after observing the label dog is low,

hence the speaker will prefer other labels.
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confidence cw-∆H cw-DKL cw-Image∆H cw-p(l) cw-Singleton

vehicle, airplane airplane airliner airliner vehicle vehicle

airplane 1.0 52.18 56.65 5.71 0.019 0.14

airline 0.9 47.53 57.4 5.94 0.009 0.07

airliner 0.9 46.69 58.36 6.29 0.007 0.06

aircraft 0.9 46.54 46.67 4.83 0.022 0.15

vehicle 1.0 41.02 14.34 2.33 0.199 0.72

propeller-aircraft 0.8 41.01 49.97 5.85 0.005 0.04

aviation 0.8 40.97 40.01 4.30 0.019 0.13

narrow-body aircraft 0.8 40.73 55.06 6.17 0.004 0.03

air force 0.6 29.61 29.34 3.71 0.008 0.06

aircraft engine 0.6 28.14 23.51 3.82 0.007 0.06

Table 1. Ranking image an-

notations by the compared

approaches. Labels are

ranked based on the score

functions. Then, the position

(namely, k) of the ground-

truth label (in bold) is used to

compute precision and recall.

Later, precision and recall are

averaged across images.

4. Experiments

4.1. Data

We tested IOTA on the open-images dataset (OID) [11].

In OID, each image is annotated with a list of labels, to-

gether with a confidence score. We approximate the joint la-

bel distribution over the validation set (41,620 images anno-

tated with 512,093 labels) and also over the test set (125,436

images annotated with 1,545,835 labels).

Ground-truth data (OID-IOTA-10K). We collected a

new dataset of ground-truth “informative” labels for 10K

images: 2500 from OID-validation and 7500 from OID-

test, 3 raters per image. Raters were instructed to focus

on the object or scene that is dominant in the image and

to avoid overly generic terms that are not particularly de-

scriptive (“a picture”). Labels were entered as free text,

and when possible, matched in real time to the predefined

OID knowledge graph (64% of samples) so raters can ver-

ify label meaning. The remaining 36% of annotations were

matched as a post-process, which included stemming, re-

solving ambiguities (e.g. deciding if a bat meant the animal

or the sport equipment) and resolving synonyms (e.g. pants

and trousers). Overall, in many cases raters used exactly

the same term to describe an image. In 68% of the images

at least two raters described the image with the same la-

bel, and in 27% all three raters agreed. The data is publicly

available at https://chechiklab.biu.ac.il/ brachalior/IOTA/.

Label co-occurrence. OID lists labels whose confidence

is above 0.5. All labels with at least 300 appearances were

considered when collecting the label distribution, ignoring

their confidence. This yielded a vocabulary of 772 labels.

See supp. material for additional experiments.

4.2. Evaluation Protocol

For each importance scoring functions derived above

(Sec 3.2) we ranked all labels predicted to each image.

Given this label ranking we compared top labels with the

ground-truth labels collected from raters, and computed the

precision and recall for the top-k ranked labels. Precision

and recall are usually used with more than one ground-truth

item. In our case however, for each image, there was only

one ground-truth label: the majority vote across the three

raters. As a result, the precision@1 is identical to recall@1.

We excluded images that had no majority vote (3 unique rat-

ings, 27.6% of images). OID provides confidence values in

coarse resolution (1 significant digit), hence multiple labels

in an image often share the same confidence values. When

ranking by confidence only, we broke ties at random.

We also tested a evaluation setup where instead of a ma-

jority label, every label provided by the three raters was con-

sidered as ground truth. Precision and recall was computed

in the same way.

4.2.1 Clean and noisy evaluation

We evaluated our approach in two setups. In the first, clean

evaluation, we only considered image labels that were ver-

ified to be correct by OID raters. Incorrect labels were ex-

cluded from the analysis and not ranked by the scoring func-

tions. We also excluded images whose ground truth label

was not in the model’s vocabulary.

In the second setup, noisy evaluation we did not force

any of these requirements. The analysis included incorrect

labels as well as images whose ground truth labels were not

in the vocabulary; and thus could not be predicted by our

model. As expected, the precision and recall in this setting

were significantly lower.

4.3. Compared scoring functions and baselines

We compared the following information-theoretic scor-

ing functions, all weighted by classifier confidence. All

CLT-based methods were computed over a mixture of 10

trees, see supplementary material for more details.

(1) Entropy-reduction cw-∆H: See Eq. (3). (2) Prob-

abilistic surprise cw-DKL: See Eq. (5). (3) Image

entropy reduction cw-Image∆H: See Eq. (4). (4)

cw-Singleton, q(li|I)H(li): See section (3.3).

We also evaluated three simpler baselines: (5) Random

A random ranking of labels within each image. (6) Confi-

dence, q(li|I), which reflects the likelihood that a label is

12512



Raters Agreement

Raters Agreement

(a)

(b)

Figure 3. Precision and recall @k in the clean setup (top) and

the noisy setup (bottom), computed over the OID-test set.(a) In

the clean setup, results are an averaged over 2877 images. cw-∆H

(blue curve) achieves p@1 of 64% and largely outperforms other

scoring functions. Rater agreement (dashed line) is at 66%, only

slightly higher than cw-∆H . (b) In the noisy setup, results are an

average over 3942 images. As with the clean set, cw-∆H out-

performs other scoring functions, but only achieves p@1 of 45%

were the inter-rater agreement is 64%.

correct for an image and is provided by the classifier. La-

bels with highest confidence were ranked first; ties broken

randomly. (7) Term frequency, The empirical p(li) cap-

tures how often a label is observed in corpus, ranked in a

descending order. Note that in our data, the term frequency

produces the same ranking as singletons, because all labels

have a marginal frequency below 0.5, hence their entropy

monotonically increases with p(li).

5. Results

We first illustrate label ranking by showing the scores

for one image. Table 1 the annotations are ordered by

cw-∆H , and the best label per column (scoring function)

is highlighted. Singleton and term frequency, p(l), yield the

same ranking (but with different values) because the entropy

grows monotonically with p. cw-DKL prefers fine-grained

classes.

We next present the precision and recall of IOTA and

compared methods over the full OID-test in the clean setup

Single label Multiple labels

P@1 R@5 P@1 R@1

R@1

Scoring functions

cw-∆H 0.64 0.96 0.63 0.57

cw-DKL 0.43 0.96 0.42 0.38

cw-Image∆H 0.28 0.78 0.33 0.30

cw-Singleton 0.33 0.89 0.34 0.31

cw-p(l) 0.33 0.89 0.34 0.31

Baselines

confidence 0.49 0.96 0.50 0.46

random 0.12 0.89 0.21 0.18

Non-weighted

∆H 0.29 0.86 0.34 0.31

DKL 0.22 0.87 0.29 0.26

Image∆H 0.14 0.64 0.21 0.18

Singleton 0.26 0.88 0.29 0.26

p(l) 0.26 0.88 0.29 0.26

Table 2. Precision and recall of compared approaches. Scores

are averaged over 10 trees. cw-∆H reach an accuracy of 64% for

predicting a single label and 63% in a multi-label setup.

(Sec. 4.2.1). Figure 3.a. reveals that IOTA achieves high

precision, including a p@1 of 64%. This precision is

only slightly lower than the agreement rate of human raters

(66%). See details in Table 2 for comparison.

Next, we show similar curves for the noisy setup. Here

we also considered images where the ground-truth label is

not included in the vocabulary, treating model predictions

for these images as false. Figure 3.b. shows that in this case

too, cw-∆H achieves the highest precision and recall com-

pare with the other approaches. As expected, the precision

and recall in this setting are lower, reaching p@1=45%.

We further tested all scoring functions using a multil-

abel evaluation protocol. Here, instead of taking the major-

ity label over three rater annotations, we used all three la-

bels (non-weighted) and computed the precision and recall

of the scoring functions against that ground truth set. Re-

sults are given in Table 2, showing a similar behavior where

cw-∆H outperforms the other scoring functions.

Ablation and comparisons. Several comparisons are

worth mentioning. First, confidence-weighted approaches

(image-dependent) are consistently superior to non-

weighted approaches. This suggests that it is not enough

to select “interesting” labels if they are not highly confident

for the image. Second, the singleton model performs poorly

compared to the full CLT, cw-∆H . This agrees with our ob-

servation that a key factor of label importance is how much

it affects uncertainty on other labels. Finally, cw-Image-

∆H , is substantially worse, which is again consistent with

the observation that structure in label space is critical.

We also repeated the analysis while limiting the CL tree

to the labels present in each image. This significantly hurt
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Confidence q(l) Shoe,

footwear,

purple

Leaf, plant,

tree, nature,

yellow, green

land vehicle

cw-∆H Shoe Leaf Car

cw-DKL Shoe Autumn Mercedes-

benz

cw-Image∆H Violet Season Mercedes-

benz

cw-p(l) Purple Plant Vehicle

cw-Singleton Purple Plant Vehicle

Table 3. Qualitative example of top-ranked labels by the var-

ious scoring functions. While all annotation are correct, shoe

(left), leaf (middle) and car (right) are consistent with human an-

notations. In the car example, cw-p(l) and singleton select an

overly abstract label, while cw-DKL and cw-Image∆H select

more fine grained labels. This effect was pervasive in our dataset.

the precision (p@1 = 0.48), suggesting that information

about out-of-image labels is important. More broadly, this

work takes a view that separates the prediction problem into

two factors: One that models the listener prior knowledge,

hence is image independent, and a second that is image de-

pendent. In the OID dataset, the blind-listener approxima-

tion proves very effective.

Originally, we expected that labels relations can be mod-

elled well using a known semantic hierarchy We tested a

hierarchy provided with OID (600 labels), but we found it

far less effective then CLT (p@1=0.34 for cw-∆H), pre-

sumably because semantic relatedness differs substantially

from visual co-occurrence. E.g., “dog” and “park” are re-

mote in a semantic hierarchy, but interdependent and hence

closer in a co-occurrence-based tree. Thus, using an exist-

ing ontology of the labels does not necessarily model the

visual co-occurrences that can be learned from data.

Qualitative results. Table 3 lists top-ranked labels by var-

ious scoring functions for three images. cw-∆H consis-

tently agrees with human annotations (in bold), capturing

an intermediate, more informative category compared with

other scoring functions. Ranking based on confidence only

for the left column described the image as either shoe,

footwear or purple. While all three are technically correct,

shoe is the most natural, informative title for that image.

For the middle column (leaf) there were 20 highly-confident

predicted annotations (only 6 shown); all approaches other

than cw-∆H failed to return ”leaf”. Finally, the car ex-

ample (bottom) demonstrates a common phenomena where

cw-p(l) and cw-Singleton prefer to more abstract cate-

gories whereas cw-DKL and cw-Image∆H prefer fine-

grained labels.

Mammal

Dog

Terrier

Pet

Puppy

Primate

Hound

Animal

Vehicle

Canidae

Dog crossbreedSchnoodle

Dog 
breed

Wolfdog

Street 
dog

Saarloos 
wolfdog

Glen of imaal terrier

Carnivor

Snout

Rodent

Whiskers

Dog Breed GroupCow-goat 
family

Fauna

Vertebrate Marine biology
Fish

Car

Truck Bike

Motorcycle

Wheel

Van

City car Aircraft

Figure 4. Part of Chow-Liu tree around the label “dog” learned

from the OID validation set with 765 labels. The model clearly

captures semantic relations, even-though they are not explicitly en-

forced. For instance the label “pet” is connected directly to “dog”,

and “truck” and “bike” connected to “vehicle”.

These results are all built on a Chow-Liu graphical

model. To test if its label-dependency structure reflects sen-

sible label semantics, Figure 4 illustrates parts of the tree

that was formed around the label dog (38 of 765 labels). Se-

mantic concepts are grouped in a way that agrees with their

meaning (mostly). Note that this tree structure, not a hierar-

chical model, but only captures the pairwise dependencies

among label co-occurrence in the open-images dataset.

Robustness to hyper parameters. We tested the robust-

ness of IOTA to the two hyper parameters of the model. (1)

The number of trees in the mixture model; and (2) The size

of the vocabulary analyzed. The model was largely robust

to these parameters. Detailed results are given in the suppl.

6. Conclusion

We present an unsupervised approach to select infor-

mative annotation for a visual scene. We model the prior

knowledge about visual experience using the joint distribu-

tion of labels, and use it to rank labels per-image by how

much entropy they can remove over the label distribution.

The top ranked labels capture labels that are “intuitive”,

showing high agreement with human raters. This is sur-

prising, since the model does not use any external source of

semantic information besides label concurrence.

Several questions remain open. First, while our current

experiments captures common context, the approach can be

extended to any context. It would be interesting to apply

this method to expert annotators with the aim of retrieving

listener-specific context. Second, easy-to-learn quantifiers

of label importance can be used to improve loss functions

in multi-class training, assigning more weight to more im-

portant labels.
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