
MaxpoolNMS: Getting Rid of NMS Bottlenecks in Two-Stage Object Detectors

Lile Cai1 Bin Zhao2 Zhe Wang1 Jie Lin1 Chuan Sheng Foo1

Mohamed Sabry Aly3

Vijay Chandrasekhar1

{1Institute for Infocomm Research, 2Institute of Microelectronics}, A*STAR, Singapore
3Nanyang Technological University, Singapore

{caill,wang zhe,lin-j,foo chuan sheng,vijay}@i2r.a-star.edu.sg

zhaobin@ime.a-star.edu.sg, msabry@ntu.edu.sg

Abstract

Modern convolutional object detectors have improved

the detection accuracy significantly, which in turn inspired

the development of dedicated hardware accelerators to

achieve real-time performance by exploiting inherent paral-

lelism in the algorithm. Non-maximum suppression (NMS)

is an indispensable operation in object detection. In stark

contrast to most operations, the commonly-adopted Gree-

dyNMS algorithm does not foster parallelism, which can be

a major performance bottleneck. In this paper, we introduce

MaxpoolNMS, a parallelizable alternative to the NMS al-

gorithm, which is based on max-pooling classification score

maps. By employing a novel multi-scale multi-channel max-

pooling strategy, our method is 20× faster than GreedyNMS

while simultaneously achieves comparable accuracy, when

quantified across various benchmarking datasets, i.e., MS

COCO, KITTI and PASCAL VOC. Furthermore, our method

is better suited for hardware-based acceleration than Gree-

dyNMS.

1. Introduction

Deep neural networks (DNNs) have caused a major leap

in object detection accuracy. State-of-the-art DNN-based

object detection algorithms can be broadly classified into

one-stage and two-stage methods. One-stage object detec-

tors (e.g., YOLO [24] and SSD [22]) operate in a sliding-

window manner that makes prediction for densely sampled

locations in the input image. Alternatively, two-stage ap-

proaches, such as Faster R-CNN [25] and R-FCN [5], first

generate a sparse set of region proposals and then perform

a second stage prediction to classify each proposal and re-

fine its location. Two-stage methods consistently achieve

higher accuracy than one-stage methods, but are signifi-

cantly slower [18].

Two-stage object detectors consist of a (first stage) re-

gion proposal network (RPN) that hypothesizes candidate

object locations and a (second stage) detection network that

refines region proposals. The RPN and detection network

share the same feature extractor network. Figure 1 displays

the typical blocks of two-stage object detectors. Typically

a significant portion of execution time is consumed in the

feature extractor, region proposal and object detection net-

works. These layers contain convolution and pooling opera-

tions, which in principle can be mapped to a highly-parallel

hardware accelerator (e.g., Google TPU [19]) – this is not

the case with remaining blocks, i.e., Non-Maximum Sup-

pression (NMS).

Input Image

Region Proposals Final Detections

Feature Extractor

Region Proposal Network Object Detection Network

Non-Maximum Suppression Non-Maximum Suppression

Figure 1. System diagram of two-stage object detectors. This work

tackles the NMS in region proposal network (denoted in red box).

NMS is an essential block as it removes duplicate detec-

tions, hence reducing false positives. Both the region pro-

posal network and object detection network employ NMS

as a post-processing step. The commonly-adopted Gree-

dyNMS [7] is a simple hand-crafted method. When ap-

plied in region proposal network, it first sorts all the can-

didate detection boxes according to their objectness scores,

followed by two nested loops to greedily select high score

boxes and delete other boxes that overlap significantly with

the selected ones. The inner loop is parallelizable, but the

outer loop is sequential in nature – without examining the

preceding box first, it cannot be decided whether the follow-

9356

ing box should be selected. When applying GreedyNMS in

object detection network, the number of processed boxes is

much smaller than that for RPN (e.g., 300 vs. 6000), and it

is conducted separately for each object class.

NMS can induce a performance bottleneck as it cannot

be easily parallelized. This is illustrated in Fig. 2. As GPUs

become increasingly powerful, the time spent on convolu-

tion operations reduces significantly, while the time spent

on NMS is not affected and gradually occupies an increas-

ing portion of the total execution time.

120TOPs 240TOPs
0

15

30

4.49TFLOPS 10.6TFLOPS 15TFLOPS 120TOPs 240TOPs
0

200

400

600

4.49 TFLOPs

32-bit float

K40 GPU

(measured)

10.6 TFLOPs

32-bit float

1080Ti GPU

(measured)

15 TFLOPs

32-bit float

V100 GPU

(measured)

120 TOPs

16-bit fixed

V100 GPU

(projected)

240 TOPs

16-bit fixed

2× V100 GPU

(projected)

E
x
e
c
u
ti
o

n
 t

im
e
 (

m
s
) Convolution

GreedyNMS

Figure 2. Execution time of convolution and GreedyNMS on dif-

ferent GPU platforms. Time was measured when the GPU was

launched to run a Faster R-CNN detection network with ResNet-

152-V2 backbone [14]. The last two bars are projected values

since 16-bit fixed-point Faster R-CNN is not available1. The con-

volution includes all the operations in ResNet block 0–4, and the

GreedyNMS is the one in RPN.

In this paper, we introduce a scalable and paralleliz-

able approach to perform NMS in region proposal network.

The key insight is that an object proposal corresponds to a

peak in the objectness score map, hence we leverage max-

pooling to obtain this peak. The method is thus called Max-

poolNMS. By employing a novel multi-scale multi-channel

max-pooling strategy, our method simultaneously obtains

comparable accuracy and up to 20× speed-up versus Gree-

dyNMS. Our method avoids computing intersection over

union (IoU) and solely relies on max-pooling operations,

and thus is highly parallelizable.

2. Related Work

Convolutional object detectors Modern convolutional

object detectors follow either a one-stage, proposal-free

paradigm, or a two-stage, proposal-based paradigm. One-

stage detectors apply the object classifier and location re-

gressor to a densely sampled set of local windows in dif-

ferent locations, scales and aspect ratios. YOLO [24], SSD

[22] and the recently proposed RetinaNet [20] are repre-

sentative architectures for one-stage object detectors. Two-

stage paradigm was popularized by the R-CNN framework

[11], and was further improved in terms of speed by Fast

1Projected execution time is derived using the total number of convo-

lution operations in the entire Faster R-CNN network, total memory ac-

cesses for weights and activations, and reported computing performance

and memory-access bandwidth of the examined GPU.

R-CNN [10]. Faster R-CNN [25] incorporates the region

proposal function into deep learning framework by intro-

ducing a region proposal network that shares the same fea-

ture extraction network with Fast R-CNN. Mask R-CNN

[12] adds a mask prediction branch to Faster R-CNN to ob-

tain pixel level object detections. Cascade R-CNN [2] adds

more stages to Faster R-CNN and uses the output of pre-

vious stages to train the next stage detector of higher qual-

ity. R-FCN [5] is another line of work for two-stage de-

tectors, which aims to share more computation among the

proposal boxes in the second stage by employing position-

sensitive prediction maps. Huang et al. [18] conduct an

extensive study to evaluate the speed/accuracy trade-offs

for SSD, Faster R-CNN and R-FCN, and conclude that the

most accurate models are consistently achieved by two-

stage methods. Recent work on single shot instance seg-

mentation shows that the proposal-based approach can not

only achieve better mAP but also runs significantly faster

than sliding window-based approach for mask prediction

[3].

NMS in object detection NMS has been employed as

a post-processing step in several generations of detectors.

The de facto algorithm, GreedyNMS, was first demon-

strated in [7] to surpass other approaches for human detec-

tion. Since then, it has been a standard component in object

detection and widely used in one-stage and two-stage detec-

tors. Soft-NMS [1] is a variant of GreedyNMS that decays

the score of neighboring detections instead of totally remov-

ing it. It has been shown to improve the mAP of object de-

tectors by around 1-2%. However, it was only applied to

replace GreedyNMS in the second stage detection network

in the paper, and it is not clear whether it can also replace the

one in region proposal network. Fitness NMS [26] weights

the original classification score by a predicted fitness value

so that boxes with high IoU with ground truth boxes can

have higher scores. Another line of research is to replace

GreedyNMS with learnable network architectures so that

the model can be trained fully end-to-end. The idea is to

predict only one high scoring detection for an object and

the key to achieve this is to design features that condition on

multiple detections on the same object. Tnet [15] is a con-

vnet for NMS, where the IoU values between a detection

and its neighboring boxes are used together with score val-

ues to make sparse prediction. Gnet[16] computes pairwise

context features between a detection and its neighbors to

generate the feature representation. Relation network [17]

computes the relation feature for a detection by a weighted

sum of appearance features from other detections. Due to

pairwise computation and additional network architectures,

these methods are more suited to deploy in the second stage

detection network where the number of processed boxes is

small. Also, all these work focused on improving the ac-

9357

curacy of GreedyNMS, while the speed and parallelism as-

pects have been left unexplored.

3. Method

Modern convolutional object detector utilizes multi-

scale “anchors” to realize scale-invariant object detection.

In RPN, a binary classifier (i.e., object/background) and a

location regressor are trained for each anchor. Applying

the trained classifier to densely sampled locations of the in-

put image (typically in a stride of 16) produces the object-

ness score maps. Figure 3 displays the 12 objectness score

maps for an input image from the KITTI dataset. We use 4

scales {642, 1282, 2562, 5122} and 3 aspect ratios (width to

height) {1 : 2, 1 : 1, 2 : 1} for anchor generation. We make

the following observations on these maps.

1. Objects correspond to peaks on the map. This is due to

the fact that during training, only anchors with a high

IoU (e.g., above 0.7) with ground truth boxes are con-

sidered as positive samples, and thus only anchors con-

taining objects can have high objectness scores during

testing. Anchors in the neighborhood of the peak an-

chor can also have high response since similar input

should produce similar output for a continuous classi-

fication function.

2. The score map is scale and aspect-ratio specific and

only responds to objects of around that size. This is be-

cause small (large) anchor boxes can only be matched

to small (large) ground truth objects, and thus can only

be trained to detect small (large) objects.

3. An object can have high response on more than one

score maps. This is due to the fact that the actual object

scales and aspect ratios are continuous, yet the prede-

fined anchor sizes are discretized. An object can have

a size that falls between two neighboring anchor sizes

and thus has a strong response on both maps. Take the

image shown in Fig. 3 as an example. The green car

on the right has high response in two neighboring as-

pect ratios (scores maps (e) and (i)), as well as in two

neighboring scales (score maps (e) and (f)).

These observations suggest that max-pooling operations

could be sufficient to obtain a meaningful set of object pro-

posals. As an object is a local maximum on the score map,

it can be picked up by max-pooling, whose function is to se-

lect the maximum value in a local window. The key param-

eters here are the kernel sizes and strides for max-pooling.

Observation 2 provides insights into how to set the parame-

ters effectively. As each score map is focused on detecting

objects of a specific size, we set the kernel size and stride of

max-pooling to be proportional to the anchor box size. To

further reduce false positives, Observation 3 suggests that

we can perform multi-channel max-pooling across neigh-

boring score maps to remove duplicate responses for the

Scale
Aspect
ratio

1:2

1:1

2:1

 (a) (b) (c) (d)

(e)

(i)

(f) (g) (h)

(j) (k) (l)

128
2

256
2

512
2

64
2

Figure 3. The 12 objectness score maps for an input image from

the KITTI dataset.

same object. After obtaining the proposals returned by max-

pooling, we sort the proposals by their scores and output a

fixed number of proposals for the second stage prediction.

We provide details on how to conduct multi-scale and multi-

channel max-pooling in the following.

3.1. Multi­scale max­pooling

As score maps are generated by multi-scale anchors, it

is natural to use multi-scale kernel sizes for different score

maps when conducting max-pooling. Given a score map

for an anchor of size h×w, an object of size h×w will be

roughly projected to a h
s
× w

s
area on the map, where s is

the stride of the map. Suppose the centers of two objects are

αw apart on the image, they will correspond to two peaks

that are αw
s

apart on the score map. In order to not miss

either peak for object proposal, the kernel size and stride of

the max-pooling operation along the x dimension can be set

as:

ksizex, stridex = max(1, round(
αw

s
)). (1)

Similarly for y dimension, we set the parameters as:

ksizey, stridey = max(1, round(
αh

s
)). (2)

Table 1 presents the kernel sizes and strides for the 12

score maps computed by Eq. 1 and Eq. 2 with α = 0.25 and

s = 16. The algorithm to perform multi-scale max-pooling

is summarized in Algorithm 1.

Table 1. The kernel sizes and strides for the max-pooling operation

on the 12 score maps when α = 0.25 and s = 16.

642 1282 2562 5122

1:2 1x1 1x3 3x6 6x11

1:1 1x1 2x2 4x4 8x8

2:1 1x1 3x1 6x3 11x6

3.2. Multi­channel max­pooling

An object can produce multiple peaks on neighboring

score maps. This property can be utilized to reduce false

9358

Algorithm 1 Multi-Scale Max-Pooling

1: input:

2: Mscore: array of nar × nscl score maps, where nar is the number

of aspect ratios and nscl is the number of scales

3: output:

4: Mmax: array of nar × nscl maps of the same size as Mscore that

record the maximum value within a pooling window

5: parameters:

6: kx, ky : array of nar×nscl kernel sizes computed by Eq. 1 and Eq. 2

7: sx, sy : array of nar × nscl strides computed by Eq. 1 and Eq. 2

8: functions:

9: maxpool(x, ksizes, strides): perform max-pooling on input x with

the given pooling sizes and strides. ksizes and strides are 3-D vec-

tors specifying the pooling parameters along the x, y and channel di-

mension.

10: procedure

11: Mmax
←Mscore

12: for i ∈ [0, 1, · · · , nar − 1] do

13: for j ∈ [0, 1, · · · , nscl − 1] do

14: maxpool(Mmax
i,j , [kxi,j , k

y
i,j , 1], [s

x
i,j , s

y
i,j , 1])

15: end for

16: end for

17: end procedure

positives. Specifically, we apply a 2-channel max-pooling

on the two neighboring score maps. Two maps are consid-

ered to be “neighbors” if they are horizontally or vertically

connected in the scale-aspect ratio grid shown in Fig. 3.

To perform 2-channel max-pooling across aspect ratios (Al-

gorithm 2), we first perform max-pooling on Mscore
i,j , then

concatenate the max-pooling results of Mscore
i,j with Mscore

i+1,j

in the channel dimension, and then perform 2-channel max-

pooling on the concatenated map. Max-pooling across

scales (Algorithm 3) is conducted in a similar manner.

The difference between Algorithm 2 and Algorithm 3 is

the choice of kernel sizes and strides for 2-channel max-

pooling. For max-pooling across scales, we find it neces-

sary to use the smaller one of the two maps’ kernel sizes

and strides, otherwise peaks on the smaller scale score map

are incorrectly removed.

Algorithm 2 Multi-Channel Max-Pooling Across Aspect

Ratios
1: procedure

2: Mmax
←Mscore

3: for j ∈ [0, 1, · · · , nscl − 1] do

4: for i ∈ [0, 1, · · · , nar − 2] do

5: if i == 0 then

6: maxpool(Mmax
i,j , [kxi,j , k

y
i,j , 1], [s

x
i,j , s

y
i,j , 1])

7: end if

8: Mconcat
← concatenate(Mmax

i,j ,Mmax
i+1,j)

9: maxpool(Mconcat, [kxi+1,j , k
y
i+1,j , 2], [s

x
i+1,j , s

y
i+1,j , 2])

10: end for

11: end for

12: end procedure

Algorithm 3 Multi-Channel Max-Pooling Across Scales

1: procedure

2: Mmax
←Mscore

3: for i ∈ [0, 1, · · · , nar − 1] do

4: for j ∈ [0, 1, · · · , nscl − 2] do

5: Mconcat
← concatenate(Mmax

i,j ,Mmax
i,j+1

)

6: maxpool(Mconcat, [kxi,j , k
y
i,j , 2], [s

x
i,j , s

y
i,j , 2])

7: if j == nscl − 2 then

8: maxpool(Mmax
i,j+1

, [kxi,j+1
, kyi,j+1

, 1], [sxi,j+1
, syi,j+1

, 1])
9: end if

10: end for

11: end for

12: end procedure

4. Experimental Results

4.1. Accuracy benchmarking

In this section, we report the detection accuracy of Max-

poolNMS on three benchmarking datasets, i.e., MS COCO

[21], KITTI [9] and PASCAL VOC [8]. The pooling strat-

egy in Algorithm 1, 2 and 3 is denoted as MS, MC-AR and

MC-SCL, respectively. The α used in the experiments is

0.25 for all datasets. We will investigate the sensitivity of

α on accuracy in Section 5. Our experiment is based on the

Tensorflow object detection API [18]. For anchor genera-

tion, we use 4 scales {642, 1282, 2562, 5122} and 3 aspect

ratios (width to height) {1 : 2, 1 : 1, 2 : 1} in all the experi-

ments. The number of proposals is 300.

COCO For COCO dataset, we directly use the pretrained

detection models with ResNet-101-V1 [13] backbone pro-

vided in the Tensorflow detection model zoo and replace

GreedyNMS with MaxpoolNMS in inference. Image sizes

are scaled to lie within [600, 1024]. The model is evalu-

ated on COCO test-dev2017 that contains 20,288 images

and the results are reported in Table 2. It can be seen that

MaxpoolNMS is able to match the accuracy of GreedyNMS

for different matching IoUs and object sizes.

KITTI For KITTI dataset, we randomly split 1870 im-

ages from the training set as the validation subset and train

on the rest 5611 images. We use the ResNet-50-V2 [14]

as the backbone network. The optimizer is SGD with mo-

mentum 0.9 and random horizontal flips is used for data

augmentation. GreedyNMS is still employed in finetuning

and is replaced with MaxpoolNMS in inference. For Faster

R-CNN, the network was trained for 100k iterations with a

batch size of 1. The initial learning rate is 0.001, and de-

cayed by a factor of 0.1 at 75k iterations. For R-FCN, we

trained for 150k iterations and other settings are the same as

training Faster R-CNN. Input images are resized so that the

maximum dimension is 1024. The results are reported in

Table 3. MaxpoolNMS can achieve comparable mean aver-

age precision (mAP) as GreedyNMS for testing samples at

various difficulty levels from easy to hard.

9359

Table 2. Evaluation results on COCO test-dev2017.
mAP@IoU mAP@area Recall@maxDets Recall@area

0.50:0.95 0.50 0.75 S M L 1 10 100 S M L

Faster R-CNN+ResNet-101-V1

GreedyNMS 30.1 48.0 32.3 10.4 32.8 46.2 26.5 37.3 37.8 12.9 40.5 59.7

MS 30.1 48.2 32.3 10.5 32.9 46.1 26.5 37.4 37.9 12.9 40.8 59.5

MC-AR 30.1 48.1 32.3 10.5 32.8 45.8 26.4 37.1 37.5 12.9 40.7 58.7

MC-SCL 29.7 47.6 31.9 10.5 32.5 44.6 26.2 36.6 37.1 12.9 40.3 56.9

R-FCN+ResNet-101-V1

GreedyNMS 27.0 45.2 28.7 9.3 30.0 39.2 23.8 33.3 33.9 11.3 36.8 51.3

MS 27.3 45.5 28.9 9.6 30.3 39.4 24.0 33.5 34.0 11.5 37.0 51.1

MC-AR 27.2 45.3 28.8 9.1 30.1 39.3 23.8 33.2 33.7 11.4 36.9 50.5

MC-SCL 26.9 44.9 28.5 9.2 29.8 38.2 23.7 33.0 33.4 11.5 36.6 49.4

Table 3. Evaluation results on KITTI val.
Car Pedestrian Cyclist

mAP Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

Faster R-CNN+ResNet-50-V2

GreedyNMS 81.29 98.68 94.56 88.43 86.92 81.09 75.36 86.92 82.57 80.09

MS 81.35 98.83 95.17 88.51 86.96 80.88 75.11 87.27 82.74 80.42

MC-AR 81.27 98.67 95.06 88.65 87.21 81.14 75.61 86.25 81.98 79.56

MC-SCL 81.78 98.84 94.51 88.63 87.51 81.72 76.14 87.12 83.09 80.58

R-FCN+ResNet-50-V2

GreedyNMS 80.51 96.39 93.26 86.76 88.38 81.43 76.01 86.33 81.42 78.76

MS 80.42 96.85 93.49 87.21 88.28 81.16 75.58 86.28 81.36 78.48

MC-AR 80.29 96.80 93.40 86.80 88.17 81.36 75.68 85.69 81.19 78.40

MC-SCL 81.03 96.97 93.65 87.39 88.81 82.02 76.65 85.79 81.82 79.05

VOC We trained the network on the union set of

VOC2007 trainval and VOC2012 trainval (07+12), which

contains a total of 16,551 (5011 + 11540) images. The net-

work was trained with a batch size of 4 on 4 GTX 1080Ti

GPUs. For Faster R-CNN, the number of iterations and

learning rate setting are the same as KITTI. For R-FCN, we

trained for 150k iterations. The initial learning rate is 0.003,

decayed by 0.1 at 80k and 120k iterations. Images are re-

sized so that the minimum dimension is 600. The model is

then evaluated on the VOC2007 test that contains 4952 im-

ages. The results are shown in Table 4 . It can be seen that

MC-AR and MS both achieve comparable mAP as Gree-

dyNMS, yet there is some noticeable drop (2-5%) in mAP

for MC-SCL. We will investigate why MC-SCL caused the

mAP drop in Section 5.

4.2. Speed benchmarking

This section compares the execution time of Maxpool-

NMS with GreedyNMS. We implemented the entire Faster

R-CNN pipeline in C++, and plugged in the GreedyNMS or

MaxpoolNMS for the first stage NMS. We trained Faster R-

CNN with ResNet-152-V2 backbone network on KITTI and

the C++ model loaded weights from the Tensorflow-trained

model. The input image size is 1920 ∗ 580 and timing is

averaged over 100 images randomly selected from KITTI.

Letting n denote the average number of boxes before

NMS, and m the number of boxes after NMS, we con-

duct speed benchmarking with different n and m, and pro-

vide the timing breakdown in Table 5. It can be seen that

our method can achieve significant speed-up (5×–20×) re-

gardless of different n and m values. The time complex-

ity of the two algorithms can be analyzed as follows. For

GreedyNMS, the complexity is O(n log(n)) (step 1: sort-

ing) + O(nm) (step 2: 2 nested loops). For Maxpool-

NMS, the time complexity is O(n) (step 1: max-pooling)

+ O(n log(n)) (step 2: sorting). Our method is more effi-

cient than GreedyNMS in two aspects : (1) sorting is per-

formed after max-pooling in our method, and thus there are

far less elements to sort; (2) max-pooling only involves sim-

ple comparison operation, while the 2 nested loops requires

intensive computation of IoU which is a much more expen-

sive operation involving division.

5. Discussions

Why does MaxpoolNMS work? GreedyNMS can be

viewed as a special type of max-pooling, where the pooling

window size and stride are adaptively determined by IoU

and objectness scores, while MaxpoolNMS is max-pooling

with fixed pooling parameters. Figure 4 compares the boxes

selected by the two methods. Comparing Fig. 4 (c) with

Fig. 4 (d) and (e), it can be seen that the two methods select

an overlapping but not exactly the same set of boxes. Quan-

titatively, the overlapping percentage (i.e., the percentage of

boxes selected by both methods) is around 40% – 50% as

shown in Table 6. It may be surprising that given such a

low overlap, the two methods can actually achieve compa-

rable mAP. To explain this, we draw the precision vs. recall

curves for region proposals and final detections in Fig. 5. It

can be seen that the region proposals selected by Maxpool-

NMS has lower precision than GreedyNMS for different

recall values. However, the precision gap between Gree-

dyNMS and MaxpoolNMS is eliminated after the second

stage prediction. We thus conclude that the effectiveness

9360

Table 4. Evaluation results on VOC2007 test.
mAP aero bike brid boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

Faster R-CNN+ResNet-50-V2

GreedyNMS 74.28 75.32 78.92 77.13 68.11 61.60 81.21 84.18 84.15 56.85 82.02 62.75 82.29 83.66 76.76 80.60 45.80 77.91 71.69 78.85 75.85

MS 73.85 74.54 79.13 76.68 67.31 59.36 80.81 83.96 84.16 57.13 82.12 61.99 81.11 83.69 76.96 80.57 46.28 78.07 70.77 77.11 75.24

MC-AR 74.38 75.79 80.21 76.70 67.44 62.50 81.52 84.05 84.23 56.11 82.07 63.32 81.49 83.62 77.18 80.71 46.81 79.16 70.67 77.44 76.53

MC-SCL 69.16 70.87 71.02 69.77 57.51 56.32 75.09 80.26 78.37 50.67 79.30 59.45 77.39 84.25 71.44 78.06 41.17 75.81 67.40 68.17 70.79

R-FCN+ResNet-50-V2

GreedyNMS 70.93 78.84 77.93 71.41 62.08 55.85 77.58 82.17 80.97 52.53 77.74 57.77 77.94 81.85 75.56 77.79 42.82 73.56 66.41 74.86 73.02

MS 71.01 77.96 79.15 72.18 60.83 55.95 78.99 82.21 81.56 52.76 78.31 57.32 78.45 81.27 76.38 77.83 42.81 73.53 65.39 74.74 72.69

MC-AR 71.31 78.14 79.30 72.67 60.70 56.75 79.72 82.77 82.25 51.58 78.01 59.05 78.36 81.30 75.76 77.52 41.96 74.99 66.35 77.35 71.57

MC-SCL 69.03 77.32 76.66 67.69 58.40 52.64 75.31 81.50 79.44 51.08 78.07 57.38 76.53 81.63 74.12 76.58 41.07 70.77 63.24 71.55 69.66

Table 5. Timing breakdown (in ms) for GreedyNMS (step 1: sorting, step 2: 2 nested loops) and MaxpoolNMS (step 1: max-pooling, step

2: sorting). Timing is reported as total timing (sorting/the other step). We use CPU implementation for both methods.

Score Threshold 0 (n=53280) 0.001 (n=9745) 0.05 (n=5408)

GreedyNMS (m=300) 31.69(18.19/13.50) 16.30(2.83/13.46) 13.19(1.47/11.72)
GreedyNMS (m=100) 22.33(18.93/3.40) 6.13(2.87/3.26) 4.87(1.56/3.31)

MS 6.67(6.22/0.45) 0.82(0.39/0.43) 0.51(0.07/0.44)
MC-AR 3.44(2.75/0.69) 0.86(0.23/0.64) 0.66(0.04/0.64)

MC-SCL 4.27(3.30/0.97) 1.10(0.26/0.84) 0.86(0.06/0.80)

of MaxpoolNMS is attributed to the following two factors:

1) MaxpoolNMS can select a different region proposal than

GreedyNMS that is equivalently effective to detect an ob-

ject, as illustrated by an example in Fig. 6; 2) The second

stage GreedyNMS (which we do not replace with Maxpool-

NMS) can remove duplicates for final detections.

(a)

(b)

(d)

(c)

(e)

Figure 4. Comparison of the bounding boxes (i.e., region propos-

als) selected by GreedyNMS and MaxpoolNMS. (a) An input im-

age from KITTI. (b) The objectness score maps for scale 64
2 and

128
2 (from left to right) and aspect ratios {1 : 2, 1 : 1, 2 : 1}

(from top to bottom). (c) Bounding boxes selected by GreedyNMS

(a white pixel indicates that the box corresponding to the anchor at

that location is selected). (d) Bounding boxes selected by MS. (e)

Bounding boxes selected by MC-SCL. The red boxes in (d) and

(e) are to demonstrate how cross-scale max-pooling can help to

remove duplicates for the same object.

We have found that MaxpoolNMS is not working well

for one-stage object detectors and second stage NMS. The

reason is that, instead of selecting 50 – 300 boxes as region

proposals, we need to select few boxes (5 – 10) as the final

detections in such cases, which will require more sophis-

ticated methods to design the pooling sizes and strides in

Table 6. Overlapping percentage of the boxes selected by

GreedyNMS and MaxpoolNMS on KITTI val with Faster R-

CNN+ResNet-50-V2 detector.

No. of proposals MS MC-AR MC-SCL

300 49.61% 43.14% 50.84%

200 41.30% 37.67% 41.70%

100 39.01% 46.45% 39.29%

50 39.60% 50.84% 40.02%

order to accurately remove duplicates. Fine-tuning is not

helping here, as MaxpoolNMS itself does not have learn-

able parameters and the way it affects training is by select-

ing different boxes (vs. GreedyNMS) for second stage pre-

diction. However, different selecting strategies will not af-

fect second stage training significantly [4]. One solution

may be to borrow the idea of deformable convolutional net-

works [6] to design a deformable max-pooling, with addi-

tional modules to learn an offset field for the max-pooling

kernel sizes and strides.

Sensitivity of hyper parameter α MaxpoolNMS has one

hyper-parameter, i.e., α in Eq. 1 and Eq. 2, which deter-

mines the pooling kernel sizes and strides and thus control

the trade-off between precision and recall. A large kernel

size can help to remove more duplicates (high precision) at

the risk of missing detections (low recall). To investigate its

effects on detection accuracy, we vary α from 0.1 to 1.0 and

run evaluation on COCO val2017 with Faster R-CNN de-

tector. Also, we vary the proposal number from 50 to 300.

Results are presented in Fig. 7. It can be seen that for MS

and MC-SCL, mAP is stable and can match GreedyNMS

when α is in the range of [0.2, 0.8] for proposal number

of 200 and 300, and in the range of [0.5, 1.0] for proposal

number of 50 and 100, i.e., a small proposal number re-

quires larger pooling size and strides. This is intuitive – in

order to select a more compact set of proposals, we need to

consider a larger area for comparison. MC-AR tends to be

more sensitive to α, implying that proposals in neighboring

9361

Matching IoU=0.5 Matching IoU=0.6 Matching IoU=0.7 Matching IoU=0.8 Matching IoU=0.9

Precision vs. Recall curve for region proposals

Precision vs. Recall curve for final detections

Figure 5. Precision vs. recall curves for region proposals (top row) and final detections (bottom row) at different matching IoUs. The

curves are draw on KITTI val with Faster R-CNN+ResNet-50-V2 detector. The precision gap in region proposals between MaxpoolNMS

and GreedyNMS is eliminated in final detections.

 (a) (b)

Figure 6. Two correct detections of a car that are predicted from

two different proposals for a VOC2007 test image. (a) Final de-

tection (in yellow box) and its corresponding proposal (in dashed

red box) selected by GreedyNMS. (b) Final detection and its cor-

responding proposal selected by MaxpoolNMS with MS scheme.

Red arrows indicate the anchors that are responsible to generate

the proposals. The detector is Faster R-CNN+ResNet-50-V2.

aspect ratios are more likely to contain different objects (so

considering them as duplicates and removing them using

MC-AR can cause mAP drop).

Influence of large anchor scales We observe that the ob-

jectness score maps corresponding to large anchor scales

typically have high response in a relatively large area. This

can be attributed to several factors: 1) if there are few

ground truth objects that are matched to this anchor size,

the corresponding score map can not train properly and thus

can not make good predictions. This explains for the almost

homogeneous score maps (c), (d) , (h) and (l) in Fig. 3; 2)

As the effective receptive field is much smaller than the the-

oretical one [23], the classifier neuron is probably learning

to predict an object based on part of it and thus produce a

dense prediction for large objects; 3) During training, any

anchor with an IoU above some threshold with a ground

truth object is considered as positive sample and for large

objects, anchors surrounding the object are easier to have

high IoUs. These anchors have different receptive fields and

thus the classifier is trained to give high response to differ-

ent areas of the object. Figure 8 displays the mean score

value for the 12 score maps shown in Fig. 3. As expected,

score maps for small anchors are sparse (very small mean

score value) while score maps for large anchors are dense

(large mean score value). The presence of dense score maps

can cause problem for cross-channel pooling, especially for

MC-SCL, as the dense maps may suppress the correctly-

selected peaks in neighboring score maps of smaller an-

chor scales. This is demonstrated by an example in Fig. 9.

One solution is to set a threshold to separate sparse maps

from dense maps and only conduct cross channel pooling

on the sparse maps (with MS for dense maps). As shown

in Fig. 10, with proper threshold (i.e., 0 – 0.01), MC-SCL

can also match the accuracy of GreedyNMS on VOC2007

test. Note that though KITTI also have dense score maps in

the last scale (i.e., 5122), it is not affected by them as most

of its objects are on scale 642 and 1282 (see Fig. 11 for the

object size distribution for the three datasets).

Which max-pooling scheme works the best? Based on

the above discussions, we conclude that each scheme has

its own strength and weakness, which are summarized in

Table 7. The best scheme is thus a trade-off between ac-

curacy, implementation complexity and sensitivity given a

specific problem.

Table 7. Strength and weakness of the three pooling schemes.
Strength Weakness

MS easiest to implement and

can match GreedyNMS

with properly selected pa-

rameters

the best obtainable accu-

racy is lower than MC-AR

and MC-SCL

MC-AR can further remove dupli-

cates in neighboring as-

pect ratios

more sensitive to α

MC-SCL can further remove dupli-

cates in neighboring scales

easier to be affected by

dense score maps

9362

 (b)(a) (c)

Figure 7. Sensitivity of α on COCO val2017 for different max-pooling schemes and proposal numbers. (a) MS; (b) MC-AR; (c) MC-SCL.

The detector is Faster R-CNN+ResNet-101-V1.

Figure 8. The mean score values for the 12 maps. Vertical black

lines indicate standard deviations.

(a) (b) (c)

Figure 9. Dense maps may suppress the correctly-selected peaks

in neighboring maps. (a) Score maps corresponding to scale 256
2

(top row) and 512
2 (bottom row) for the image shown in Fig. 6. (b)

Max-pooling results of MS. (c) Max-pooling results of MC-SCL.

Red arrow indicates the correct anchor that should be selected to

predict the car in Fig. 6, which is incorrectly removed by cross-

scale pooling in (c).

6. Conclusions

GreedyNMS can be a performance bottleneck, particu-

larly with improved computing capabilities for parallel op-

erations. In this paper, we introduced MaxpoolNMS, a par-

allelizable alternative to NMS for region proposal network.

We utilized the fact that an object proposal should corre-

spond to a peak in the objectness score maps and thus can

employ multi-scale max-pooling to obtain this peak. We

also exploited the fact that an object can produce multi-

 (a) (b)

Figure 10. Effects of sparse map threshold on VOC2007 test. (a)

Faster R-CNN detector; (b) R-FCN detector.

Figure 11. The distribution of object size for COCO, KITTI and

VOC.

ple peaks on neighboring score maps and proposed to use

multi-channel pooling across aspect ratios and scales to re-

move duplicates. Extensive experiments on COCO, KITTI

and VOC2007 with popular two-stage object detectors, i.e.,

Faster R-CNN and R-FCN, demonstrated the effectiveness

and robustness of our method. Benchmarking on accuracy

and speed shows that MaxpoolNMS can achieve compa-

rable accuracy as GreedyNMS with up to 20× speed-up.

Our approach is scalable and parallelizable, making NMS

no longer a performance bottleneck in the region proposal

network. This paves the way towards high-performance and

real-time realization of two-stage object detectors.

Acknowledgements

This research is supported by A*STAR under its
Hardware-Software Co-optimisation for Deep Learning
(Project No.A1892b0026).

9363

References

[1] Navaneeth Bodla, Bharat Singh, Rama Chellappa, and

Larry S Davis. Improving object detection with one line of

code. arXiv preprint arXiv:1704.04503, 2017. 2

[2] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delv-

ing into high quality object detection. arXiv preprint

arXiv:1712.00726, 2017. 2

[3] Xinlei Chen, Ross Girshick, Kaiming He, and Piotr Dollár.

Tensormask: A foundation for dense object segmentation.

arXiv preprint arXiv:1903.12174, 2019. 2

[4] Xinlei Chen and Abhinav Gupta. An implementation of

faster rcnn with study for region sampling. arXiv preprint

arXiv:1702.02138, 2017. 6

[5] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-FCN: Object

detection via region-based fully convolutional networks. In

Advances in neural information processing systems, pages

379–387, 2016. 1, 2

[6] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong

Zhang, Han Hu, and Yichen Wei. Deformable convolutional

networks. In Proceedings of the IEEE international confer-

ence on computer vision, pages 764–773, 2017. 6

[7] Navneet Dalal and Bill Triggs. Histograms of oriented gra-

dients for human detection. In Computer Vision and Pat-

tern Recognition, 2005. CVPR 2005. IEEE Computer Soci-

ety Conference on, volume 1, pages 886–893. IEEE, 2005.

1, 2

[8] Mark Everingham, Luc Van Gool, Christopher KI Williams,

John Winn, and Andrew Zisserman. The pascal visual object

classes (voc) challenge. International journal of computer

vision, 88(2):303–338, 2010. 4

[9] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we

ready for autonomous driving? the kitti vision benchmark

suite. In Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2012. 4

[10] Ross Girshick. Fast R-CNN. arXiv preprint

arXiv:1504.08083, 2015. 2

[11] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra

Malik. Rich feature hierarchies for accurate object detection

and semantic segmentation. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

580–587, 2014. 2

[12] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask r-cnn. In Computer Vision (ICCV), 2017 IEEE

International Conference on, pages 2980–2988. IEEE, 2017.

2

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 4

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Identity mappings in deep residual networks. In European

Conference on Computer Vision, pages 630–645. Springer,

2016. 2, 4

[15] Jan Hosang, Rodrigo Benenson, and Bernt Schiele. A con-

vnet for non-maximum suppression. In German Conference

on Pattern Recognition, pages 192–204. Springer, 2016. 2

[16] Jan Hosang, Rodrigo Benenson, and Bernt Schiele. Learning

non-maximum suppression. arXiv preprint, 2017. 2

[17] Han Hu, Jiayuan Gu, Zheng Zhang, Jifeng Dai, and Yichen

Wei. Relation networks for object detection. arXiv preprint

arXiv:1711.11575, 2017. 2

[18] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu,

Anoop Korattikara, Alireza Fathi, Ian Fischer, Zbigniew Wo-

jna, Yang Song, Sergio Guadarrama, et al. Speed/accuracy

trade-offs for modern convolutional object detectors. In

IEEE CVPR, 2017. 1, 2, 4

[19] Norman P Jouppi, Cliff Young, Nishant Patil, David Patter-

son, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh

Bhatia, Nan Boden, Al Borchers, et al. In-datacenter perfor-

mance analysis of a tensor processing unit. In Proceedings

of the 44th Annual International Symposium on Computer

Architecture, pages 1–12. ACM, 2017. 1

[20] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and

Piotr Dollár. Focal loss for dense object detection. arXiv

preprint arXiv:1708.02002, 2017. 2

[21] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

European conference on computer vision, pages 740–755.

Springer, 2014. 4

[22] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C

Berg. SSD: Single shot multibox detector. In European con-

ference on computer vision, pages 21–37. Springer, 2016. 1,

2

[23] Wenjie Luo, Yujia Li, Raquel Urtasun, and Richard Zemel.

Understanding the effective receptive field in deep convolu-

tional neural networks. In Advances in neural information

processing systems, pages 4898–4906, 2016. 7

[24] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali

Farhadi. You only look once: Unified, real-time object de-

tection. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 779–788, 2016. 1, 2

[25] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster R-CNN: Towards real-time object detection with re-

gion proposal networks. In Advances in neural information

processing systems, pages 91–99, 2015. 1, 2

[26] Lachlan Tychsen-Smith and Lars Petersson. Improving ob-

ject localization with fitness nms and bounded iou loss. arXiv

preprint arXiv:1711.00164, 2017. 2

9364

