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3 Conservatoire National des Arts et Métiers, 75003 Paris

remi.cadene@lip6.fr, hedi.ben-younes@lip6.fr, matthieu.cord@lip6.fr, nicolas.thome@cnam.fr

Abstract

Multimodal attentional networks are currently state-of-

the-art models for Visual Question Answering (VQA) tasks

involving real images. Although attention allows to focus

on the visual content relevant to the question, this simple

mechanism is arguably insufficient to model complex rea-

soning features required for VQA or other high-level tasks.

In this paper, we propose MuRel, a multimodal relational

network which is learned end-to-end to reason over real im-

ages. Our first contribution is the introduction of the MuRel

cell, an atomic reasoning primitive representing interac-

tions between question and image regions by a rich vec-

torial representation, and modeling region relations with

pairwise combinations. Secondly, we incorporate the cell

into a full MuRel network, which progressively refines vi-

sual and question interactions, and can be leveraged to de-

fine visualization schemes finer than mere attention maps.

We validate the relevance of our approach with vari-

ous ablation studies, and show its superiority to attention-

based methods on three datasets: VQA 2.0, VQA-CP v2 and

TDIUC. Our final MuRel network is competitive to or out-

performs state-of-the-art results in this challenging context.

Our code is available: github.com/Cadene/

murel.bootstrap.pytorch

1. Introduction

Since the success of Convolutional Neural Networks

(ConvNets) at the ILSVRC 2012 challenge [29], Deep

Learning has become the baseline approach for any com-

puter vision problem. Beyond their outstanding perfor-

mances for perception tasks, e.g. classification or detec-

tion [14], deep ConvNets have also been successfully used

for new artificial intelligence tasks like Visual Question An-

swering (VQA) [4, 17, 23]. VQA requires a high level un-

derstanding of images and questions, and is often consid-

ered to be a good proxy for visual reasoning. However, it
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Figure 1. Visualization of the MuRel approach. Our MuRel

network for VQA is an iterative process based on a rich vectorial

representation between the question and visual information explic-

itly modeling pairwise region relations. MuRel is thus able to ex-

press complex analysis primitives beyond attention maps: here the

two regions corresponding to the head and the donuts are selected

based on their visual cues and semantic relations to properly an-

swer the question ”what is she eating?”

is not straightforward to use ConvNets in a context where a

high level of reasoning is required. The question of leverag-

ing the perception power of deep CNNs for reasoning tasks

is crucial if we want to go further in visual scene under-

standing [21, 11].

It is also not trivial to define nor evaluate a model’s

capacity to reason about the visual modality in VQA. To

fill this need, synthetic datasets have been released, e.g.

CLEVR [21], which specific structure controls the exact

reasoning primitives required to give the answer [22, 19,

34]. However, methods that tackle the VQA problem on

real data struggle to integrate this explicit reasoning pro-

cedure. Instead, state-of-the-art methods often rely on the

much simpler attentional framework [16, 8, 25, 12]. Despite

its effectiveness, this mechanism restricts visual reasoning

to a soft selection of regions that are relevant to answer the

question. This arguably limits the modeling power of such

models to bridge the gap between the perceptual strengths

of ConvNets and the high-level reasoning demand for VQA.

In this paper, we propose MuRel, a multimodal relational

network that goes one step further towards reasoning about

questions and images. Our first contribution is to introduce

the MuRel cell, an atomic reasoning primitive enabling to

11989



represent rich interactions between question and image re-

gions. It is based on a vectorial representation that explicitly

models relations between regions. Our second contribution

is to embed this MuRel cell into an iterative reasoning pro-

cess, which progressively refines the internal network rep-

resentation to answer the question. The rationale of MuRel

is illustrated in Figure 1: for the question ”what is she eat-

ing”, our model focuses on two main regions (the head and

the donut) with important visual cues and semantic rela-

tions between them to provide the correct answer (”donut”).

The visual reasoning of our MuRel system is formed by this

multi-step relational module that discards useless informa-

tion to focus on the relevant regions.

In the experiments, we show additional results for ex-

plaining the behaviour of MuRel. We also provide various

ablative studies to validate the relevance of the MuRel cell

and the iterative reasoning process, and show that MuRel is

highly competitive or even outperforms state-of-the-art re-

sults on three of the most common VQA datasets: the VQA

2.0 dataset [17], VQA-CP v2 [1] and TDIUC [23].

2. Related work and contributions

Recently, the deep learning community started to tackle

complex visual reasoning problems such as relationship de-

tection [31], object recognition [11], multimodal retrieval

[10, 15], abstract reasoning [38], visual causality [30], or

visual dialog [13, 48], while more theoretical work attempt

to formalize relational reasoning [7].

But the most popular image reasoning task is certainly

Visual Question Answering (VQA), which has been a hot

research topic for the last five years [33, 4, 17, 23]. Since

the seminal work of [33], different sub-problems have been

identified for the resolution of VQA. In particular, explicit

reasoning techniques have been developed relying on syn-

thetic datasets [21, 41]. Meanwhile, real-data VQA sys-

tems are the test bed for more practical approaches based

on high quality visual representations or multimodal fusion

schemes.

Visual reasoning The research efforts towards VQA

models that are able to reason about a visual scene is mainly

conducted using the CLEVR dataset [21]. This artificial

dataset provides questions that require spatial and relational

reasoning on simple images coming from a visual world

with low variability. An important line of work attempts

to solve this task through explicit reasoning. In such meth-

ods [22, 19, 34], a neural network reads the question and

generates a program, corresponding to a graph of elemen-

tary neural operations that process the image. However,

there are two major downsides to these techniques. First,

their performance strongly depends on whether or not pro-

gram annotations are used to learn the program generator;

and second, they can be matched or surpassed by simpler

models that implicitly learn to reason without requiring pro-

gram annotation. In particular, FiLM [37] modulates the

visual feature map with an affine transformation whose pa-

rameters depend on the question. In more recent work, the

MAC network [20] draws inspiration from the Model-View-

Controller paradigm to design the trainable MAC cell on

which the network iterates. Finally, in [39], they reason over

all the possible pairs of objects in the picture, thus introduc-

ing relationship modeling in visual question answering.

VQA on real data An important part of the research

in VQA is focused on designing functions that can rep-

resent high-level correlations between two vector spaces.

Among these multimodal fusion algorithms, the most ef-

fective ones use second order (or higher [45]) interactions,

made tractable through sketching methods [16], or with

more success using the tensor decomposition framework

[25, 8, 44].

This line of work is often considered orthogonal to vi-

sual reasoning contributions. In a setup involving real data,

complex methods such as explicit or relational reasoning

are much more challenging to implement than with artifi-

cial images and questions. This is certainly why the most

widely used reasoning framework involves soft attention

mechanisms [5, 42]. Given a question, these models as-

sign an importance score to each region, and use them to

weight-sum pool the visual representations. Multiple atten-

tion maps (also called glimpses) can even be computed in

parallel [25, 8, 44, 45] or sequentially [43]. More complex

attention strategies have been explored, such as the Struc-

tured Attention [12], where a locally-connected graphical

structure is considered to infer the region saliency scores.

[47] also leverages a graphical structure between regions

to address weaknesses of the soft-attention mechanism, im-

proving the VQA model’s ability to count. In [36], the im-

age representation is computed using pairwise semantic at-

tention and spatial graph convolutions. The soft attention

framework is questioned in [32], where regions are hardly

selected based on the norm of their feature. Finally, recent

work of [24] simultaneously attends over regions and word

tokens through a bilinear attention network.

Importantly, the type of visual features used to feed

the VQA system has an large impact on performance.

While early work have been using fixed-grid representation

given by a fully-convolutional network (such as ResNet-152

[18]), performance can be improved using predictions from

an object detector [3]. Recently, a crucial component in the

VQA Challenge 2018 winning entry was the mix of multi-

ple types of visual features [46].

MuRel contributions In this work, we move away from

the classical attention framework [25, 16, 8, 45] widely used

in real-data VQA systems. Instead, we use a vectorial rep-
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resentation, more expressive than scalar attention maps, to

model the semantic interaction between each region’s vi-

sual content and the question. In addition, we include a no-

tion of spatial and semantic context in the representations by

representing pairs of image regions through interactions be-

tween their visual embeddings and spatial coordinates. Dif-

ferently than the approach followed in [36] where a locally

connected graph structure is built, we use the relations be-

tween all possible pairs of regions.

Our MuRel network embodies an iterative process with

inspiration from works driven by the synthetic reasoning

CLEVR dataset, e.g., MAC [20] or FiLM [37], which we

adapt to the real data VQA purpose. In particular, we im-

prove the interactions between image regions and questions

by using richer bilinear fusion models and by explicitly in-

corporating relations between regions.

3. MuRel approach

Our VQA approach is depicted in Figure 3. Given an

image v ∈ I and a question q ∈ Q about this image, we

want to predict an answer â ∈ A that matches the ground

truth answer a⋆. As very common in VQA, the prediction â

is given by classification scores:

â = argmax
a∈A

pθ(a|v, q) (1)

where pθ is our trainable model. In our system, the im-

age is represented by a set of vectors {vi}i∈[1,N ], where

each vi ∈ R
dv corresponds to an object detected in the

picture. We also use the spatial coordinates of each region

bi = [x, y, w, h], where (x, y) are the coordinates of the

top-left point of the box, and h and w correspond to the

height and the width of the box. Note that x and w (respec-

tively y and h) are normalized by the width (resp. height) of

the image. For the question, we use a gated recurrent unit

network to provide a sentence embedding q ∈ R
dq .

In Section 3.1, we present the MuRel cell, a neural mod-

ule that learns to perform elementary reasoning operations

by blending question information into the set of spatially-

grounded visual representations. Next, in Section 3.2, we

leverage the power of this cell using the MuRel network, a

VQA architecture that iterates through a MuRel cell to rea-

son about the scene with respect to a question.

3.1. MuRel cell

The MuRel cell takes as input a bag of N visual features

si ∈ R
dv , along with their bounding box coordinates bi.

As shown in Figure 2, it is a residual function consisting

of two modules. First, an efficient bilinear fusion module

merges question and region feature vectors to provide a lo-

cal multimodal embedding. This fusion is directly followed

by a pairwise modeling component, designed to update each

multimodal representation with respect to its own spatial

and visual context.

Bilinear 
Fusion

Pairwise 
Relational 
Modeling 

+

skip-connection 
 s

i

 sˆ
i

 q
 x

i

 m

i

Figure 2. MuRel cell. In the MuRel cell, the bilinear fusion

represents rich and fine-grained interactions between question and

region vectors q and si. All the resulting multimodal vectors mi

pass through a pairwise modeling block to provide a context-aware

embedding xi per region. The cell’s output ŝi is finally computed

as a sum between si and xi, acting as residual function of si.

Multimodal fusion We want to include question infor-

mation within each visual representation si. Multiple

multimodal fusion strategies have been recently proposed

[25, 16, 8, 44, 45] to model the relevant interactions be-

tween two modalities. One of the most efficient technique

is the one proposed by [9], based on the Tucker decomposi-

tion of third-order tensors. This bilinear fusion model learns

to focus on the relevant correlations between input dimen-

sions. It models rich and fine-grained multimodal interac-

tions, while keeping a relatively low number of parameters.

Each input vector si is fused with the question embedding

q using the same bilinear fusion:

mi = B(si, q; Θ) (2)

where Θ are the trainable parameters of the fusion module.

Each dimension m of mi can be written as a bilinear func-

tion in the form
∑

s,q w
s,q,mssiq

q . Thanks to the Tucker de-

composition, the tensor {ws,q,m} is factorized into the list

of parameters Θ. We set the number of dimensions in mi

to dv to facilitate the use of residual connections throughout

our architecture.

In classical attention models, the fusion between image

region and question features s and q only learns to encode

whether a region is relevant. In the MuRel cell, the local

multimodal information is represented within a richer vec-

torial form mi which can encode more complex correla-

tions between both modalities. This allows to store more

specific information about what precise characteristic of a

particular region is important in a given textual context.

Pairwise interactions To answer certain types of ques-

tion, it can be necessary to reason over multiple object that

interact together. More generally, we want each representa-

tion to be aware of the spatial and semantic context around

it. Given that our features are structured as a bag of local-

ized vectors [3], modeling the visual context of each region

is not straightforward. Similarly to the recent work of [36],

we opt for a pairwise relationship modeling where each re-

gion receives a message based on its relations to its neigh-

bours. In their work, a region’s neighbours correspond to
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the K most similar regions, whereas in the MuRel cell the

neighbourhood is composed of every region in the image.

Besides, instead of using scalar pairwise attention and graph

convolutions with Gaussian kernels as they do, we merge

spatial and semantic representations to build relationship

vectors. In particular, we compute a context vector ěi for

every region. It consists in an aggregation of all the pairwise

links ri,j coming into i. We define it as ěi = maxj ri,j ,

where ri,j is a vector containing information about the con-

tent of both regions, but also about their relative spatial po-

sitioning. We use the max operator in the aggregation func-

tion to reduce the noise that can be induced by average or

sum poolings, which oblige all the regions to interact with

each other. To encode the relationship vector, we use the

following formulation:

ri,j = B(bi, bj ; Θb) + B (mi,mj ; Θm) (3)

Through the B(., .; Θb) operator, the cell is free to learn

spatial concepts such as on top of, left, right, etc. In par-

allel, B(., .; Θs) encodes correlations between multimodal

vectors (si, sj), corresponding to semantic visual concepts

conditioned on the question representation. By summing

up both spatial and semantic fusions, the network can learn

high-level relational concepts such as wear, hold, etc.

The context representation ěi is obtained by aggregating

the representations ri,j provided by its neighbours through

an element-wise max pooling. Using this operator, the net-

work can learn to filter our irrelevant interactions for each

features dimension. Then, the multimodal vector mi is up-

dated in an additive manner:

xi = mi + ěi (4)

This formulation of the pairwise modelling is actually

closer to the Graph Networks [7], where the notion of re-

lational inductive biases is formalized.

Finally, the MuREL cell’s output is computed as a resid-

ual function of its input, to avoid the vanishing gradient

problem. Each visual feature si is updated as: ŝi = si+xi.

The chain of operations that updates the set of localized

region embeddings {si}i∈[1,N ] using the multimodal fusion

with q and the pairwise modeling operator is noted:

{ŝi} = MurelCell ({si}; {bi}, q) (5)

3.2. MuRel network

The MuRel network mimics a simple form of iterative

reasoning by leveraging the power of bilinear fusions to iter-

atively merge visual information into context-aware visual

embeddings. As we can see in Figure 3, the region state

vectors {si} are updated by a MuRel cell through multiple

steps, each time refining the representations with contextual

and question information. More specifically, for each step

t = 1..T where T is the total number of steps, a MuRel cell

processes and updates the state vectors as follows:

{sti} = MurelCell
(

{st−1
i }; {bi}, q

)

(6)

The state vectors are initialized with the features outputted

by the object detector; for each region i, s0i = vi.

The MuRel network represents each region regarding the

question, but also using its own visual context. This rep-

resentation is done iteratively, through multiple steps of a

MuRel cell. The residual nature of this module makes it

possible to align multiple cells without being subject to gra-

dient vanishing. Moreover, the weights of our model are

shared across the cells, which enables compact parametriza-

tion and good generalization.

At step t = T , the representations {sTi } are aggregated

with a global max pooling operation to provide a single vec-

tor s ∈ R
dv . This scene representation contains information

about the objects, the spatial and semantic relations between

them, with respect to a particular question.

The scene representation s is merged with the question

embedding q to compute a score for every possible answer

ŷ = B(s, q; Θy). Finally, â is the answer with maximum

score in ŷ.

Visualizing MuRel network Our model can also be

leveraged to define visualization schemes finer than mere

attention maps. Especially, we can highlight important rela-

tions between image regions for answering a specific ques-

tion. At the end of the MuRel network, the visual fea-

tures {sTi } are aggregated using a max operation, yield-

ing a dv−dimensional vector s. Thus, we can compute a

contribution map by measuring to what extent each region

contributes to the final vector. To do so, we compute the

point-wise c = argmaxi{s
T
i } ∈ [1, N ]dv , and measure the

occurrence frequency of each region in this vector c. This

provides a value for each region that estimates its contri-

bution to the final vector. Interestingly, this process can be

done after each cell, and not exclusively at the last one. In-

tuitively, it measures what the contribution map would have

been if the iterative process had stopped at this point. As

we can see in Figures 1,3,5, these relevance scores match

human intuition and can be used to explain the model’s de-

cision, even if the network has not been trained with any

selection mechanism.

Similarly, we are able to visualize the pairwise relation-

ships involved in the prediction of the MuRel cell. The first

step is to find i⋆, which is the region that is the most im-

pacted by the pairwise modeling. It is the region such that

‖ ěi

xi
‖2 is maximal (cf. Equation (4)). This bounding box is

shown in green in all our visualizations. We then measure

the contribution of every other region to i⋆ using the oc-

currence frequencies in argmaxj ri,j . We show in red the

regions whose contribution to i⋆ is above a certain thresh-

old (0.2 in our visualizations). If there is no such region, the

green box is not shown.
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Figure 3. MuRel network. The MuRel network merges the question embedding q into spatially-grounded visual representations {vi} by

iterating through a single MuRel cell. This module takes as input a set of localized vectors {si} and updates their representation using a

multimodal fusion component. Moreover, it models all the possible pairwise relations between regions by combining spatial and semantic

information. To construct the importance map at step t, we count the number of time each region provides the maximal value of maxi{s
t

i}
(over the 2048 dimensions).

Connection to previous work We can draw a comparison

between our MuRel network and the FiLM network pro-

posed in [37]. Beyond the fact that their model is built for

the synthetic CLEVR dataset [21] and ours processes real

data, some connections can be found between both models.

In their work, the image passes through multiple residual

cells, whereas we only have one cell through which we it-

erate. In FiLM, the multimodal interaction is modeled with

a feature-wise affine modulation, while we use a bilinear

fusion strategy [8] which seems better suited to real world

data. Finally, both MuRel and FiLM leverage the spatial

structure of the image representation to model the relations

between regions. In FiLM, the image is represented with

a fully-convolutional network which outputs a feature map

disposed in a fixed spatial grid. With this structure on image

features, the relations between regions are modeled with a

3× 3 convolution inside each residual block. Thus, the rep-

resentation of each region depends on its neighbours in the

locally-connected graph induced by the fixed grid structure.

In our MuRel network, the image is represented as a set of

localized features. This makes the relational modeling non

trivial. As we want to model relations between regions that

are potentially far apart, we consider that the set of regions

forms a complete graph, where each region is connected to

all the others.

4. Experiments

4.1. Experimental setup

Datasets: We validate the benefits of the MuRel cell

and the MuRel network on three recent datasets. VQA 2.0

[17] is the most used dataset. It comes with a training set,

a validation set and an online testing set. We provide a

fine grained analysis on the validation set, while we com-

pare MuRel to the state-of-the-art models on the testing set.

Then, we use VQA Changing Priors v2 [2] to demonstrate

Model VQA 2.0 VQA CP v2 TDIUC

Attention baseline 63.44 38.04 86.96

MuRel 65.14 39.54 88.20

Table 1. Comparing MuRel to Attention. Comparison of the

MuRel strategy against a strong Attention-based model on the

VQA 2.0 val, VQA-CP v2 and TDIUC datasets. Both models have

an equivalent number of parameters (∼60 million) and are trained

on the same features following the same experimental setup.

the generalization capacity of MuRel. VQA-CP v2 uses the

same data as in VQA 2.0, but proposes different distribu-

tion of answers per question between training and valida-

tion splits. Finally, we use the TDIUC dataset [23] to con-

struct a more detailed analysis of our model’s performance

on 12 well-defined types of question. TDIUC is currently

the biggest dataset for visual question answering.

Hyper-parameters: We use standard features extrac-

tion, preprocessings and loss function [16]. We use the re-

cent Bottom-up features provided by [3] to represent our

image as a set of 36 localized regions. For the question em-

bedding, we use the pretrained Skip-thought encoder from

[27]. Inspired by recent works, we use Adam as optimizer

[26] with a learning scheduler [46]. More details about the

experimental setup are given in appendix.

4.2. Model validation

We compare MuRel against models trained on the same

Bottom-up features [3] which are required to reach the best

performances.

Comparison to Attention-based model In Table 1, we

compare MuRel against a strong attentional model based on

bilinear fusions [8], which encompasses a multi-glimpses

attentional process [16]. The goal of this experiments is to

compare our approach with strong baselines for real VQA in

controlled conditions. In addition to using the same bottom-
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Pairwise Iter. VQA 2.0 VQA CP v2 TDIUC

✗ ✗ 64.13 38.88 87.50

✓ ✗ 64.57 39.12 87.86

✗ ✓ 64.72 39.37 87.92

✓ ✓ 65.14 39.54 88.20

Table 2. Ablation study of MuRel. Experimental validation of

the pairwise module and the iterative processing on the VQA 2.0

val, VQA-CP v2 and TDIUC datasets.

up features, which are crucial for fair comparisons, we also

dimension the attention-based baseline to have an equiva-

lent amount of learned parameters than MuRel (∼60 mil-

lions including those from the GRU encoder). Also, we

train it following the same experimental setup to insure

competitiveness. MuRel reaches a higher accuracy on the

three datasets. We report a significant gain of +1.70 on

VQA 2.0 and +1.50 on VQA CP v2. Not only these results

validate the ability of MuRel to better model interactions

between the question and the image, but also to generalize

when the distribution of the answers per question are com-

pletely different between the training and validation set as in

VQA CP v2. A gain of +1.24 on TDIUC demonstrates the

richer modeling capacity of MuRel in a fine-grained context

of 12 well delimited question types.

Ablation study In Table 2, we compare three ablated in-

stances of MuRel to its complete form. First, we validate

the benefits of the pairwise module. Adding it to a vanilla

MuRel without iterative process leads to higher accuracy

on every datasets. In fact, between line 1 and 2, we report a

gain of +0.44 on VQA 2.0, +0.24 on VQA CP v2 and +0.36

on TDIUC. Secondly, we validate the interest of the itera-

tive process. Between line 1 et 3, we report a gain of +0.59

on VQA 2.0, +0.49 on VQA CP v2 and +0.42 on TDIUC.

Notably, this modification does not add any parameters, be-

cause we iterate over a single MuRel cell. Unsharing the

weights by using a different MuRel cell for each step gives

similar results. Finally, the pairwise module and the iter-

ative process are added to create the complete MuRel net-

work. This instance (in line 4) reaches the highest accuracy

on the three datasets. Interestingly, the gains provided by

the combination of the two methods are sometimes larger

than those of each one separately. For instance, we report a

gain of +1.01 on VQA 2.0 between line 1 and 4. This attests

to the complementary of the two modules.

Number of reasoning steps In Figure 4, we perform an

analysis of the iterative process. We train four different

MuRel networks on the VQA 2.0 train split, each with a

different number of iterations over the MuRel cell. Per-

formance is reported on val split. Networks with two and

three steps respectively provides a gain of +0.30 and +0.57

in overall accuracy on VQA 2.0 over the network with a

single step. An interesting aspect of the iterative process

Figure 4. Number of iterations. Impact of the number of steps

in the iterative process on the different question types of VQA 2.0

val.

of MuRel is that the four networks have exactly the same

amount of parameters, but the accuracy significantly varies

with respect to the number of steps. While the accuracy for

the answer type involving numbers keeps increasing, we re-

port a decrease in overall accuracy at four reasoning steps.

Counting is a challenging task: not only does the model

need to detect every occurrence of the desired object, but

also the representation computed after the final aggregation

must keep the information of the number of detected in-

stances. The complexity of this question may require deeper

relational modeling, and thus benefit from a higher number

of iterations over the MuRel cell.

4.3. State of the art comparison

VQA 2.0 In Table 3, we compare MuRel to the most re-

cent contributions on the VQA 2.0 dataset. For fairness con-

siderations, all the scores correspond to models trained on

the VQA 2.0 train+val split, using the Bottom-up visual

features [3]. Interestingly, our model surpasses both MU-

TAN [8] and MLB [25], which correspond to some of the

latest development in visual attention and bilinear models.

This tends to indicate that VQA models can benefit from

retaining local information in mulitmodal vectors instead of

scalar coefficients. Moreover, our model greatly improves

over the recent method proposed in [36] where the regions

are structured using pairwise attention scores, which are

leveraged through spatial graph convolutions. This shows

the interest of our spatial-semantic pairwise modeling be-

tween all possible pairs of regions. Finally, even though we

did not extensively tune the hyperparameters of our model,

our overall score on the test-dev split is highly competitive

with state-of-the-art methods. In particular, we are compa-

rable to Pythia [46] who won the VQA Challenge 2018.

Please note that they improve their overall scores up to

70.01% when they include multiple types of visual features

and more training data. Also, we did not report the score of

69.52% obtained by BAN [24] as they train their model on

extra data from the Visual Genome dataset [28].
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test-dev test-std

Model Yes/No Num. Other All All

Bottom-up
81.82 44.21 56.05 65.32 65.67

[3]

Graph Att.
- - - - 66.18

[36]

MUTAN†
82.88 44.54 56.50 66.01 66.38

[8]

MLB†
83.58 44.92 56.34 66.27 66.62

[25]

DA-NTN
84.29 47.14 57.92 67.56 67.94

[6]

Pythia
- - - 68.05 -

[46]

Counter
83.14 51.62 58.97 68.09 68.41

[47]

MuRel 84.77 49.84 57.85 68.03 68.41

Table 3. State-of-the-art comparison on the VQA 2.0 dataset.

Results on test-dev and test-std splits. All these models were

trained on the same training set (VQA 2.0 train+val), using the

Bottom-up features provided by [3]. No ensembling methods have

been used. † have been trained by [6].

TDIUC One of the core aspect of VQA models lies in

their ability to address different tasks. The TDIUC dataset

enables a detailed analysis of the strengths and limitations

of a model by evaluating its performance on different types

of question. We show in Table 4 a detailed comparison of

recent models to our MuRel. We obtain state-of-the-art re-

sults on the Overall Accuracy and the arithmetic mean of

per-type accuracies (A-MPT), and surpass by a significant

margin the second best model proposed by [40]. Interest-

ingly, we improve over this model even though it uses a

combination of Bottom-up and fixed-grid features, as well

as a supervision on the question types (hence its 100% re-

sult on the Absurd task). MuRel notably surpasses all previ-

ous methods on the Positional reasoning (+5.9 over MCB),

Counting (+8.53 over QTA) questions. These improve-

ments are likely due to the pairwise structure induced within

the MuRel cell, which makes the answer prediction depend

on the spatial and semantic relations between regions. The

effectiveness of our per-region context modelling is also

demonstrated by our the improvement on Scene recogni-

tion questions. For these questions, representing the image

as a collection of independent objects shows lower perfor-

mance than replacing each of them in its spatial and se-

mantic context. Interestingly, our results on the harmonic

mean of per-type accuracies (H-MPT) are lower than state-

of-the-art. For MuRel, this harmonic metric is significantly

harmed by our low score of 21.43% on the Utility and Af-

fordances task. As these questions concern the possible us-

ages of objects present in the scene (such as Can you eat

RAU* MCB* QTA
MuRel

[35] [16] [40]

Bottom-up ✗ ✗ ✓ ✓

Scene Reco. 93.96 93.06 93.80 96.11

Sport Reco. 93.47 92.77 95.55 96.20

Color Attr. 66.86 68.54 60.16 74.43

Other Attr. 56.49 56.72 54.36 58.19

Activity Reco. 51.60 52.35 60.10 63.83

Pos. Reasoning 35.26 35.40 34.71 41.19

Object Reco. 86.11 85.54 86.98 89.41

Absurd 96.08 84.82 100.00 99.8

Util. and Afford. 31.58 35.09 31.48 21.43

Object Presence 94.38 93.64 94.55 95.75

Counting 48.43 51.01 53.25 61.78

Sentiment 60.09 66.25 64.38 60.65

Overall (A-MPT) 67.81 67.90 69.11 71.56

Overall (H-MPT) 59.00 60.47 60.08 59.30

Overall Accuracy 84.26 81.86 85.03 88.20

Table 4. State-of-the-art comparison on the TDIUC dataset.

* trained by [23].

the yellow object?), and are not directly related to the visual

understanding of the scene.

VQA-CP v2 This dataset has been proposed to evaluate

and reduce the question-oriented bias in VQA models. In

particular, the distributions of answers with respect to ques-

tion types differ from train to val splits. In Table 5, we

report the scores of two recent baselines [1, 32], on which

we improve significantly. In particular, we demonstrate an

important gain over GVQA [1], whose architecture is de-

signed to focus on Yes/No questions. However, since both

methods do not use the Bottom-up features, the fairness of

the comparison can be questioned. So we also train an at-

tention model similar to [8] using these Bottom-up region

representation. We observe that MuRel provides a substan-

tial gain over this strong attention baseline. Given the distri-

bution mismatch between train and val splits, models that

only focus on linguistic biases to answer the question are

systematically penalized on their val scores. This property

of VQA-CP v2 implies that the pairwise iterative structure

of MuRel is less prone to question-based overfitting than

classical attention architectures.

4.4. Qualitative results

In Figure 5 we illustrate the behaviour of a MuRel net-

work with three shared cells. Iterations through the MuRel

cell tend to gradually discard regions, keeping only the most

relevant ones. As explained in Section 3.2, the regions

that are most involved in the pairwise modeling process are

shown in green and red. Both region contributions and pair-
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Step #1

What game are they
playing on the WII? bowling   

Step #2 Step #3Original image

What is the 
man holding? kite  

What position is 
the front dog in? sitting  

✔

✔

✔

What is on the top 
of her head? hat  ✔

Figure 5. Qualitative evaluation of MuRel. Visualization of the importance maps with colored regions related to the relational mechanism.

As in Figure 3, the most selected regions by the implicit attentional mechanism are shown in brighter. The green region is the most impacted

by the pairwise modeling, while the red regions impact the green regions the most. These colored regions are only represented if they are

greater than a certain threshold.

Model
Bottom

Yes/No Num. Other All
up

HAN [32] ✗ 52.25 13.79 20.33 28.65

GVQA [1] ✗ 57.99 13.68 22.14 31.30

Attention ✓ 41.56 12.19 43.29 38.04

MuRel ✓ 42.85 13.17 45.04 39.54

Table 5. State-of-the-art comparison on the VQA-CP v2

dataset. The Attention model was trained by us using the Bottom-

up features.

wise links match human intuition. In the first row, the most

relevant relations according to our model are between the

player’s hand, containing the WII controller, and the screen,

which explains the prediction bowling. In the third row, the

model answers kite using the relation between the man’s

hand and the kite he is holding. Finally, in the last row, our

model is able to address a third question on the same image

as in Figure 1 and 3. Here, the relation between the head of

the woman and her hat is used to provide the right answer.

As VQA models are often subject to linguistic bias [17, 1],

these visualizations tend to show the ability of the MuRel

network to rely on visual information to answer questions.

5. Conclusion

In this paper, we introduced MuRel, a multimodal rela-

tional network for Visual Question Answering task. Our

system is based on rich representations of visual image re-

gions that are progressively merged with the question repre-

sentation. We also included region relations with pairwise

combinations in our fusion, and the whole system can be

leveraged to define visualization schemes helping to inter-

pret the decision process of MuRel.

We validated our approach on three challenging datasets:

VQA 2.0, VQA-CP v2 and TDIUC. We exhibited vari-

ous ablation studies, clearly demonstrating the gain of our

vectorial representation to model the attention, the use of

pairwise combination, and the multi-step iterations in the

whole process. Our final MuRel network is very compet-

itive and outperforms state-of-the-art results on two of the

most widely used datasets.
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