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Abstract

Machine learning techniques work best when the data

used for training resembles the data used for evaluation.

This holds true for learned single-image denoising algo-

rithms, which are applied to real raw camera sensor read-

ings but, due to practical constraints, are often trained on

synthetic image data. Though it is understood that general-

izing from synthetic to real images requires careful consid-

eration of the noise properties of camera sensors, the other

aspects of an image processing pipeline (such as gain, color

correction, and tone mapping) are often overlooked, despite

their significant effect on how raw measurements are trans-

formed into finished images. To address this, we present a

technique to “unprocess” images by inverting each step of

an image processing pipeline, thereby allowing us to syn-

thesize realistic raw sensor measurements from commonly

available Internet photos. We additionally model the rel-

evant components of an image processing pipeline when

evaluating our loss function, which allows training to be

aware of all relevant photometric processing that will oc-

cur after denoising. By unprocessing and processing train-

ing data and model outputs in this way, we are able to train

a simple convolutional neural network that has 14%-38%
lower error rates and is 9×-18× faster than the previous

state of the art on the Darmstadt Noise Dataset [31], and

generalizes to sensors outside of that dataset as well.

1. Introduction

Traditional single-image denoising algorithms often an-

alytically model properties of images and the noise they are

designed to remove. In contrast, modern denoising meth-

ods often employ neural networks to learn a mapping from

noisy images to noise-free images. Deep learning is capable

of representing complex properties of images and noise, but

training these models requires large paired datasets. As a re-

sult, most learning-based denoising techniques rely on syn-

thetic training data. Despite significant work on designing

neural networks for denoising, recent benchmarks [3, 31]

(a) Noisy Input, PSNR = 18.76 (b) Ground Truth

(c) N3Net [32], PSNR = 32.42 (d) Our Model, PSNR = 35.35

Figure 1. An image from the Darmstadt Noise Dataset [31], where

we present (a) the noisy input image, (b) the ground truth noise-

free image, (c) the output of the previous state-of-the-art algo-

rithm, and (d) the output of our model. All four images were con-

verted from raw Bayer space to sRGB for visualization. Alongside

each result are three cropped sub-images, rendered with nearest-

neighbor interpolation. See the supplement for additional results.

reveal that deep learning models are often outperformed by

traditional, hand-engineered algorithms when evaluated on

real noisy raw images.
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We propose that this discrepancy is in part due to un-

realistic synthetic training data. Many classic algorithms

generalize poorly to real data due to assumptions that noise

is additive, white, and Gaussian [35, 37]. Recent work has

identified this inaccuracy and shifted to more sophisticated

noise models that better match the physics of image forma-

tion [26, 27]. However, these techniques do not consider the

many steps of a typical image processing pipeline.

One approach to ameliorate the mismatch between syn-

thetic training data and real raw images is to capture noisy

and noise-free image pairs using the same camera being tar-

geted by the denoising algorithm [1, 7]. However, capturing

noisy and noise-free image pairs is difficult, requiring long

exposures or large bursts of images, and post-processing

to combat camera motion and lighting changes. Acquir-

ing these image pairs is expensive and time consuming, a

problem that is exacerbated by the large amounts of training

data required to prevent over-fitting when training neural

networks. Furthermore, because different camera sensors

exhibit different noise characteristics, adapting a learned

denoising algorithm to a new camera sensor may require

capturing a new dataset.

When properly modeled, synthetic data is simple and

effective. The physics of digital sensors and the steps of

an imaging pipeline are well-understood and can be lever-

aged to generate training data from almost any image us-

ing only basic information about the target camera sen-

sor. We present a systematic approach for modeling key

components of image processing pipelines, “unprocessing”

generic Internet images to produce realistic raw data, and

integrating conventional image processing operations into

the training of a neural network. When evaluated on real

noisy raw images in the Darmstadt Noise Dataset [31], our

model has 14%-38% lower error rates and is 9×-18× faster

than the previous state of the art. A visualization of our

model’s output can be seen in Figure 1. Our unprocessing

and processing approach also generalizes images captured

from devices which were not explicitly modeled when gen-

erating our synthetic training data.

This paper proceeds as follows: In Section 2 we review

related work. In Section 3 we detail the steps of a raw image

processing pipeline and define the inverse of each step. In

Section 4 we present procedures for unprocessing generic

Internet images into synthetic raw data, modifying training

loss to account for raw processing, and training our simple

and effective denoising neural network model. In Section 5

we demonstrate our model’s improved performance on the

Darmstadt Noise Dataset [31] and provide an ablation study

isolating the relative importance of each aspect of our ap-

proach.

2. Related Work

Single image denoising has been the focus of a sig-

nificant body of research in computer vision and image

processing. Classic techniques such as anisotropic diffu-

sion [30], total variation denoising [35], and wavelet cor-

ing [37] use hand-engineered algorithms to recover a clean

signal from noisy input, under the assumption that both

signal and noise exhibit particular statistical regularities.

Though simple and effective, these parametric models are

limited in their capacity and expressiveness, which led to

increased interest in nonparametric, self-similarity-driven

techniques such as BM3D [9] and non-local means [5].

The move from simple, analytical techniques towards data-

driven approaches continued in the form of dictionary-

learning and basis-pursuit algorithms such as KSVD and

Fields-of-Experts, which operate by finding image repre-

sentations where sparsity holds or statistical regularities are

well-modeled [2, 34, 41, 43]. In the modern era, most

single-image denoising algorithms are entirely data-driven,

consisting of deep neural networks trained to regress from

noisy images to denoised images [15, 18, 32, 39, 42].

Most classic denoising work was done under the as-

sumption that image noise is additive, white, and Gaussian.

Though convenient and simple, this model is not realis-

tic, as the stochastic process of photons arriving at a sen-

sor is better modeled as “shot” and “read” noise [19]. The

overall noise can more accurately be modeled as contain-

ing both Gaussian and Poissonian signal-dependent compo-

nents [14] or as being sampled from a heteroscedastic Gaus-

sian where variance is a function of intensity [20].

An alternative to analytically modeling image noise is

to use examples of real noisy and noise-free images. This

can be done by capturing datasets consisting of pairs of real

photos, where one image is a short exposure and therefore

noisy, and the other image is a long exposure and there-

fore largely noise-free [3, 31, 38]. These datasets enabled

the observation that recent learned techniques trained using

synthetic data were outperformed by older models, such as

BM3D [3, 31]. As a result, recent work has demonstrated

progress by collecting this real, paired data not just for eval-

uation, but for training models [1, 7]. These approaches

show great promise, but applying such a technique to a

particular camera requires the laborious collection of large

amounts of perfectly-aligned training data for that camera,

significantly increasing the burden on the practitioner com-

pared to the older techniques that required only synthetic

training data or calibrated parameters. Additionally, it is not

clear how this dataset acquisition procedure could be used

to capture subjects where small motions are pervasive, such

as water, clouds, foliage, or living creatures. Recent work

suggests that multiple noisy images of the same scene can

be used as training data instead of paired noisy and noise-

free images [25], but this does not substantially mitigate the
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Figure 2. A visualization of our data pipeline and network training procedure. sRGB images from the MIR Flickr dataset [23] are unpro-

cessed, and realistic shot and read noise is added to synthesize noisy raw input images. Noisy images are fed through our denoising neural

network, and the outputs of that network and the noise-free raw images then undergo raw processing before L1 loss is computed. See

Sections 3 and 4 for details.

limitations or the labor requirements of these large datasets

of real photographs.

While [28] identifies limitations of traditional noise

models, the work addresses more accurate models for de-

noising JPEG-compressed sRGB images, whereas we fo-

cus on denoising raw images. Though it is generally un-

derstood that correctly modeling noise during image for-

mation is critical for learning an effective denoising algo-

rithm [20, 26, 27, 32], a less well-explored issue is the effect

of the image processing pipeline used to turn raw sensor

readings into a finished image. Modern image processing

pipelines (well described in [21]) consist of several steps

which transform image intensities, therefore effecting both

how input noise is scaled or modified and how the final ren-

dered image appears as a function of the raw sensor mea-

surements. In this work we model and invert these same

steps when synthesizing training data for our model, and

demonstrate that doing so significantly improves denoising

performance.

3. Raw Image Pipeline

Modern digital cameras attempt to render a pleasant and

accurate image of the world, similar to that perceived by the

human eye. However, the raw sensor data from a camera

does not yet resemble a photograph, and many processing

stages are required to transform its noisy linear intensities

into their final form. In this section, we describe a conven-

tional image processing pipeline, proceeding from sensor

measurement to a final image. To enable the generation of

realistic synthetic raw data, we also describe how each step

in our pipeline can be inverted. Through this procedure we

are able to turn generic Internet images into training pairs

that well-approximate the Darmstadt Noise Dataset [31],

and generalize well to other raw images. See Figure 2 for

an overview of our unprocessing steps.

3.1. Shot and Read Noise

Though the noise in a processed image may have very

complex characteristics due to nonlinearities and correla-

tion across pixel values, the noise in raw sensor data is

well understood. Sensor noise primarily comes from two

sources: photon arrival statistics (“shot” noise) and impreci-

sion in the readout circuitry (“read” noise) [19]. Shot noise

is a Poisson random variable whose mean is the true light

intensity (measured in photoelectrons). Read noise is an ap-

proximately Gaussian random variable with zero mean and

fixed variance. We can approximate these together as a sin-

gle heteroscedastic Gaussian and treat each observed inten-

sity y as a random variable whose variance is a function of

the true signal x:

y ∼ N (µ = x, σ2 = λread + λshotx). (1)

Parameters λread and λshot are determined by sensor’s ana-

log and digital gains. For some digital gain gd, analog gain

ga, and fixed sensor readout variance σ2

r , we have

λread = g2dσ
2

r , λshot = gdga. (2)

11038



−4.0 −3.5 −3.0 −2.5 −2.0
log λshot

−7

−6

−5

−4

−3

lo
g
λ
r
e
a
d

Figure 3. Shot and read noise parameters from the Darmstadt

dataset [31]. The size of each circle indicates how many images

in the dataset shared that shot/read noise pair. To choose the noise

level for each synthetic training image, we randomly sample shot

and read noise parameters from the distribution shown in red.

These two gain levels are set by the camera as a direct func-

tion of the ISO light sensitivity level chosen by the user or

by some auto exposure algorithm. Thus the values of λread

and λshot can be calculated by the camera for a particular

exposure and are usually stored as part of the metadata ac-

companying a raw image file.

To choose noise levels for our synthetic images, we

model the joint distribution of different shot/read noise pa-

rameter pairs in our real raw images and sample from that

distribution. For the Darmstadt Noise Dataset [31], a rea-

sonable sampling procedure of shot/read noise factors is

log (λshot) ∼ U(a = log(0.0001), b = log(0.012))

log (λread) | log (λshot) ∼
N (µ = 2.18 log (λshot) + 1.2, σ = 0.26). (3)

See Figure 3 for a visualization of this process.

3.2. Demosaicing

Each pixel in a conventional camera sensor is covered

by a single red, green, or blue color filter, arranged in a

Bayer pattern, such as R-G-G-B. The process of recover-

ing all three color measurements for each pixel in the im-

age is the well-studied problem of demosaicing [15]. The

Darmstadt dataset follows the convention of using bilinear

interpolation to perform demosaicing, which we adopt. In-

verting this step is trivial—for each pixel in the image we

omit two of its three color values according to the Bayer

filter pattern.

3.3. Digital Gain

A camera will commonly apply a digital gain to all image

intensities, where each image’s particular gain is selected by

the camera’s auto exposure algorithm. These auto exposure

algorithms are usually proprietary “black boxes” and are

difficult to reverse engineer for any individual image. But

to invert this step for a pair of synthetic and real datasets,

a reasonable heuristic is to simply find a single global scal-

ing that best matches the marginal statistics of all image

intensities across both datasets. To produce this scaling, we

assume that our real and synthetic image intensities are both

drawn from different exponential distributions:

p(x;λ) = λe−λx (4)

for x ≥ 0. The maximum likelihood estimate of the scale

parameter λ is simply the inverse of the sample mean, and

scaling x is equivalent to an inverse scaling of λ. This

means that we can match two sets of intensities that are

both exponentially distributed by using the ratio of the sam-

ple means of both sets. When using our synthetic data

and the Darmstadt dataset, this scaling ratio is 1.25. For

more thorough data augmentation and to ensure that our

model observes pixel intensities throughout [0, 1] during

training, rather than applying this constant scaling, we sam-

ple inverse gains from a normal distribution centered at

1/1.25 = 0.8 with standard deviation of 0.1, resulting in

inverse gains roughly spanning [0.5, 1.1].

3.4. White Balance

The image recorded by a camera is the product of the

color of the lights that illuminate the scene and the material

colors of the objects in the scene. One goal of a camera

pipeline is to undo some of the effect of illumination, pro-

ducing an image that appears to be lit under “neutral” illu-

mination. This is performed by a white balance algorithm

that estimates a per-channel gain for the red and blue chan-

nels of an image using a heuristic or statistical approach

[16, 4]. Inverting this procedure from synthetic data is chal-

lenging because, like auto exposure, the white balance algo-

rithm of a camera is unknown and therefore difficult to re-

verse engineer. However, raw image datasets such as Darm-

stadt record the white balance metadata of their images, so

we can synthesize somewhat realistic data by simply sam-

pling from the empirical distribution of white balance gains

in that dataset: a red gain in [1.9, 2.4] and a blue gain in

[1.5, 1.9], sampled uniformly and independently.

When synthesizing training data, we sample inverse dig-

ital and white balance gains and take their product to get a

per-channel inverse gain to apply to our synthetic data. This

inverse gain is almost always less than unity, which means

that naı̈vely gaining down our synthetic imagery will result

in a dataset that systematically lacks highlights and contains

almost no clipped pixels. This is problematic, as correctly

handling saturated image intensities is critical when denois-

ing. To account for this, instead of applying our inverse

gain 1/g to some intensity x with a simple multiplication,
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Figure 4. The function f(x, g) (defined in Equation 6) we use for

gaining down synthetic image intensities x while preserving high-

lights, for a representative set of gains {g}.

we apply a highlight-preserving transformation f(x, g) that

is linear when g ≤ 1 or x ≤ t for some threshold t = 0.9,

but is a cubic transformation when g > 1 and x > t:

α(x) =

(

max(x− t, 0)

1− t

)2

(5)

f(x, g) = max

(

x

g
, (1− α(x))

(

x

g

)

+ α(x)x

)

(6)

This transformation is designed such that f(x, g) = x/g
when x ≤ t, f(1, g) = 1 when g ≤ 1, and f(x, g) is

continuous and differentiable. This function is visualized

in Figure 4.

3.5. Color Correction

In general, the color filters of a camera sensor do not

match the spectra expected by the sRGB color space. To

address this, a camera will apply a 3 × 3 color correction

matrix (CCM) to convert its own “camera space” RGB color

measurements to sRGB values. The Darmstadt dataset con-

sists of four cameras, each of which uses its own fixed CCM

when performing color correction. To generate our syn-

thetic data such that it will generalize to all cameras in the

dataset, we sample random convex combinations of these

four CCMs, and for each synthetic image, we apply the in-

verse of a sampled CCM to undo the effect of color correc-

tion.

3.6. Gamma Compression

Because humans are more sensitive to gradations in the

dark areas of images, gamma compression is typically used

to allocate more bits of dynamic range to low intensity pix-

els. We use the same standard gamma curve as [31], while

taking care to clamp the input to the gamma curve with

ǫ = 10−8 to prevent numerical instability during training:

Γ(x) = max(x, ǫ)
1/2.2 (7)
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Figure 5. Histograms for each color channel of (a) sRGB im-

ages from the MIR Flickr dataset, (b) unprocessed images created

following the procedure enumerated in Section 4.1 and detailed

in Section 3, and (c) real raw images from the Darmstadt dataset.

Note that the distributions of real raw intensities and our unpro-

cessed intensities are similar.

When generating synthetic data, we apply the (slightly ap-

proximate, due to ǫ) inverse of this operator:

Γ−1(y) = max(y, ǫ)2.2 (8)

3.7. Tone Mapping

While high dynamic range images require extreme tone

mapping [11], even standard low-dynamic-range images

are often processed with an S-shaped curve designed to

match the “characteristic curve” of film [10]. More complex

edge-aware local tone mapping may be performed, though

reverse-engineering such an operation is difficult [29]. We

therefore assume that tone mapping is performed with a

simple “smoothstep” curve, and we use the inverse of that

curve when generating synthetic data.

smoothstep(x) = 3x2 − 2x3 (9)

smoothstep−1(y) =
1

2
− sin

(

sin−1(1− 2y)

3

)

(10)

where both are only defined on inputs in [0, 1].

4. Model

Now that we have defined each step of our image pro-

cessing pipeline and each step’s inverse, we can construct

our denoising neural network model. The input and ground-

truth used to train our network is synthetic data that has

been unprocessed using the inverse of our image process-

ing pipeline, where the input image has additionally been

corrupted by noise. The output of our network and the

ground-truth are processed by our pipeline before evaluat-

ing the loss being minimized.

4.1. Unprocessing Training Images

To generate realistic synthetic raw data, we unprocess

images by sequentially inverting image processing transfor-

mations, as summarized in Figure 2. This consists of invert-

ing, in order, tone mapping (Section 3.7), applying gamma
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Figure 6. The network structure of our model. Input to the network

is a 4-channel noisy mosaic image concatenated with a 4-channel

noise level map, and output is a 4-channel denoised mosaic image.

decompression (Section 3.6), applying the sRGB to cam-

era RGB color correction matrix (Section 3.5), and invert-

ing white balance gains (Section 3.4) and digital gain (Sec-

tion 3.3). The resulting synthetic raw image is used as the

noise-free ground truth during training, and shot and read

noise (Section 3.1) is added to create the noisy network in-

put. Our synthetic raw images more closely resemble real

raw intensities, as demonstrated in Figure 5.

4.2. Processing Raw Images

Since raw images ultimately go through an image pro-

cessing pipeline before being viewed, the output images

from our model should also be subject to such a pipeline be-

fore any loss is evaluated. We therefore apply raw process-

ing to the output of our model, which in order consists of ap-

plying white balance gains (Section 3.4), naı̈ve bilinear de-

mosaicing (Section 3.2), applying a color correction matrix

to convert from camera RGB to sRGB (Section 3.5), and

gamma compression (Section 3.6). This simplified pipeline

matches that used in the Darmstadt Noise Dataset bench-

mark [31] and is a good approximation for general image

pipelines. We apply this processing to the network’s output

and to the ground truth noise-free image before computing

our loss. Incorporating this pipeline into training allows the

network to reason about how downstream processing will

impact the desired denoising behavior.

4.3. Architecture

Our denoising network takes as input a noisy raw image

in the Bayer domain and outputs a reduced noise image in

the same domain. As an additional input, we pass the net-

work a per-pixel estimate of the standard deviation of noise

in the input image, based on its shot and read noise param-

eters. This information is concatenated to the input as 4
additional channels—one for each of the R-G-G-B Bayer

planes. We use a U-Net architecture [33] with skip con-

nections between encoder and decoder blocks at the same

scale (see Figure 6 for details), with box downsampling

when encoding, bilinear upsampling when decoding, and

the PReLU [22] activation function. As in [42], instead of

directly predicting a denoised image, our model predicts a

residual that is added back to the input image.

4.4. Training

To create our synthetic training data, we start with the

1 million images of the MIR Flickr extended dataset [23],

setting aside 5% of the dataset for validation and 5% for

testing. We downsample all images by 2× using a Gaussian

kernel (σ = 1) to reduce the effect of noise, quantization,

JPEG compression, demosaicing, and other artifacts. We

then take random 128× 128 crops of each image, with ran-

dom horizontal and vertical flips for data augmentation. We

synthesize noisy and clean raw training pairs by applying

the unprocessing steps described in Section 4.1. We train

using Adam [24] with a learning rate of 10−4, β1 = 0.9,

β2 = 0.999, ǫ = 10−7, and a batch size of 16. Our mod-

els and ablations are trained to convergence over approxi-

mately 3.5 million steps on a single NVIDIA Tesla P100

GPU, which takes ∼3 days.

We train two models, one targeting performance on

sRGB error metrics, and another targeting performance on

raw error metrics. For our “sRGB” model the network

output and synthetic ground-truth are both transformed to

sRGB space before computing the loss, as described in Sec-

tion 4.2. Our “Raw” model instead computes the loss di-

rectly between our network output and our raw synthetic

ground-truth, without this processing. For both experiments

we minimize L1 loss between the output and ground-truth

images.

5. Results

To evaluate our technique we use the Darmstadt Noise

Dataset [31], a benchmark of 50 real high-resolution images

where each noisy high-ISO image is paired with a (nearly)

noise-free low-ISO ground-truth image. The Darmstadt

dataset represents a significant improvement upon earlier

benchmarks for denoising, which tended to rely on syn-

thetic data and synthetic (and often unrealistic) noise mod-

els. Additional strengths of the Darmstadt dataset are that

it includes images taken from four different standard con-

sumer cameras of natural “in the wild” scene content, where

the camera metadata has been captured and the camera

noise properties have been carefully calibrated, and where

the image intensities are presented as raw unprocessed lin-

ear intensities. Another valuable property of this dataset

is that evaluation on the dataset is restricted through a care-

fully controlled online submission system: the entire dataset

is the test set, with the ground-truth noise-free images com-

pletely hidden from the public, and the frequency of sub-

missions to the dataset is limited. As a result, overfitting

to the test set of this benchmark is difficult. Though this

approach is common for object recognition [13] and stereo

[36] challenges, it is not common in the context of image

denoising.

11041



Raw sRGB Runtime

Algorithm PSNR SSIM PSNR SSIM (ms)

FoE [34] 45.78 (30.1%) 0.9666 (47.3%) 35.99 (39.5%) 0.9042 (62.5%) -

TNRD [8] + VST 45.70 (30.7%) 0.9609 (55.0%) 36.09 (38.8%) 0.8883 (67.9%) 5,200

MLP [6] + VST 45.71 (30.7%) 0.9629 (52.6%) 36.72 (34.2%) 0.9122 (59.1%) ∼60,000

MCWNNM [40] - - - - 37.38 (29.0%) 0.9294 (49.2%) 208,100

EPLL [43] + VST 46.86 (20.8%) 0.9730 (34.8%) 37.46 (28.3%) 0.9245 (52.5%) -

KSVD [2] + VST 46.87 (20.8%) 0.9723 (36.5%) 37.63 (26.9%) 0.9287 (49.6%) >60,000

WNNM [17] + VST 47.05 (19.1%) 0.9722 (36.7%) 37.69 (26.4%) 0.9260 (51.5%) -

NCSR [12] + VST 47.07 (18.9%) 0.9688 (43.6%) 37.79 (25.6%) 0.9233 (53.2%) -

BM3D [9] + VST 47.15 (18.2%) 0.9737 (33.1%) 37.86 (25.0%) 0.9296 (49.0%) 6,900

TWSC [39] - - - - 37.94 (24.3%) 0.9403 (39.9%) 195,200

CBDNet [18] - - - - 38.06 (23.2%) 0.9421 (38.0%) 400

DnCNN [42] 47.37 (16.1%) 0.9760 (26.7%) 38.08 (23.0%) 0.9357 (44.2%) 60

N3Net [32] 47.56 (14.2%) 0.9767 (24.5%) 38.32 (20.9%) 0.9384 (41.7%) 210

Our Model (Raw) 48.89 (0.0%) 0.9824 (0.0%) 40.17 (2.1%) 0.9623 (4.8%) 22

Our Model (sRGB) 48.88 (0.1%) 0.9821 (1.7%) 40.35 (0.0%) 0.9641 (0.0%) 22

Ablations of “Our Model (sRGB)”

Noise-blind, AWGN 46.48 (24.2%) 0.9703 (40.7%) 38.65 (17.8%) 0.9498 (28.5%) 22

No Unprocessing 48.28 (6.8%) 0.9809 (7.9%) 39.02 (14.3%) 0.9478 (31.2%) 22

No Unprocessing, 4× bigger 48.49 (4.5%) 0.9818 (3.3%) 39.35 (11.0%) 0.9489 (29.7%) 177

No CCM, WB, Gain 48.55 (3.8%) 0.9817 (3.8%) 39.70 (7.2%) 0.9559 (18.6%) 22

Noise-blind 48.51 (4.2%) 0.9816 (4.3%) 39.81 (6.1%) 0.9602 (9.8%) 22

No Residual Output 48.80 (1.0%) 0.9824 (0.0%) 40.19 (1.8%) 0.9640 (0.3%) 22

No Tone Mapping, Gamma 48.83 (0.7%) 0.9823 (0.6%) 40.23 (1.4%) 0.9623 (4.8%) 22

Table 1. Performance of our model and its ablations on the Darmstadt Noise Dataset [31] compared to all published techniques at the

time of submission, taken from https://noise.visinf.tu-darmstadt.de/benchmark/, and sorted by sRGB PSNR. For

baseline methods that have been benchmarked with and without a variance stabilizing transformation (VST), we report whichever version

performs better and indicate accordingly in the algorithm name. We report baseline techniques that use either raw or sRGB data as input,

and because this benchmark does not evaluate sRGB-input techniques in terms of raw output, the raw error metrics are missing for those

techniques. For each technique and metric we report relative improvement in parenthesis, which is done by turning PSNR into RMSE

and SSIM into DSSIM and then computing the reduction in error relative to the best-performing models. Ablations of our model are

presented in a separate sub-table. The top three techniques for each metric (ignoring ablations) are color-coded. Runtimes are presented

when available (see Section 5.1).

The performance of our model on the Darmstadt dataset

with respect to prior work is shown in Table 1. The Darm-

stadt dataset as presented by [31] separates its evaluation

into multiple categories: algorithms that do and do not use a

variance stabilizing transformation, and algorithms that use

linear Bayer sensor readings or that use bilinearly demo-

saiced sRGB images as input. Each algorithm that operates

on raw input is evaluated both on raw Bayer images, and

on their denoised Bayer outputs after conversion to sRGB

space. Following the procedure of the Darmstadt dataset,

we report PSNR and SSIM for each technique, on raw and

sRGB outputs. Some algorithms only operate on sRGB in-

puts; to be as fair as possible to all prior work, we present

these models, reporting their evaluation in sRGB space.

For algorithms which have been evaluated with and with-

out a variance stabilizing transformation (VST), we include

whichever version performs better.

The two variants of our model (one targeting sRGB and

the other targeting raw) produce significantly higher PSNRs

and SSIMs than all baseline techniques across all outputs,

with each model variant outperforming the other for the

domain that it targets. Relative improvements on PSNR

and SSIM are difficult to judge, as both metrics are de-

signed to saturate as errors become small. To help with

this, alongside each error we report the relative reduction

in error of the best-performing model with respect to that

model, in parentheses. This was done by converting PSNR

into RMSE (RMSE ∝
√
10−PSNR/10) and converting SSIM

into DSSIM (DSSIM = (1−SSIM)/2) and then computing

each relative reduction in error.

We see that our models produce a 14% and 25% reduc-

tion in error on the two raw metrics compared to the next

best performing technique (N3Net [32]), and a 21% and

38% reduction in error on the two sRGB metrics compared

11042



(a) Noisy Input (b) Our Model

Figure 7. An image from the HDR+ dataset [21], where we present

(a) the noisy input image and (b) the output of our model, in the

same format as Figure 1. See the supplement for additional results.

to the two next best performing techniques (N3Net [32] and

CBDNet [18]). Visualizations of our model’s output com-

pared to other methods can be seen in Figure 1 and in the

supplement. Our model’s improved performance appears to

be partly due to the decreased low-frequency chroma arti-

facts in its output compared to our baselines.

To verify that our approach generalizes to other datasets

and devices, we evaluated our denoising method on raw im-

ages from the HDR+ dataset [21]. Results from these eval-

uations are provided in Figure 7 and in the supplemental

material.

Separately from our two primary models of interest, we

present an ablation study of “Our Model (sRGB),” in which

we remove one or more model components. “No CCM,

WB, Gain” indicates that when generating synthetic train-

ing data we did not perform the unprocessing steps of sRGB

to camera RGB CCM inversion, or inverting white balance

and digital gain. “No Tone Mapping, Gamma” indicates

that we did not perform the unprocessing steps of invert-

ing tone mapping or gamma decompression. “No Unpro-

cessing” indicates that we did not perform any unprocess-

ing steps, and “4× bigger” indicates that we quadrupled the

number of channels in each conv layer. “Noise-blind” in-

dicates that the noise level was not provided as input to

the network. “AWGN” indicates that instead of using our

more realistic noise model when synthesizing training data,

we use additive white Gaussian noise with σ sampled uni-

formly between 0.001 and 0.15 (the range reported in [31]).

“No Residual Output” indicates that our model architecture

directly predicts the output image, instead of predicting a

residual that is added to the input.

We see from this ablation study that removing any of our

proposed model components reduces quality. Performance

is most sensitive to our modeling of noise, as using Gaus-

sian noise significantly decreases performance. Unprocess-

ing also contributes substantially, especially when evaluated

on sRGB metrics, albeit slightly less than a realistic noise

model. Notably, increasing the network size does not make

up for the omission of unprocessing steps. Our only abla-

tion study that actually removes a component of our neural

network architecture (the residual output block) results in

the smallest decrease in performance.

5.1. Runtimes

Table 1 also includes runtimes for as many models as we

were able to find. Many of these runtimes were produced on

different hardware platforms with different timing conven-

tions, so we detail how these numbers were produced here.

The runtime of our model is 22ms for the 512×512 images

of the Darmstadt dataset, using our TensorFlow implemen-

tation running on a single NVIDIA GeForce GTX 1080Ti

GPU, excluding the time taken for data to be transferred to

the GPU. We report the mean over 100 runs. The runtime

for DnCNN is taken from [42], which reports a runtime on

a GPU (Nvidia Titan X) of 60ms for a 512×512 image, also

not including GPU memory transfer times. The runtime for

N3Net [32] is taken from that paper, which reports a run-

time of 3.5× that of [42], suggesting a runtime of 210ms.

In [6] they report a runtime of 60 seconds on a 512×512

image for a CPU implementation, and note that their run-

time is less than that of KSVD [2], which we note accord-

ingly. The runtime for CBDNet was taken from [18], and

the runtimes for BM3D, TNRD, TWSC, and MCWNNM

were taken from [39]. We were unable to find reported run-

times for the remaining techniques in Table 1, though in

[31] they note that “many of the benchmarked algorithms

are too slow to be applied to megapixel-sized images”. Our

model is the fastest technique by a significant margin: 9×
faster than N3Net [32] and 18× faster than CBDnet [18],

the next two best performing techniques after our own.

6. Conclusion

We have presented a technique for “unprocessing”

generic images into data that resembles the raw measure-

ments captured by real camera sensors, by modeling and

inverting each step of a camera’s image processing pipeline.

This allowed us to train a convolutional neural network for

the task of denoising raw image data, where we synthesized

large amounts of realistic noisy/clean paired training data

from abundantly available Internet images. Furthermore, by

incorporating standard image processing operations into the

learning procedure itself, we are able to train a network that

is explicitly aware of how its output will be processed be-

fore it is evaluated. When our resulting learned model is ap-

plied to the Darmstadt Noise Dataset [31] it achieves 14%-

38% lower error rates and 9×-18× faster runtimes than the

previous state of the art.
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