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Figure 1: Example contact maps from ContactDB, constructed from multiple 2D thermal images of hand-object contact

resulting from human grasps.

Abstract

Grasping and manipulating objects is an important hu-

man skill. Since hand-object contact is fundamental to

grasping, capturing it can lead to important insights. How-

ever, observing contact through external sensors is chal-

lenging because of occlusion and the complexity of the hu-

man hand. We present ContactDB, a novel dataset of con-

tact maps for household objects that captures the rich hand-

object contact that occurs during grasping, enabled by use

of a thermal camera. Participants in our study grasped 3D

printed objects with a post-grasp functional intent. Con-

tactDB includes 3750 3D meshes of 50 household objects

textured with contact maps and 375K frames of synchro-

nized RGB-D+thermal images. To the best of our knowl-

edge, this is the first large-scale dataset that records de-

tailed contact maps for human grasps. Analysis of this data

shows the influence of functional intent and object size on

grasping, the tendency to touch/avoid ‘active areas’, and

the high frequency of palm and proximal finger contact. Fi-

nally, we train state-of-the-art image translation and 3D

convolution algorithms to predict diverse contact patterns

from object shape. Data, code and models are available at

https://contactdb.cc.gatech.edu.

1. Introduction

Humans excel at grasping and then performing tasks

with household objects. Human grasps exhibit contact lo-

cations, forces and stability that allows post-grasp actions

with objects, and are also significantly influenced by the

post-grasp intent [8, 2, 45]. For example, people typically

grasp a knife by the handle to use it, but grasp it by the blunt

side of the blade to hand it off.

A large body of previous work [20, 29, 36, 46, 49, 3,

50, 52, 21, 36, 21, 6, 46] has recorded human grasps, with

methods ranging from data gloves that measure joint con-

figuration to manually arranged robotic hands. ContactDB

differs significantly from these previous datasets by focus-

ing primarily on the contact resulting from the rich inter-

action between hand and object. Specifically, we represent

contact through the texture of 3D object meshes, which we

call ‘contact maps’ (see Figure 1).

There are multiple motivations for recording grasping

activity through contact maps. Since it is object-centric,

it enables detailed analysis of grasping preferences influ-

enced by functional intent, object shape, size and seman-

tic category, and learning object shape features for grasp

prediction, and grasp re-targeting to kinematically diverse

hand models. Previously employed methods of recording

grasping activity do not easily support such analysis, as we

discuss in Section 2.

We created ContactDB by recording human participants

grasping a set of 3D printed household objects in our labora-

tory, with two different post-grasp functional intents–using

the object and handing it off. See Section 3 for more details

on the data collection procedure, size of the dataset and the

kinds of data included.

Except for contact edges viewed from select angles, and
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contact with transparent objects, contact regions are typi-

cally occluded from visual light imaging. Hence, existing

studies on the capture and analysis of hand-object contact

are extremely limited. Fundamental questions such as the

role of the palm in grasping everyday objects are unan-

swered. We propose a novel procedure to capture contact

maps on the object surface at unprecedented detail using an

RGB-D + thermal camera calibrated rig.

We make the following contributions in this paper:

• Dataset: Present a dataset recording functional human

grasping consisting of 3750 meshes textured with contact

maps and 375K frames of paired RGBD-thermal data.

• Analysis: Demonstrate the influence of object shape, size

and functional intent on grasps, and show the importance

of non-fingertip contact.

• Prediction: Explore data representations and diverse

prediction algorithms to predict contact maps from ob-

ject shape.

2. Related Work

2.1. Datasets of Human Grasps

Since contact between the human hand and an object is

fundamental to grasping and manipulation, capturing this

contact can potentially lead to important insights about hu-

man grasping and manipulation. In practice, however, this

has been a challenging goal. The human hand is highly

complex with extensive soft tissue and a skeletal structure

that is often modeled with 26 degrees of freedom. Hence,

previous work has focused on recording grasping activ-

ity in other forms like hand joint configuration by man-

ual annotation [49, 3], data gloves [20, 29] or wired mag-

netic trackers [54, 16] (which can interfere with natural

grasping), or model-based hand pose estimation [50]. At

a higher level, grasping has been observed through third-

person [52, 21, 36] or first-person [21, 6, 46] videos, in

which frames are annotated with the category of grasp ac-

cording to a grasp taxonomy [12, 23]. Tactile sensors are

embedded on a glove [4] or in the object [38] to record

grasp contact points. Such methods are limited by the reso-

lution of tactile sensors. Puhlmann et al [39] capture hand-

table contact during grasping with a touchscreen. Rogez

et al [42] manually configure a hand model to match grasps

from a taxonomy, and use connected component analysis on

hand vertices intersecting with an object model to estimate

contact regions on the hand.

Due to hand complexity and lack of understanding of

how humans control their hands, approaches like those

mentioned above have so far been limited to providing

coarse or speculative contact estimates. In contrast, our ap-

proach allows us to directly observe where contact between

the object and the human hand has taken place with an un-

precedented level of fidelity.

2.2. Predicting Grasp Contact

Our work is related to that of Lau et al [26], which

crowdsources grasp tactile saliency. Online annotators are

instructed to choose a point they would prefer to touch, from

a pair sampled from the object surface. This pairwise infor-

mation is integrated to construct the tactile saliency map.

In contrast, ContactDB contact maps are full observations

of real human grasps with functional intent (see supple-

mentary material for a qualitative comparison). Akizuki

et al [1] use hand pose estimation and model-based ob-

ject tracking in RGB-D videos to record a set of contact

points on the object surface. This is vulnerable to inaccu-

racies in the hand model and hand pose tracking. Hamer at

al [19] record human demonstrations of grasping by regis-

tering depth images to get object geometry and object- and

hand-pose. Contact is approximated as a single point per

fingertip. A large body of work in robotics aims to pre-

dict a configuration of the end-effector [32, 9, 28] suitable

for grasping. In contrast to ContactDB, these works model

contact as a single point per hand digit, ignoring other con-

tact.

Diverse Predictions: Grasping is a task where multi-

ple predictions can be equally correct. Lee et al [27] and

Firman et al [14] have developed theoretical frameworks

allowing neural networks to make diverse and meaningful

predictions. Recently, Ghazaei et al [17] have used simi-

lar techniques to predict diverse grasp configurations for a

parallel jaw gripper.

3. The ContactDB Dataset

Here we present the design choices and process in creat-

ing the ContactDB, which consists of 50 3D printed house-

hold objects being grasped with two functional intents by

50 participants (see Table 1).

Observing Contact Through a Thermal Camera. At

the core of our data collection process is the use of a thermal

camera to observe the precise locations of contact between

human hand and object. Thermal cameras have recently

been used to capture humans and their interaction with the

environment. For example, Luo et al [31] observe humans

interacting with objects for egocentric SLAM, while Lar-

son et al [25] observe human finger interaction with arbi-

trary surfaces to make them interactive. Both note the phe-

nomenon of thermally observable contact, but do not inves-

tigate it rigorously or collect a large-scale dataset.

When a participant grasps an object, heat from the hand

transfers onto the object surface. If the object material does

not dissipate the heat rapidly, the precise contact areas can

be clearly observed in the thermal image after the object is

released (see Figure 2b). Intensity at a pixel in the ther-

mal image is a function of the infrared energy emitted by

the corresponding world point [51]. Hence, object pixel in-
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Figure 2: Data collection and processing for ContactDB. Participants grasp 3D printed objects and put them on the rotating

turntable. Thermal images from multiple views are texture-mapped to the object mesh.

Functional Intent
Total

Use Hand-off

Participants 50 50 (same)

Objects 27 48 (overlapping) 50

Textured meshes 1350 2400 3750

RGBD-Thermal frames 135K 240K 375K

Table 1: Size of the ContactDB Dataset

tensity in our thermal images is related to heat of the skin,

duration of contact, heat conduction (including diffusion to

nearby object locations), and contact pressure. By keep-

ing these factors roughly constant during data collection, we

verified empirically that heat conduction from hand-object

contact is the dominant factor in the observed thermal mea-

surements. See the supplementary material for more discus-

sion on heat dissipation and accuracy.

3.1. Object Selection and Fabrication

We decided to focus on household objects since an un-

derstanding of contact preferences and the ability to predict

them are most likely to improve human-robot interaction

in household settings. Other standard grasping datasets [7]

and competitions [10] have a similar focus. We started

with the YCB dataset [7] to choose the 50 objects in our

dataset. We excluded similarly-shaped objects (e.g. cereal

and cracker boxes) that are unlikely to produce different

kinds of grasps, deformable objects (e.g. sponge, plastic

chain, nylon rope), very small (e.g. dominoes, washers),

and very large objects (e.g. cooking skillet, Windex bot-

tle). We added common ones such as flashlight, eyeglasses,

computer mouse, and objects popular in computer graphics

(e.g. Stanford bunny and Utah teapot). Since object size

has been shown to influence the grasp [11, 8] and we are

interested in contact during grasping of abstract shapes, we

included 5 primitive objects–cube, cylinder, pyramid, torus

and sphere–at 3 different scales (principal axes 12, 8 and 4

cm). See the supplementary material for a full object list.

We chose to 3D print all the objects to ensure uniform

heat dissipation properties. Additionally, we empirically

found that the PLA material used for 3D printing is ex-

cellent for retaining thermal handprints. We used open-

source resources to select suitable models for each object,

and printed them at 15% infill density using white PLA fil-

ament on a Dremel 3D20 printer. 3D printing the objects

has additional advantages. Having an accurate 3D model

of the object makes 6D pose estimation of the object from

recorded pointcloud data easier (see Section 3.3), which we

use for texture mapping contact maps to the object mesh.

3D printing the objects also allows participants to focus on

the object geometry during grasping.

3.2. Data Collection Protocol

Figure 2a shows our setup. We rigidly mounted a FLIR

Boson 640 thermal camera on a Kinect v2 RGB-D sensor.

The instrinsics of both the cameras and extrinsics between

them are calibrated using ROS [41], so that both RGB and

depth images from the Kinect can be accurately registered

to the thermal image. We invited 50 participants (mostly

20-25 years of age, able-bodied males and females), and
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used the following protocol approved by the Georgia Tech

Institutional Review Board.

50 3D printed objects were placed at random locations

on a table in orientations commonly encountered in prac-

tice. Participants were asked to grasp each object with a

post-grasp functional intent. They held the object for 5 sec-

onds to allow heat transfer from the hand to the object, and

then hand it to an experimenter. The experimenter wore an

insulating glove to prevent heat transfer from their hand,

and places the object on a turntable about 1 m away from

the cameras. Participants were provided with chemical hand

warmers to increase the intensity of thermal handprints. The

cameras recorded a continuous stream of RGB, depth and

thermal images as the turntable rotated in a 360 degree

arc. The turntable paused at 9 equally spaced locations on

this arc, where the rotation angle of the turntable was also

recorded. In some cases, objects were flipped and scanned a

second time to capture any thermal prints that were unseen

in the previous rotation.

We used two post-grasp functional intents: ‘use’ and

‘hand-off’. Participants were instructed to grasp 48 objects

with the intent of handing them off to the experimenter, and

to grasp a subset of 27 objects (after the previous thermal

handprints had dissipated) with the intent of using them.

We used only a subset of 27 objects for ‘use’, since other

objects (e.g. pyramid, Stanford bunny) lack clear use cases.

See the supplementary material for specific use instructions.

Participants were asked to avoid in-hand manipulation after

grasping to avoid smudging the thermal handprints.

3.3. Data Processing

As the turntable rotates with the object on it, the stream

of RGB-D and thermal images capture the object from mul-

tiple viewpoints. The aim of data processing is to texture-

map the thermal images to the object 3D mesh and generate

a coherent contact map (examples are shown in Figure 1).

The entire process is shown in Figure 2b. We first ex-

tracted the corresponding turntable angle and RGB, depth

and thermal images at the 9 locations where the turntable

pauses. Next, we converted the depth maps to pointclouds

and useed a least-squares estimate of the turntable plane and

white color segmentation to segment the object. We used

the Iterative Closest Point (ICP) [5] algorithm implemented

in PCL [44] to estimate the full 6D pose of the object in

the 9 segmented pointclouds. Object origins in the 9 views

were used to get a least squares estimate of the 3D circle

described by the moving object. This circle was used to in-

terpolate the object poses for views which are unsuitable for

the ICP step because of noise in the depth map or important

shape elements of the object being hidden in that view, or

for rotating symmetric objects around the axis of symmetry.

Finally, the 3D mesh along with the 9 pose estimates and

thermal images were input to the colormap optimization al-

Active Area handoff use

Banana tip (either tip) 22.45 63.27

Binoculars (both barrels) 12.50 93.88

Camera shutter button 34.00 69.39

Eyeglasses (both temples) 4.00 64.58

Flashlight button 28.00 62.00

Hammer (head) 38.00 0.00

Mouse (both click buttons) 16.00 84.00

PS controller (both front buttons) 2.00 40.81

PS controller (both analog sticks) 2.00 22.44

Scissors (handle) 38.00 100.00

Scissors (blade) 60.00 0.00

Water-bottle cap 16.00 67.35

Wine glass stem 56.00 30.61

Table 2: Fraction of participants that touched active areas

for different functional intents. See Fig. 3 for examples.

gorithm of [55], which is implemented in Open3D [56]. It

locally optimizes object poses to minimize the photomet-

ric texture projection error and generates a mesh coherently

textured with contact maps.

4. Analysis of Contact Maps

In this section we present analysis of some aspects of hu-

man grasping, using the data in ContactDB. We processed

each contact map separately to increase contrast by apply-

ing a sigmoid function to the texture-mapped intensity val-

ues that maps the minimum to 0.05 and maximum to 0.95.

Effect of Functional Intent. We observed that the

functional intent (‘use’ or ‘hand off’) significantly in-

fluences the contact patterns for many objects. To

show qualitative examples, we clustered the contact maps

within each object and functional intent category using

k-medoids clustering [24] (k = 3) on the XYZ values

of points which have contact value above 0.4. The dis-

tance function between two sets of points was defined

as d(p1,p2) =
(

d̄(p1,p2) + d̄(p2,p1)
)

/ (|p1|+ |p2|),

where d̄(p1,p2) =
∑|p1|

i=1 min
|p2|
j=1 ||p

(i)
1 −p

(j)
2 ||2. For sym-

metric objects, we chose the angle of rotation around the

axis of symmetry that minimized d(p1,p2). Figure 3 shows

dominant contact maps (center of the largest cluster) for the

two different functional intents.

To quantify the influence of functional intent, we define

‘active areas’ (highlighted in green in Figure 3) on the sur-

face of some objects and show the fraction of participants

that touched that area (evidenced by the map value being

greater than 0.4) in Table 2.

Effect of object size. Figure 4 shows the dominant con-

tact maps for objects of the same shape at three different

sizes. Small objects exhibit grasps with two or three fin-

gertips, while larger objects are often grasped with more

fingers and more than the fingertips in contact with the ob-
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Grasp Intent: Use Grasp Intent: Handoff

Figure 3: Influence of functional intent on contact: Two views of the dominant grasp (center of the largest cluster after

k-medoids clustering across participants). Green circles indicate ‘active areas’. This influence is quantified in Table 2.

SMALLMEDIUMLARGE

Figure 4: Influence of object size on contact: Two dominant

grasps for objects of same shape and varying size.

ject. Grasps for large objects are bi-modal: bimanual using

the full hands, or single-handed using fingertips. To quan-

tify this, we manually labelled grasps as bimanual/single-

handed, and show their relation to hand size in Fig. 6.

The figure shows that people with smaller hands prefer to

grasp large objects (for ‘handoff’) with bimanual grasps.

No bimanual grasps were observed for the medium and

small object sizes.

How much of the contact is fingertips? Contact is tradi-

tionally modelled in robotics [47] and simulation [53] as a

single point. However, the contact maps in Figures 1, 3 and

4 show that human grasps have much more than fingertip

contact. Single-point contact modeling is inspired by the

prevalence of rigid manipulators on robots, but with the re-

cent research interest in soft robots [13, 15], we now have

access to manipulators that contact the object at other areas

on the finger. Data in ContactDB shows the use of non-

fingertip contact for highly capable soft manipulators: hu-

man hands. For each contact map, we calculated the contact

area by integrating the area of all the contacted faces in the

mesh. A face is contacted if any of its three vertices have a

contact value greater than 0.4. Figures 5(b) and 5(c) show

the contact areas for all objects under both functional in-

tents, averaged across participants. Next, we calculated an

upper bound on the contact area if only all 5 fingertips were

touching the object. This was done by capturing the partici-

pants’ palm print on a flat plate, where it is easy to manually

annotate the fingertip regions (shown in Figure 5(a)). The

total surface area of fingertips in the palm print is the de-

sired upper bound. It was doubled for objects for which we

observe bimanual grasps. This upper bound was averaged

across four participants, and is shown as the red line in Fig-

ures 5(b) and 5(c). Note that this is a loose upper bound,

since many real-world fingertip-only grasps don’t involve

all five fingertips, and we mark the entire object category
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(b) Functional intent ‘use’ (c) Functional intent ‘handoff’

(a)

Figure 5: (a): Palm contact on plate, annotated fingertips. (b, c): Contact areas for objects in ContactDB, averaged across

participants. The red line indicates a loose upper bound on contact area for a fingertip-only grasp, which is doubled for

objects which have bimanual grasps.

Figure 6: Relationship between hand length (wrist to mid

fingertip) and single-handed/bimanual grasps. The intervals

show mean and 1 standard deviation. Cube, cylinder, pyra-

mid and sphere are of the large size.

as bimanual if even one participant performs a bimanual

grasp. Total contact area for many objects is significantly

higher than the upper bound on fingertip-only contact area,

indicating the large role that the soft tissue of the human

hand plays in grasping and manipulation. This motivates

the inclusion of non-fingertip areas in grasp prediction and

modeling algorithms, and presents an opportunity to inform

the design of soft robotic manipulators. Interestingly, the

average contact area for some objects (e.g. bowl, mug, PS

controller, toothbrush) differs across functional intent, due

to different kinds of grasps used.

5. Predicting Contact Maps

In this section, we describe experiments to predict con-

tact maps for objects based on their shape. ContactDB is the

first large scale dataset that enables training data-intensive

deep learning models for this task. Since ContactDB in-

cludes diverse contact maps for each object, the mapping

from object shape to contact map is one-to-many and makes

the task challenging. We explore two representations for ob-

ject shape: single-view RGB-D, and full 3D. Since the con-

tact patterns are significantly influenced by the functional

intent, we train separate models for ‘hand-off’ and ‘use’.

RGB-D

M
as

k

Thermal
L1 Loss

Generator

✱

✱

Discriminator

GAN 
Loss

256x256

256x256

Fake

Real

UNet-256

Figure 7: Training procedure for single-view contact map

prediction. The discriminator has 5 conv layers followed by

batch norm and leaky ReLU.

5.1. Single-view Prediction

Object shape is represented by an RGB-D image, and a

2D contact map is predicted for the visible part of the ob-

ject. A single view might exclude information about im-

portant aspects of the object shape, and ‘interesting’ parts

of the contact map might lie in the unseen half of the ob-

ject. However, this representation has the advantage of be-

ing easily applicable to real-world robotics scenarios where

mobile manipulators are often required to grasp objects af-

ter observing them from a single view. We used generative

adversarial network (GAN)-based image-to-image transla-

tion [22, 57, 30] for this task, since the optimization proce-

dure of conditional GANs is able to model a one-to-many

input-output mapping [35, 18].

Figure 7 shows our training procedure and network ar-

chitecture, which has roughly 54M and 3M parameters in

the generator and discriminator respectively. We modified

pix2pix [22] to accept a 4-channel RGB-D input and pre-

dict a single-channel contact map. The RGB-D stream from

object scanning was registered to the thermal images, and

used as input. Thermal images were used as a proxy for

the single-view contact map. To focus the generator and

discriminator on the object, we cropped a 256×320 patch

around the object and masked all images by the object sil-
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Figure 8: Single-view predictions from the pix2pix model

for three unseen object classes: mug, pan and wine glass.

Top: handoff intent, bottom: use intent. Rightmost column:

uninterpretable predictions.

houette. All images from mug, pan, and wineglass were

held out and used for testing. Figure 8 shows some pre-

dicted contact maps for these unseen objects, selected for

looking realistic. Mug predictions for use have finger con-

tact on the handle, whereas contact is observed over the

top for handoff. Pan use predictions show grasps at the

handle, while handoff predictions additionally show a bi-

manual grasp of the handle and side. Similarly, the wine

glass indicates contact with a side grasp for use and over

the opening for handoff.

5.2. 3D Prediction

Full 3D representation gives access to the entire shape

of the object, and alleviates the view-consistency problems

observed during single-view prediction.

Learning a one-to-many-mapping. Stochastic Multiple

Choice Learning [27] (sMCL) trains an ensemble of k pre-

dictors to generate k contact maps for each input (see Fig-

ure 9a). Each input has multiple equally correct ground

truth maps. During training, the loss is backpropagated

from each ground truth contact map to the network that

makes the prediction closest to it. To encourage all mem-

bers of the ensemble to be trained equally, as mentioned

in [43], we made this association soft by routing the gradi-

ent to the closest network with a 0.95 weight and distributed

the rest equally among other members of the ensemble, and

randomly dropped entire predictions with a 0.1 probability.

We trained models with k = 1 and k = 10.

In contrast, DiverseNet [14] generates diverse predic-

tions from a single predictor network by changing the value

of a one-hot encoded control variable c that is concatenated

to internal feature maps of the network (See Figure 9b).

Each ground truth contact map is associated with the closest

prediction and gradients are routed through the appropriate

c value. Diverse predictions can be generated at test time

by varying c. Compared to sMCL, DiverseNet requires sig-

nificantly fewer trainable parameters. We used 10 one-hot

encoded c values in our experiments.

3D representation. We represented the 3D object shape in

two forms: pointcloud and voxel occupancy grid. Point-

Net [40] operates on a pointcloud representation of the ob-

ject shape, with points randomly sampled from the object

surface. We normalized the XYZ position of each point to

fit the object in a unit cube. The XYZ position and the nor-

malization scale factor were used as 4-element features for

each point. The network was trained by cross entropy loss

to predict whether each voxel is in contact. We used a Point-

Net architecture with a single T-Net and 1.2M parameters.

VoxNet [33] operates on a solid occupancy grid of the

object in a 643 voxelized space, and predicts whether each

voxel is contacted. It uses 3D convolutions to learn shape

features. The four features used for PointNet were used in

addition to the binary occupancy value to form a 5-element

feature vector for each voxel. Cross entropy loss was en-

forced only on the voxels on the object surface. The net-

work architecture is shown in Figure 9b, and has approxi-

mately 1.2M parameters.

Experiments We conducted experiments with both VoxNet

and PointNet, using the sMCL and DiverseNet strategies for

learning a one-to-many-mapping. For DiverseNet, we con-

catenated c to the output of the first and fifth conv layers

in VoxNet, and to the input transformed by T-Net and the

output of the second-last MLP in PointNet. Voxelization

of the meshes was done using the algorithm of [37] imple-

mented in binvox [34]. The PointNet input was generated

by randomly sampling 3000 points from the object surface.

We thresholded the contact maps at 0.4 after applying the

sigmoid described in Section 4, to generate ground truth for

classification. We augmented the dataset by randomly ro-

tating the object around the yaw axis. PointNet input was

also augmented by randomly choosing an axis and scaling

the points along that axis by a random factor in [0.6, 1.4].

Dropout with p = 0.2 was applied to VoxNet-DiverseNet

input. We found that similar dropout did not improve results

for other models. Random sampling of surface points auto-

matically acts like dropout for PointNet models, and sMCL

models already incorporate a different dropout strategy as

mentioned in Section 5.2. The cross entropy loss for con-

tacted voxels was weighted by a factor of 10, to account for

class imbalance. All models were trained with SGD with a

learning rate of 0.1, momentum of 0.9 and weight decay of

5e-4. Batch size was 5 for models with k = 10, and 25 for

models with k = 1.

Table 3 shows results on held-out test objects (mug, pan

and wine glass). We conclude that the voxel occupancy grid

representation is better for this task, and that a model lim-

ited to making a single prediction does not capture the com-

plexity in ContactDB. Figures 10a and 10b show some of

the ‘use’ intent predictions for unseen object classes and

unseen shapes of training object classes respectively, se-

lected for looking realistic. Mug predictions show hori-

zontal grasps around the body. Predictions for the pan are
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PointNet-1
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(a) sMCL with a PointNet predictor
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(b) DiverseNet with a VoxNet predictor. CP: 33 conv with batch norm, ReLU and

max pooling, CU: 33 conv with batch norm, ReLU and nearest neighbor upsam-

pling. Black numbers: size of voxel grid, red numbers: number of channels.

Figure 9: 3D data representations and training strategies for predicting diverse contact maps. sMCL [27] requires multiple

instances of a network, while DiverseNet [14] uses a single instance with an integer valued control variable. PointNet [40]

operates on unordered point-clouds, whereas VoxNet [33] uses voxel occupancy grids.

Test object

Handoff Use

sMCL (k = 1) sMCL (k = 10) DiverseNet (k = 10) sMCL (k = 1) sMCL (k = 10) DiverseNet (k = 10)

VoxNet PointNet VoxNet PointNet VoxNet PointNet VoxNet PointNet VoxNet PointNet VoxNet PointNet

pan 76.80 - 7.13 20.43 8.48 19.68 17.22 - 8.25 43.57 5.12 22.58

wine glass 59.37 - 11.11 14.59 28.69 17.28 50.18 - 11.06 14.79 13.98 10.47

mug 29.93 - 16.68 27.10 15.77 21.60 66.03 - 32.51 31.30 7.06 32.41

average 55.37 - 11.64 20.71 17.65 19.52 44.48 - 17.27 29.89 8.72 21.82

Table 3: Diverse 3D contact map prediction errors (%) for the models presented in Section 5.2. Errors were calculated by

matching each ground truth contact map with the closest from k diverse predictions, discarding predictions with no contact.

‘-’ indicates that no contact was predicted.

(a) Contact map predictions for unseen object classes

train

train

test

te
st

(b) Contact map predictions for an unseen shape of training object classes

Figure 10: Two views of diverse 3D contact map predictions. (a) Unseen object classes: mug, pan, and wine glass, (b)

Unseen shape of training object classes: camera and hammer. Intent: use, Model: VoxNet-DiverseNet, Red: contact.

concentrated at the handle, with one grasp being biman-

ual. Wine glass predictions show grasps at the body-stem

intersection. Camera predictions show contact at the shut-

ter button and sides, while predictions for the hammer show

contact at the handle (and once at the head).

6. Conclusion and Future Work

We presented ContactDB, the first large-scale dataset of

contact maps from functional grasping, analyzed the data

to reveal interesting aspects of grasping behavior, and ex-

plored data representations and training strategies for pre-

dicting contact maps from object shape. We hope to spur

future work in multiple areas. Contact patterns could in-

form the design of soft robotic manipulators by aiming to

be able to cover object regions touched by humans. Re-

search indicates that in some situations hand pose can be

guided by contact points [53, 48]. Using contact maps to

recover and/or assist in predicting the hand pose in func-

tional grasping is an exciting problem for future research.
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